【创新设计】2-2-1用样本的频率分布估计总体分布同步检测

合集下载

第二章 2.2.1 用样本的频率分布估计总体分布(一)

第二章  2.2.1 用样本的频率分布估计总体分布(一)

2.2.1 用样本的频率分布估计总体分布(一)学习目标 1.体会分布的意义和作用;2.学会用频率分布表,画频率分布直方图表示样本数据;3.能通过频率分布表或频率分布直方图对数据做出总体统计.知识点一 用样本估计总体 思考 还记得我们抽样的初衷吗?答案 用样本去估计总体,为决策提供依据. 梳理 (1)用样本的频率分布估计总体的分布. (2)用样本的数字特征估计总体的数字特征. 知识点二 数据分析的基本方法思考 通过抽样获得的原始数据有什么缺点?答案 因为通过抽样获得的原始数据多而且杂乱,无法直接从中理解它们的含义,并提取信息,也不便于我们用它来传递信息. 梳理 (1)借助于图形分析数据的一种基本方法是用图将它们画出来,此方法可以达到两个目的,一是从数据中提取信息,二是利用图形传递信息. (2)借助于表格分析数据的另一种方法是用紧凑的表格改变数据的排列方式,此方法是通过改变数据的构成形式,为我们提供解释数据的新方式. 知识点三 频率分布表与频率分布直方图思考1 要做频率分布表,需要对原始数据做哪些工作? 答案 分组,频数累计,计算频数和频率. 思考2 如何决定组数与组距? 答案 若极差组距为整数,则极差组距=组数.若极差组距不为整数,则⎣⎢⎡⎦⎥⎤极差组距+1=组数.注意:[x ]表示不大于x 的最大整数.思考3 同样一组数据,如果组距不同,得到的频率分布直方图也会不同吗?答案 不同.对于同一组数据分析时,要选好组距和组数,不同的组距与组数对结果有一定的影响.梳理 一般地,频数指某组中包含的个体数,各组频数和=样本容量;频率=频数样本容量,各组频率和=1.在频率分布直方图中,纵轴表示频率/组距,数据落在各小组内的频率用小长方形的面积来表示,各小长方形的面积的总和等于1.类型一 频率分布直方图 命题角度1 有关概念的理解例1 关于频率分布直方图,下列说法正确的是( ) A .直方图中小长方形的高表示取某数的频率B .直方图中小长方形的高表示该组上的个体在样本中出现的频率C .直方图中小长方形的高表示该组上的个体在样本中出现的频数与组距的比值D .直方图中小长方形的高表示该组上的个体在样本中出现的频率与组距的比值 答案 D解析 注意频率分布直方图和条形图的区别,在直方图中,纵轴(小长方形的高)表示频率与组距的比值,其相应组距上的频率等于该组距上的小长方形的面积.反思与感悟 由频率的定义不难得出,各组数据的频率之和为1,因为各组数据的个数之和为样本容量.在列频率分布表时,可以利用这种方法检查是否有数据的丢失. 跟踪训练1 一个容量为20的样本数据,将其分组如下表:则样本在区间(-∞,50)上的频率为( ) A .0.5 B .0.25 C .0.6 D .0.7 答案 D解析 样本在区间(-∞,50)上的频率为2+3+4+520=1420=0.7.命题角度2 绘制频率分布直方图例2 某中学从高一年级随机抽取50名学生进行智力测验,其得分如下(单位:分): 48 64 52 86 71 48 64 41 86 79 71 68 82 84 68 64 62 68 81 57 90 52 74 73 56 78 47 66 55 64 56 88 69 40 73 97 68 56 67 5970527944556962583258根据上面的数据,回答下列问题:(1) 这次测验成绩的最高分和最低分分别是多少?(2)将区间[30,100]平均分成7个小区间,试列出这50名学生智力测验成绩的频率分布表,进而画出频率分布直方图;(3)分析频率分布直方图,你能得出什么结论?解(1)这次测验成绩的最低分是32分,最高分是97分.(2)根据题意,列出样本的频率分布表如下:(3)从频率分布直方图可以看出,这50名学生的智力测验成绩大体上呈两头小、中间大,左右基本对称,说明这50名学生中智力特别好或特别差的占极少数,而智力一般的占多数,这是一种最常见的分布.反思与感悟组距和组数的确定没有固定的标准,将数据分组时,组数应力求合适,以使数据的分布规律能较清楚地呈现出来.组数太多或太少,都会影响我们了解数据的分布情况.数据分组的组数与样本容量有关,一般样本容量越大,所分组数越多.当样本容量不超过100时,按照数据的多少,常分成5至12组.跟踪训练2一个农技站为了考察某种大麦穗生长的分布情况,在一块试验田里抽取了100株麦穗,量得长度如下(单位:cm):6.5 6.4 6.7 5.8 5.9 5.9 5.2 4.0 5.4 4.65.8 5.5 6.0 6.5 5.1 6.5 5.3 5.9 5.5 5.8 6.2 5.4 5.0 5.0 6.8 6.0 5.0 5.7 6.0 5.5 6.8 6.0 6.3 5.5 5.0 6.3 5.2 6.0 7.0 6.4 6.4 5.8 5.9 5.7 6.8 6.6 6.0 6.4 5.7 7.4 6.0 5.4 6.5 6.0 6.8 5.8 6.3 6.0 6.3 5.6 5.3 6.4 5.7 6.7 6.2 5.6 6.0 6.7 6.7 6.0 5.6 6.2 6.1 5.3 6.2 6.8 6.6 4.7 5.7 5.7 5.8 5.3 7.0 6.0 6.0 5.9 5.4 6.0 5.2 6.0 6.3 5.7 6.8 6.1 4.5 5.6 6.3 6.0 5.8 6.3根据上面的数据列出频率分布表、绘制出频率分布直方图,并估计在这块试验田里长度在5.75~6.35 cm 之间的麦穗所占的百分比. 解 (1)计算极差:7.4-4.0=3.4; (2)决定组距与组数:若取组距为0.3,因为3.40.3≈11.3,需分为12组,组数合适,所以取组距为0.3,组数为12;(3)决定分点:使分点比数据多一位小数,并且把第1小组的起点稍微减小一点,那么所分的12个小组可以是3.95~4.25,4.25~4.55,4.55~4.85,…,7.25~7.55; (4)列频率分布表:(5)从表中看到,样本数据落在5.75~6.35之间的频率是0.28+0.13=0.41,于是可以估计,在这块试验田里长度在5.75~6.35 cm之间的麦穗约占41%.类型二根据频率分布表绘制频率分布直方图例3如表所示给出了在某校500名12岁男孩中,用随机抽样得出的120人的身高(单位:cm).(1)列出样本频率分布表;(2)画出频率分布直方图;(3)估计身高小于134 cm的人数占总人数的百分比.解(1)样本频率分布表如下:(2)(3)由样本频率分布表可知,身高小于134 cm的男孩出现的频率为0.04+0.07+0.08=0.19,所以我们估计身高小于134 cm的人数占总人数的19%.反思与感悟频率分布表和频率分布直方图之间的密切关系是显然的,它们只不过是相同的数据的两种不同的表达方式,是通过各小组数据在样本容量中所占比例大小来表示数据的分布规律,它可以让我们更清楚地看到整个样本数据的频率分布情况,并由此估计总体的分布情况.跟踪训练3从某校高三学生中抽取50名参加数学竞赛,成绩分组(单位:分)及各组的频数如下:[40,50),2;[50,60),3;[60,70),10;[70,80),15;[80,90),12;[90,100],8.(1)列出样本的频率分布表(含累积频率);(2)画出频率分布直方图;(3)估计成绩在[60,90)分的学生比例.解(1)频率分布表如下:(2)(3)成绩在[60,90)分的学生比例,即学生成绩在[60,90)分的频率0.2+0.3+0.24=0.74=74%.所以估计成绩在[60,90)分的学生比例为74%. 类型三 频率分布表及频率分布直方图的应用例4 从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图:(1)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的概率; (2)求频率分布直方图中的a ,b 的值;(3)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的100名学生该周课外阅读时间的平均数在第几组(只需写出结论).解 (1)根据频数分布表知,100名学生中一周课外阅读时间不少于12小时的学生共有6+2+2=10(名),所以样本中的学生一周课外阅读时间少于12小时的频率是1-10100=0.9.故从该校随机选取一名学生,估计其该周课外阅读时间少于12小时的概率为0.9.(2)课外阅读时间落在组[4,6)内的有17人,频率为0.17,所以a =频率组距=0.172=0.085.课外阅读时间落在组[8,10)内的有25人,频率为0.25,所以b =频率组距=0.252=0.125.(3)样本中的100名学生该周课外阅读时间的平均数在第4组.反思与感悟在频率分布直方图中,各小长方形的面积等于相应各组的频率,小长方形的高与频数成正比,各组频数之和等于样本容量,频率之和等于1.跟踪训练4某学校组织学生参加数学测试,某班学生的成绩频率分布直方图如图,数据的分组依次为[20,40),[40,60),[60,80),[80,100],若低于60分的人数是15,则该班的学生总人数是()A.45 B.50 C.55 D.60答案 B解析结合频率分布直方图,得分低于60分的人数占总人数的频率为20×(0.005+0.01)=0.30,所以总人数为150.30=50,故选B.1.如图所示是一容量为100的样本的频率分布直方图,则由图中的数据可知,样本落在[15,20]内的频数为()A.20 B.30 C.40 D.50答案 B解析样本数据落在[15,20]内的频数为100×[1-5×(0.04+0.1)]=30.2.已知样本数据:10,8,6,10,13,8,10,12,11,7,8,9,11,9,12,9,10,11,12,11.那么频率为0.2的是() A.[5.5,7.5) B.[7.5,9.5)C.[9.5,11.5) D.[11.5,13.5]答案 D解析列出频率分布表,依次对照就可以找到答案,频率分布表如下:从表中可以看出频率为3.如图是将高三某班60名学生参加某次数学模拟考试所得的成绩(成绩均为整数)整理后画出的频率分布直方图,则此班的优秀(120分及以上为优秀)率为________.答案30%解析优秀率为10×(0.022 5+0.005+0.002 5)=0.3=30%.4.根据国家质量监督检验检疫总局发布的《车辆驾驶人员血液、呼气酒精含量阈值与检验》(GB19522~2004)中规定车辆驾驶人员血液酒精含量:“饮酒驾车”的临界值为20 mg/100 mL;“醉酒驾车”的临界值为80 mg/100 mL.某地区交通执法部门统计了5月份的执法记录数据(每个分组包括最小值不包括最大值):根据上述表格,可估计该地区全年“饮酒驾车”发生的频率等于________.答案0.09解析5月份“饮酒驾车”发生的频率等于11+5+2200=0.09.可估计全年“饮酒驾车”发生的频率为0.09.5.暑假期间某班为了增强学生的社会实践能力,把该班学生分成四个小组到一果园帮果农测量果树的产量,某小组来到一片种植苹果的山地,他们随机选取20株作为样本测量每一株的果实产量(单位:kg),获得的数据按照区间[40,45),[45,50),[50,55),[55,60]进行分组,得到如下频率分布表:已知样本中产量在区间[45,50)内的株数是产量在区间[50,60]内的株数的43倍.(1)分别求出a ,b ,c 的值; (2)作出频率分布直方图. 解 (1)易得c =1.0.由题意得⎩⎪⎨⎪⎧a =43(0.1+b ),0.3+a +0.1+b =1.0,∴a =0.4,b =0.2.(2)根据频率分布表画出频率分布直方图,如图所示.1.频率分布是指一个样本数据在各个小范围内所占比例的大小,总体分布是指总体取值的频率分布规律,我们通常用样本的频率分布表或频率分布直方图去估计总体的分布. 2.频率分布表和频率分布直方图,是对相同数据的两种不同表达方式,用紧凑的表格改变数据的排列方式和构成形式,可展示数据的分布情况.通过作图既可以从数据中提取信息,又可以利用图形传递信息.3.样本数据的频率分布表和频率分布直方图,是通过各小组数据在样本容量中所占比例大小来表示数据的分布规律,它可以让我们更清楚地看到整个样本数据的频率分布情况,并由此估计总体的分布情况.。

用样本的频率分布估计总体的频率分布

用样本的频率分布估计总体的频率分布

通过抽样,我们获得了100位居民某年的月平均用水量 (单位:t) ,如下表:
条形图
饼状图
频数分布直方图
具体步骤: 1、求极差 即一组数据中最大值与最小值的差 2、决定组距与组数 组数:将数据分组 组距:指每个小组的两个端点的距离 3、 决定分点 分组时应保证将样本数据落在每一组的内部
具体步骤: 1、求极差 即一组数据中最大值与最小值的差 2、决定组距与组数 组数:将数据分组 组距:指每个小组的两个端点的距离 3、 决定分点 分组时应保证将样本数据落在每一组的内部
小结
画频率分布直方图的骤:
一、求极差:即数据中最大值与最小值的差 二、决定组距与组数 :组距=极差/组数 三、决定分点: 分组,通常对组内数值所在区间,
取左闭右开区间 , 最后一组取闭区间 四、列频率分布表
五、画出频率分布直方图(纵轴表示频率/组距)
作业: 请大家抽查我们年级同学每天数学作业的 用时,作出频率分布直方图,并对数据进 行分析,结合实际情况,向我们年级数学 备课组提出合理化建议。 要求:1、可以按班级小组进行合作调查 2、结果以电子文档形式呈现 3、下周三完成。谢谢
用样本的频曹付生
我国是世界上严重缺水的国家之一,城市缺 水问题较为突出,某市政府为了节约生活 用水,计划在本市试行居民生活用水定额 管理,即确定一个居民月用水量标准a,用 水量不超过a的部分按平价收费,超出a的 部分按议价收费。 (1)如果希望大部分居民的日常生活不受影 响,那么标准a定为多少比较合理呢 ? (2)你认为,为了较为合理地确定出这个标 准,需要做哪些工作?
4、 列频率分布表
100位居民月平均用水量的频数分布直方图
5、画频率分布直方图
频率/组距 0.50 0.40 0.30 0.20 0.10 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 月平均用水量/t

2.2.1用样本的频率分布估计总体的分布课件(刘爱娟,2014.2.26)

2.2.1用样本的频率分布估计总体的分布课件(刘爱娟,2014.2.26)

• • • • • • • • • •
25.39 25.41 25.40 25.37 25.35 25.40 25.36 25.41 25.47 25.40
25.36 25.43 25.39 25.44 25.32 25.43 25.42 25.32 25.34 25.35
25.34 25.44 25.41 25.33 25.45 25.44 25.39 25.38 25.30 25.41
1.将每个数据分为茎(高位)和叶(低位) 两部分,在此例中,茎为十位上的数字, 叶为个位上的数字. 2.将最小茎和最大茎之间的数按大小次序 排成一列,写在中间. 3.将各个数据的叶按大小次序写在其茎的 左(右)侧.
用茎叶图表示数据的优点
一是从统计图上没有原始信息的损失,所 有的数据信息都可以从茎叶图中得到; 二是茎叶图可以在比赛是随时记录,方便 记录与表示。但茎叶图只便于表示两位有 效数字的数据,虽然可以表示两个人以上 的比赛结果(或两个以上的记录),但没 有表示两个记录那么直观、清晰
二、频率分布折线图
把频率分布直方图各个长方形上边的中点用线段 连接起来,就得到分布折线图。
三、总体密度曲线
• 频率分布直方图表明了所抽取的100件产品中, 尺寸落在各个小组内的频率大小.样本容量越大, 所分组数越多,各组的频率就越接近于总体在相 应各组取值的概率.设想样本容量无限增大,分
组的组距无限缩小,则频率分布直方图就会无限 接近于一条光滑曲线——总体密度曲线.它反映 了总体在各个范围内取值的规率.总体密度曲线
3、甲乙两个小组各10名学生的英语口语测试成绩如下(单位:分)
甲组 76 乙组 82 90 84 84 85 86 89 81 79 87 80 86 91 82 89 85 79 83 74

全国“创新杯”数学类说课大赛课件一等奖作品:《用样本频率分布估计总体》教学设计

全国“创新杯”数学类说课大赛课件一等奖作品:《用样本频率分布估计总体》教学设计

联系实际,引起兴趣—《用样本的频率分布估计总体》教学设计【课题】10.4.1 用样本频率分布估计总体设计理念本节课采用问题引领的探究式教学法,借助一个教学平台,贯串一个故事情境,设置多次学生活动,根据“情境创设生活化,问题探究活动化,辨析质疑及时化,习题设置梯度化”的原则,让不同层次的学生都参与到活动中来,由浅入深,由易到难,由特殊到一般,引领学生利用所学知识解决实际问题。

教材分析本课题是高等教育出版社《数学》第十章《概率与统计初步》的第四节的第1课时。

本节在科学技术,生产实践,日常生活中都有广泛应用,刚学习了为什么要抽样和抽样方法,本节课的内容在于抽样以后如何更好地估计总体。

因此,在教材中具有非常重要的位置。

学情分析我所任教的是13级会计专业的学生,班上大部分都是女生,她们理论知识水平参差不齐,对应用题比较发怵,缺乏自主探索、发现的意识,我紧抓应用题与生活息息相关的特点,结合学生性格活泼,想象力丰富,情境感受深刻的共性,设计本节课。

【教学目标】知识目标:(1)理解用样本的频率分布估计总体.能力目标:(1)会作出样本的频率分布表,并且用样本的频率分布估计总体;(2)通过相关问题的解决,培养学生的计算工具使用技能、数据处理技能.情感目标:(1)尝试应用计算软件或计算器进行概率与统计的计算,感受计算工具带来的便捷.(2)关注生活中的数学模型,体会数学知识的应用.(3)经历合作学习的过程,尝试探究与讨论,树立团队合作意识.【教学重点】样本频数,频率的求法【教学难点】列频率分布表【教学设计】用样本的数字特征去估计总体的数字特征是统计的重要思想方法.在教学中要向学生指出为什么要从总体中抽取样本.通过例题的教学,让学生体会用样本估计总体的思想.在教学中应向学生指出用样本估计总体的具体方法是:通过随机抽样,计算样本频率;利用样本频率估计总体概率.样本的容量越大,对总体的估计也就越精确.在制作一组数据的频率分布表时,决定组距与组数是关键,在一般情况下,数据越多,分组的组数也就越多.频率分布表准确,让我们对一组数据的频率分布情况了解得更清晰.【教学备品】教学课件.【课时安排】1课时.(45分钟)【教学过程】【小提示】设定分点数值时需要考虑分点值不要与样本数据重合.【教师教学后记】。

2020版数学人教B版必修3学案:第二章 2.2.1 用样本的频率分布估计总体的分布(一) Word版含解析

2020版数学人教B版必修3学案:第二章 2.2.1 用样本的频率分布估计总体的分布(一) Word版含解析

2.2 用样本估计总体2.2.1 用样本的频率分布估计总体的分布(一)学习目标 1.体会分布的意义和作用.2.学会用频率分布表,画频率分布直方图表示样本数据.3.能通过频率分布表或频率分布直方图对数据做出总体统计.知识点一 用样本估计总体 思考 还记得我们抽样的初衷吗?答案 用样本去估计总体,为决策提供依据. 梳理 用样本的频率分布估计总体的分布. 知识点二 频率分布表与频率分布直方图思考1 要做频率分布表,需要对原始数据做哪些工作? 答案 分组,频数累计,计算频数和频率. 思考2 如何决定组数与组距? 答案 若极差组距为整数,则极差组距=组数.若极差组距不为整数,则⎣⎢⎡⎦⎥⎤极差组距+1=组数. 注意:[x]表示不大于x 的最大整数.思考3 同样一组数据,如果组距不同,得到的频率分布直方图也会不同吗?答案 不同.对于同一组数据分析时,要选好组距和组数,不同的组距与组数对结果有一定的影响.梳理 一般地,频数指某组中包含的个体数,各组频数和=样本容量;频率=频数样本容量,各组频率和等于1.在频率分布直方图中,纵轴表示频率组距,数据落在各小组内的频率用小长方形的面积来表示,各小长方形的面积的总和等于1.1.频率分布直方图中小长方形的高表示该组上的个体在样本中出现的频率与组距的比值.( √ )2.频率分布直方图中小长方形的面积表示该组的个体数.( × ) 3.频率分布直方图中所有小长方形面积之和为1.( √ )题型一 频率分布的理解例1 关于频率分布直方图,下列说法正确的是( ) A .直方图中小长方形的高表示取某数的频率B .直方图中小长方形的高表示该组上的个体在样本中出现的频率C .直方图中小长方形的高表示该组上的个体在样本中出现的频数与组距的比值D .直方图中小长方形的高表示该组上的个体在样本中出现的频率与组距的比值 答案 D解析 注意频率分布直方图和条形图的区别,在直方图中,纵轴(小长方形的高)表示频率与组距的比值,其相应组距上的频率等于该组距上的小长方形的面积.反思与感悟 由频率的定义不难得出,各组数据的频率之和为1,因为各组数据的个数之和为样本容量.在列频率分布表时,可以利用这种方法检查是否有数据的丢失. 跟踪训练1 一个容量为20的样本数据,将其分组如下表:则样本在区间(-∞,50)上的频率为( ) A .0.5 B .0.25 C .0.6 D .0.7 答案 D解析 样本在区间(-∞,50)上的频率为2+3+4+520=1420=0.7.题型二 频率分布直方图的绘制例2 某中学从高一年级随机抽取50名学生进行智力测验,其得分如下(单位:分): 48 64 52 86 71 48 64 41 86 79 71 68 82 84 68 64 62 68 81 57 90 52 74 73 56 78 47 66 55 64 56 88 69 40 73 97 68 56 67 59 70 52 79 44 55 69 62 58 32 58 根据上面的数据,回答下列问题:(1) 这次测验成绩的最高分和最低分分别是多少?(2)将区间[30,100]平均分成7个小区间,试列出这50名学生智力测验成绩的频率分布表,进而画出频率分布直方图;(3)分析频率分布直方图,你能得出什么结论?解(1)这次测验成绩的最低分是32分,最高分是97分.(2)根据题意,列出样本的频率分布表如下:频率分布直方图如图所示.(3)从频率分布直方图可以看出,这50名学生的智力测验成绩大体上呈两头小、中间大,左右基本对称的状态,说明这50名学生中智力特别好或特别差的占极少数,而智力一般的占多数,这是一种最常见的分布.反思与感悟组距和组数的确定没有固定的标准,将数据分组时,组数应力求合适,以使数据的分布规律能较清楚地呈现出来.组数太多或太少,都会影响我们了解数据的分布情况.数据分组的组数与样本容量有关,一般样本容量越大,所分组数越多.当样本容量不超过100时,按照数据的多少,常分成5至12组.跟踪训练2一个农技站为了考察某种麦穗生长的分布情况,在一块试验田里抽取了100株麦穗,量得长度如下(单位:cm):6.5 6.4 6.7 5.8 5.9 5.9 5.2 4.0 5.4 4.65.8 5.5 6.0 6.5 5.1 6.5 5.3 5.9 5.5 5.86.2 5.4 5.0 5.0 6.8 6.0 5.0 5.7 6.0 5.56.8 6.0 6.3 5.5 5.0 6.3 5.2 6.07.0 6.46.4 5.8 5.9 5.7 6.8 6.6 6.0 6.4 5.77.46.0 5.4 6.5 6.0 6.8 5.8 6.3 6.0 6.3 5.6 5.3 6.4 5.7 6.7 6.2 5.6 6.0 6.7 6.7 6.0 5.6 6.2 6.1 5.3 6.2 6.8 6.6 4.7 5.7 5.7 5.8 5.3 7.0 6.0 6.0 5.9 5.4 6.0 5.2 6.0 6.3 5.7 6.8 6.1 4.5 5.6 6.3 6.0 5.8 6.3根据上面的数据列出频率分布表、绘制出频率分布直方图,并估计在这块试验田里长度在5.75~6.35 cm 之间的麦穗所占的百分比. 解 (1)计算极差:7.4-4.0=3.4; (2)决定组距与组数:若取组距为0.3,因为3.40.3≈11.3,需分为12组,组数合适,所以取组距为0.3,组数为12;(3)决定分点:使分点比数据多一位小数,并且把第1小组的起点稍微减小一点,那么所分的12个小组可以是3.95~4.25,4.25~4.55,4.55~4.85,…,7.25~7.55; (4)列频率分布表:(5)绘制频率分布直方图如图.从表中看到,样本数据落在5.75~6.35之间的频率是0.28+0.13=0.41,于是可以估计,在这块试验田里长度在5.75~6.35 cm 之间的麦穗约占41%. 题型三 频率分布表及频率分布直方图的应用例3 从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图:(1)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的概率; (2)求频率分布直方图中的a ,b 的值;(3)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的100名学生该周课外阅读时间的平均数在第几组(只需写出结论).解 (1)根据频数分布表知,100名学生中一周课外阅读时间不少于12小时的学生共有6+2+2=10(名),所以样本中的学生一周课外阅读时间少于12小时的频率是1-10100=0.9.故从该校随机选取一名学生,估计其该周课外阅读时间少于12小时的概率为0.9.(2)课外阅读时间落在[4,6)组内的有17人,频率为0.17,所以a =频率组距=0.172=0.085.课外阅读时间落在[8,10)组内的有25人,频率为0.25,所以b =频率组距=0.252=0.125.(3)样本中的100名学生该周课外阅读时间的平均数在第4组.反思与感悟 在频率分布直方图中,各小长方形的面积等于相应各组的频率,小长方形的高与频数成正比,各组频数之和等于样本容量,频率之和等于1.跟踪训练3 为了了解高一年级学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图所示),图中从左到右各小矩形的面积之比为2∶4∶17∶15∶9∶3,第二小组的频数为12.(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上(含110次)为达标,则该校全体高一年级学生的达标率约是多少? 解 (1)频率分布直方图是以面积的形式来反映数据落在各小组内的频率大小的, 因此第二小组的频率为42+4+17+15+9+3=0.08.因为第二小组的频率=第二小组的频数样本容量,所以样本容量=第二小组的频数第二小组的频率=120.08=150.(2)由直方图可估计该校全体高一年级学生的达标率约为17+15+9+32+4+17+15+9+3×100%=88%.1.如图所示是一容量为100的样本的频率分布直方图,则由图中的数据可知,样本落在[15,20]内的频数为( )A .20B .30C .40D .50 答案 B解析 样本数据落在[15,20]内的频数为100×[1-5×(0.04+0.1)]=30.2.已知样本数据:10,8,6,10,13,8,10,12,11,7,8,9,11,9,12,9,10,11,12,11.那么频率为0.2的是() A.[5.5,7.5) B.[7.5,9.5)C.[9.5,11.5) D.[11.5,13.5]答案 D解析列出频率分布表,依次对照就可以找到答案,频率分布表如下:从表中可以看出频率为0.2的是[11.5,13.5],故选D.3.如图是将高三某班60名学生参加某次数学模拟考试所得的成绩(成绩均为整数)整理后画出的频率分布直方图,则此班的优秀(120分及以上为优秀)率为________.答案30%解析优秀率为10×(0.022 5+0.005+0.002 5)=0.3=30%.4.一个频数分布表(样本容量为50)不小心被损坏了一部分,只记得样本中数据在[20,60)内的频率为0.6,则估计样本在[40,50),[50,60)内的数据个数之和是________.答案21解析根据题意,设分布在[40,50),[50,60)内的数据个数分别为x,y.∵样本中数据在[20,60)内的频率为0.6,样本容量为50,∴4+5+x+y50=0.6,解得x+y=21.即样本在[40,50),[50,60)内的数据个数之和为21.5.暑假期间某班为了增强学生的社会实践能力,把该班学生分成四个小组到一果园帮果农测量果树的产量,某小组来到一片种植苹果的山地,他们随机选取20株作为样本测量每一株的果实产量(单位:kg),获得的数据按照区间[40,45),[45,50),[50,55),[55,60]进行分组,得到如下频率分布表:已知样本中产量在区间[45,50)内的株数是产量在区间[50,60]内的株数的43倍.(1)分别求出a ,b ,c 的值; (2)作出频率分布直方图. 解 (1)易得c =1.0.由题意得⎩⎪⎨⎪⎧a =43(0.1+b ),0.3+a +0.1+b =1.0,∴a =0.4,b =0.2.(2)根据频率分布表画出频率分布直方图,如图所示.1.频率分布是指一个样本数据在各个小范围内所占比例的大小,总体分布是指总体取值的频率分布规律,我们通常用样本的频率分布表或频率分布直方图去估计总体的分布. 2.频率分布表和频率分布直方图,是对相同数据的两种不同表达方式,用紧凑的表格改变数据的排列方式和构成形式,可展示数据的分布情况.通过作图既可以从数据中提取信息,又可以利用图形传递信息.3.样本数据的频率分布表和频率分布直方图,是通过各小组数据在样本容量中所占比例大小来表示数据的分布规律,它可以让我们更清楚地看到整个样本数据的频率分布情况,并由此估计总体的分布情况.一、选择题1.观察新生婴儿的体重(单位:g),其频率分布直方图如图所示,则新生婴儿的体重在[2 700,3 000)内的频率为( )A .0.001B .0.01C .0.003D .0.3答案 D解析 频率=频率组距×组距,组距=3 000-2 700=300,频率组距=0.001, ∴频率=0.001×300=0.3.2.容量为100的样本数据,按从小到大的顺序分为8组,如下表:第三组的频数和频率分别是( ) A .14和0.14 B .0.14和14 C.114和0.14 D.13和114答案 A解析 x =100-(10+13+14+15+13+12+9)=100-86=14,第三组的频率为14100=0.14.3.为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa )的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,…,第五组,如图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为( )A .6B .8C .12D .18 答案 C解析 志愿者的总人数为20(0.16+0.24)×1=50,所以第三组人数为50×0.36×1=18, 有疗效的人数为18-6=12.4.某校为了解高三学生的身体情况,抽取了100名女生的体重.将所得的数据整理后,画出了如图所示的频率分布直方图,则所抽取的女生中体重在[40,45) kg 的人数是( )A .10B .2C .5D .15 答案 A解析 由图可知频率=频率组距×组距,频率=0.02×5=0.1,∴女生体重在[40,45) kg 的人数为0.1×100=10.5.为了了解某幼儿园儿童的身高情况,抽查该园120名儿童的身高绘制成如图所示的频率分布直方图,则抽查的120名儿童身高大于或等于98 cm 且小于104 cm 的有( )A .90名B .75名C .65名D .40名 答案 A解析 由图可知身高大于或等于98 cm 且小于104 cm 的儿童的频率为(0.1+0.15+0.125)×2=0.75,抽查的120名儿童有120×0.75=90(名)儿童的身高大于或等于98 cm 且小于104 cm. 6.将容量为n 的样本中的数据分成6组,绘制频率分布直方图.若第一组至第六组数据的频率之比为2∶3∶4∶6∶4∶1,且前三组数据的频数之和等于27,则n 的值为( ) A .20 B .27 C .6 D .60答案 D解析 ∵n ·2+3+42+3+4+6+4+1=27,∴n =60.7.某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分成6组:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]加以统计,得到如图所示的频率分布直方图.已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为( )A .588B .480C .450D .120 答案 B解析 ∵少于60分的学生人数为600×(0.05+0.15)=120, ∴不少于60分的学生人数为600-120=480.8.对某种电子元件使用寿命进行跟踪调查,所得样本频率分布直方图如图.由图可知,这一批电子元件中寿命在100~300 h 的电子元件的数量与寿命在300~600 h 的电子元件的数量的比是( )A .1∶2B .1∶3C .1∶4D .1∶6 答案 C解析 由题意,寿命在100~300 h 的电子元件的频率为100×⎝⎛⎭⎫12 000+32 000=0.2,寿命在300~600 h 的电子元件的频率为100×⎝⎛⎭⎫1400+1250+3 2 000=0.8,则寿命在100~300 h 的电子元件的数量与寿命在300~600 h 的电子元件的数量比大约是0.2∶0.8=1∶4. 二、填空题9.将一个容量为n 的样本分成若干组,已知甲组的频数和频率分别为36和14,则容量n =________,频率为16的乙组的频数是________.答案 144 24解析 14=36n ,所以n =36×4=144,同理16=x144,x =24.10.某大学对1 000名学生的自主招生水平测试成绩进行统计,得到样本频率分布直方图(如图所示),现规定不低于70分为合格,则合格人数是________.答案 600解析 由频率分布直方图知合格的频率为(0.035+0.015+0.01)×10=0.6, 故合格人数为1 000×0.6=600.11.下列命题正确的是________.(填序号)①频率分布直方图中每个小矩形的面积等于相应组的频数; ②频率分布直方图中各小矩形面积之和等于1;③频率分布直方图中各小矩形的高(平行于纵轴的边)表示频率与组距的比. 答案 ②③解析 在频率分布直方图中,横轴表示样本数据,纵轴表示频率组距.由于小矩形的面积=组距×频率组距=频率,所以各小矩形的面积等于相应各组的频率,因此各小矩形面积之和等于1.综上可知②③正确.12.如图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5],样本数据的分组为[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5 ℃的城市个数为11,则样本中平均气温不低于25.5 ℃的城市个数为________.答案 9解析 最左边两个矩形面积之和为0.10×1+0.12×1=0.22,总城市数为11÷0.22=50,最右面矩形面积为0.18×1=0.18,50×0.18=9.13.从某小区抽取100户居民进行月用电量调查,发现其用电量都在50至350度之间,频率分布直方图如图所示.则频率分布直方图中x 的值为 __________.答案 0.004 4解析 ∵(0.002 4+0.003 6+0.006 0+x +0.002 4+0.001 2)×50=1,∴x =0.004 4. 三、解答题14.为加强中学生实践创新能力和团队精神的培养,促进教育教学改革,某市教育局将举办全市中学生创新知识竞赛.某校举行选拔赛,共有200名学生参加,为了了解成绩情况,从中抽取50名学生的成绩(得分均为整数,满分为100分)进行统计,请你根据尚未完成的频率分布表解答问题:(1)求a ,b ,c ,d ,e 的值; (2)作出频率分布直方图.解 (1)根据题意,得分在[60.5,70.5)内的频数是a =50×0.26=13,在[90.5,100.5]内的频数是b =50-13-15-18=4,在[70.5,80.5)内的频率是c =1550=0.30,在[90.5,100.5]内的频率是d =450=0.08,频率和e =1. (2)根据频率分布表作出频率分布直方图,如图所示.四、探究与拓展15.某市共有5 000名高三学生参加联考,为了了解这些学生对数学知识的掌握情况,现从中随机抽出若干名学生在这次测试中的数学成绩,制成如下频率分布表:根据上面的频率分布表,可知①处的数值为________,②处的数值为__________. 答案 3 0.025解析 由位于[110,120)的频数为 36,频率=36n =0.300,得样本容量n =120,所以[130,140)的频率=12120=0.1,②处的数值=1-0.050-0.200-0.300-0.275-0.1-0.050=0.025;①处的数值为0.025×120=3.。

2.2.1用样本的频率分布估计总体分布

2.2.1用样本的频率分布估计总体分布

2.2.1用样本的频率分布估计总体分布编制人: 朱朝辉 邓林萍 审核人:高一数学备课组备课组长签字: 科组长签字:【课标要求】 学会列频率分布表,画频率分布直方图、频率折线图和茎叶图,分析样本估计总体。

【学法指导】1.先仔细阅读教材必修三P65-P70,用红色笔进行勾画;有针对性的二次阅读教材,构建知识体系;2.限时15分钟独立、规范完成思考部分,并总结规律方法。

【学习目标】1.通过实例体会分布的意义和作用。

2.学会列频率分布表,画频率分布直方图、频率折线图和茎叶图,并选择恰当方法分析样本估计总体。

3.激情投入,高效学习,体会数形结合的数学思想。

【课前预习】一、预习内容:阅读课本56P ~70P二.完成下列问题:1. 一般用频率分布直方图反映样本的频率分布。

其一般步骤有哪些? 频率分布直方图的特征是什么?2.茎叶图的特征是什么?【课内探究】我国是世界上严重缺水的国家之一,城市缺水问题较为突出,某市政府为了节约生活用水,计划在本市试行居民生活用水定额管理,即确定一个居民月用水量标准a ,用水量不超过a 的部分按平价收费,超出a 的部分按议价收费。

如果希望大部分居民的日常生活不受影响,那么标准a 定为多少比较合理呢 ?你认为,为了了较为合理地确定出这个标准,需要做哪些工作?自主学习一、频率分布直方图1.频率分布是指一个样本数据在各个小范围内所占比例的大小。

一般用频率分布直方图反映样本的频率分布。

其一般步骤为:2.以课本66P 制定居民用水标准问题为例,经过以上几个步骤画出频率分布直方图。

思考探究:1.在频率分布直方图中,各小长方形的面积表示什么?它们的总和是多少?P)2.频率分布折线图、总体密度曲线的定义(见课本69三.茎叶图1.茎叶图的概念:当数据是两位有效数字时,用中间的数字表示十位数,即第一个有效数字,两边的数字表示个位数,即第二个有效数字,它的中间部分像植物的茎,两边部分像植物茎上长出P例子)来的叶子,因此通常把这样的图叫做茎叶图。

【优化方案】2012高中数学 第2章2.2.1用样本的频率分布估计总体的分布同步课件 新人教B版必修3


思考感悟 将数据的样本进行分组的目的是什么? 将数据的样本进行分组的目的是什么? 提示: 提示 : 从样本中的一个个数字中很难直接看 出样本所包含的信息,通过分组, 出样本所包含的信息 , 通过分组 , 并计算其 频率,目的是通过描述样本数据分布的特征, 频率 , 目的是通过描述样本数据分布的特征 , 从而估计总体的分布情况. 从而估计总体的分布情况.
例2
【解】
如图所示. 如图所示
【名师点评】 茎叶图保留了原始数据,所有的数 名师点评】 茎叶图保留了原始数据, 据信息都可以很容易的从图中获得. 据信息都可以很容易的从图中获得. 变式训练2 在某电脑杂志上的一篇文章中 , 每个 在某电脑杂志上的一篇文章中, 变式训练 句子的字数如下: 句子的字数如下: 10,28,31,17,23,27,18,15,26,24,20,19,36,27,14,25 ,15,22,11,24,27,17. 在某报纸的一篇文章中, 在某报纸的一篇文章中,每个句子中所含的字数如 下: 27,39,33,24,28,19,32,41,33,27,35,12,36,41,27,13 ,22,23,18,46,32,22. (1)将这两组数据用茎叶图表示; 将这两组数据用茎叶图表示; 将这两组数据用茎叶图表示 (2)将两组数据进行比较分析,能得到什么结论? 将两组数据进行比较分析, 将两组数据进行比较分析 能得到什么结论?
167 163 164 158 168 167 161 162 167 168 161 165 174 156 157 166 162 161 164 166 (1)作出该样本的频率分布表; 作出该样本的频率分布表; 作出该样本的频率分布表 (2)画出频率分布直方图. 画出频率分布直方图. 画出频率分布直方图 在全部数据中找出最大值180和最小 解:(1)在全部数据中找出最大值 在全部数据中找出最大值 和最小 值151,则两者之差为 ,确定全距为 , ,则两者之差为29,确定全距为30, 决定以组距3将区间 将区间[150.5,180.5]分成 个 分成10个 决定以组距 将区间 分成 组. 从第一组[150.5,153.5)开始,分别统计各组 开始, 从第一组 开始 中的频数,再计算各组的频率, 中的频数,再计算各组的频率,样本的频率 分布表如下: 分布表如下:

【优质文档】2.2.1用样本的频率分布估计总体分布(二)


各组数据的平均
值大致是哪些数?
答 大致是这小长方形下端的中点的横坐标 ,即 0.25,0.75, 1.25,1.75,2.25,2.75,3.25,3.75,4.25. 问题 2 在频率分布直方图中, 依次连接各小长方形上端的中点, 就得到一条折线, 这条 折线称为频率分布折线图,你认为频率分布折线图能大致反映样本数据的频率分布吗? 答 由于折线图是取了长方形上端的中点 ,即每一组数据平均值对应的频率 ,所以能大致 反映样本数据的频率分布 . 问题 3 当总体中的个体数很多时 (如抽样调查全国城市居民月均用水量 ),随着样本容量 增加 ,作图时所分的组数增多 ,组距减少 ,你能想象出相应的频率分布折线图会发生什么变 化吗 ?
问题 1 你能理解这个图是如何记录这些数据的吗?你能通过该图说明哪个运动员的发
挥更稳定吗? 答 中间的数字表示得分的十位数 ,旁边的数字分别表示两个人得分的个位数
.从图中看
出乙运动员的发挥更稳定 .
问题 2 在统计中,上图叫做茎叶图,它也是表示样本数据分布情况的一种方法,其中
“茎”指的是哪些数,“叶”指的是哪组距减少,长方形上端中点的数量增多,且相距越近,各相临长
方形上端中点的折线越短,折线变得近似于曲线. 问题 4 在上述背景下, 相应的频率分布折线图越来越接近于一条光滑曲线, 条光滑曲线为总体密度曲线 .那么下图中阴影部分的面积有何实际意义?
统计中称这
D.甲运动员的最低得分为 0 分
解析 从茎叶图上看 ,由于甲运动员的成绩多数集中在 31 以上 ,而乙运动员的成绩集中在
12 到 29 之间 ,所以甲运动员成绩较好 . 问题 3 一般地,画出一组样本数据的茎叶图的步骤如何?
答 第一步,将每个数据分为“茎” (高位 )和“叶” (低位 )两部分; 第二步,将最小的茎和最大的茎之间的数按大小次序排成一列,写在左
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
2.2 用样本估计总体
2.2.1 用样本的频率分布估计总体分布

双基达标 限时20分钟
1.用样本频率分布估计总体频率分布的过程中,下列说法正确的是 ( ).
A.总体容量越大,估计越精确
B.总体容量越小,估计越精确
C.样本容量越大,估计越精确
D.样本容量越小,估计越精确
解析 由用样本估计总体的性质可得.
答案 C
2.频率分布直方图中,小长方形的面积等于 ( ).
A.组距 B.频率
C.组数 D.频数
解析 根据小长方形的宽及高的意义,可知小长方形的面积为一组样本数据的频率.
答案 B
3.一个容量为100的样本,其数据的分组与各组的频数如下表

组别 (0,10] (10,20] (20,30] (30,40] (40,50] (50,60] (60,70]
频数 12 13 24 15 16 13 7
则样本数据落在(10,40)上的频率为
( ).
A.0.13 B.0.39 C.0.52 D.0.64
解析 由题意可知频数在(10,40]的有:13+24+15=52,由频率=频数÷总数可得
0.52.
答案 C

4.一个容量为n的样本,分成若干组,已知甲组的频数和频率分别为36和14,则容量n=

________,且频率为16的乙组的频数是________.
解析 抽样时要保证每个个体被抽到的机会均等,14=36n,所以n=36×4=144,同理16=
2

x
144
,x=24.

答案 144 24
5.为了帮助班上的两名贫困生解决经济困难,班上的20名同学捐出了自己的零花钱,他们
捐款数(单位:元)如下:
19,20,25,30,24,23,25,29,27,27,28,28,26,27,21,30,20,19,22,20.班主任老师准备将
这组数据制成频率分布直方图,以表彰他们的爱心.制图时先计算最大值与最小值的差
是________.若取组距为2,则应分成________组;若第一组的起点定为18.5,则在
[26.5,28.5)内的频数为________.

解析 由题意知,极差为30-19=11;由于组距为2,则112=5.5不是整数,所以取6
组;捐款数落在[26.5,28.5)内的有27,27,28,28,27共5个,因此频数为5.
答案 11 6 5
6.美国历届总统中,就任时年纪最小的是罗斯福,他于1901年就任,当时年仅42岁;就
任时年纪最大的是里根,他于1981年就任,当时69岁.下面按时间顺序(从1789年的
华盛顿到2009年的奥巴马,共44任)给出了历届美国总统就任时的年龄:
57,61,57,57,58,57,61,54,68,51,49,64,50,48,65,52,56,46,54,49,51,47,55,55,54,4
2,51,56,55,51,54,51,60,62,43,55,56,61,52,69,64,46,54,48
(1)将数据进行适当的分组,并画出相应的频率分布直方图和频率分布折线图.
(2)用自己的语言描述一下历届美国总统就任时年龄的分布情况.
解 (1)以4为组距,列表如下:
分组 频数累计 频数 频率
[41.5,45.5) 2 0.045 5
[45.5,49.5) 7 0.159 1
[49.5,53.5) 8 0.181 8
[53.5,57.5) 16 0.363 6
[57.5,61.5) 5 0.113 6
[61.5,65.5) 4 0.090 9
[65.5,69.5] 2 0.045 5
合计 44 1.00
3

(2)从频率分布表中可以看出,将近60%的美国总统就任时的年龄在50岁至60岁之间,
45岁以下以及65岁以上就任的总统所占的比例相对较小.
综合提高 限时25分钟
7.一个容量为35的样本数据,分组后,组距与频数如下:[5,10),5个;[10,15),12个;
[15,20),7个;[20,25),5个;[25,30),4个;[30,35),2个.
则样本在区间[20,+∞)上的频率为
( ).
A.20% B.69% C.31% D.27%
解析 由题意,样本中落在[20,+∞)上的频数为5+4+2=11,∴在区间[20,+∞)

上的频率为1135≈0.31.
答案 C
8.(2012·烟台高一检测)某工厂对一批产品进行了

抽样检测.右图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,
其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),
[102,104),[104,106],已知样本中产品净重小于100克的个数是36,则样本中净重大
于或等于98克并且小于104克的产品的个数是
( ).
A.90 B.75 C.60 D.45
解析 ∵样本中产品净重小于100克的频率为(0.050+0.100)×2=0.3,频数为36,

∴样本总数为360.3=120.
∵样本中净重大于或等于98克并且小于104克的产品的频率为(0.100+0.150+
0.125)×2=0.75,
∴样本中净重大于或等于98克并且小于104克的产品的个数为120×0.75=90.
答案 A
9.将容量为n的样本中的数据分成6组,绘制频率分布直方图.若第一组至第六组数据的
频率之比为2∶3∶4∶6∶4∶1,且前三组数据的频数之和等于27,则n=________.
4

解析 ∵n×2+3+42+3+4+6+4+1=27,∴n=60.
答案 60
10.如图是甲、乙两名运动员某赛季一些场次得分的茎叶图,据图可知________.

①󰀀 甲运动员的成绩好于乙运动员;②乙运动员的成绩好于甲运动员;③甲、乙两名运
动员的成绩没有明显的差别;④甲运动员的最低得分为0分.
解析 从这个茎叶图可以看出甲运动员的得分大致对称,平均得分是30多分,乙运动员
的得分除一个52分外,也大致对称,平均得分20多分.因此,甲运动员发挥比较稳定,
总体得分情况比乙好.
答案 ①
11.(2013·合肥高一检测)在某电脑杂志的一篇文章中,每个句子的字数如下:
10,28,31,17,23,27,18,15,26,24,20,19,36,27,14,25,15,22,11,24,27,17
在某报纸的一篇文章中,每个句子的字数如下:
27,39,33,24,28,19,32,41,33,27,35,12,36,41,27,13,22,23,18,46,32,22
(1)将这两组数据用茎叶图表示;
(2)将这两组数据进行比较分析,你会得到什么结论?

解 (1)
(2)电脑杂志上每个句子的字数集中在10~30之间;而报纸上每个句子的字数集中在
20~40之间.还可以看出电脑杂志上每个句子的平
均字数比报纸上每个句子的平均字数要少.说明电
脑杂志作为科普读物需要通俗易懂、简明.
12.(创新拓展)如图是一个样本的频率分布直方图,且
5

在[15,18)内频数为8.
(1)求样本容量;
(2)若[12,15)一组的小长方形面积为0.06,求[12,15)
一组的频数;
(3)求样本在[18,33)内的频率.

解 (1)由图可知[15,18)一组对应的纵轴数值为475,且组距为3,所以[15,18)一组对应
的频率为475×3=425.
又已知[15,18)一组的频数为8,所以样本容量n=8425=50.

(2)[12,15)一组的小长方形面积为0.06,即[12,15)一组的频率为0.06,且样本容量为
50,所以[12,15)一组的频数为50×0.06=3.

(3)由(1)、(2)知[12,15)一组的频数为3,[15,18)一组的频数为8,样本容量为50,所
以[18,33)内频数为50-3-8=39,所以[18,33)内的频率为3950=0.78.

相关文档
最新文档