定积分与不定积分
不定积分与定积分复习提纲

不定积分与定积分 复习提纲主要知识点:不定积分和定积分1. 不定积分相关概念2. 不定积分的计算3. 定积分的相关概念4. 定积分的计算及其应用一、 不定积分相关概念1. 原函数导函数:函数()y f x =,则称()f x '为函数()f x 的导函数。
原函数:函数()y f x =,则称()f x 为函数()f x '的原函数。
说明:函数()f x 若存在原函数()F x ,则一定有无数个原函数()F x C +,并()()=+⎰f x dx F x C3. 不定积分的性质: (()())d ()d ()d f x g x x f x x g x x +=+⎰⎰⎰()d ()d ,f x x f x x ααα=⎰⎰为常数4. 不定积分和导数之间的关系:二、 不定积分的计算 1. 直接使用积分公式计算2. 凑微分法(第一类换元法)基础:常见的凑微分形式 (1)()C x d dx += (2)()C kx d kdx +=1(3)()C x d xdx +=221 (4)()C x d dx x +=3231 (5)⎪⎭⎫ ⎝⎛+-=C x d dx x 112 (6)()C x d dx x +=21(7)()C x d dx x+=ln 1 (8)()C e d dx e x x += (9)()C x d xdx +-=cos sin (10)()C x d xdx +=sin cos (11)()C x d dx x +=tan cos 12 (12)()C x d dx x +=+arctan 1123. 第二类换元法(含nbax +)4. 分部积分法:-=vdu uv udv “欺软怕硬”三、 定积分1. 定积分的定义:()()01lim nbi i a i f x dx I f x λε→===∆∑⎰ 注:定积分是一个数,它的大小只与()[]b a x f ,,有关。
不定积分与定积分换元法

dx x + x4 + 1
1 1 令 x = , dx = − dt . 于是 则 t t2
I=∫ dx x + x4 + 1 = −∫ 1 ( + 4 + 1 )t 2 t t dt 1
= −∫
dt t + t2 +1
= −I
因为 I = − I ,
所以 I = 0 .
这个结论显然是错误的,但是问题发生在哪里? 这个结论显然是错误的,但是问题发生在哪里?
对于积分 ∫ f ( x )dx 进行换元 x = ϕ ( t ) ,
求出 ∫ f (ϕ ( t ))ϕ ′( t )dt = G ( t ) + c 之后, 必须用反函数 t = ϕ −1 ( x ) 回代 ,
1 . ∫ f ( x )dx = G (ϕ − ( x )) + c 才能得出最后结果
这个例题说明: 这个例题说明:
利用换元法 x = ϕ (t ) 计算定积分时 ,
必须注意新变量 t 的变化范围 , 明确 t 和 x 的取值对应关系 .
这一不仅关系到积分上下限的确定, 这一不仅关系到积分上下限的确定, 还可能涉及到被积函数的形式的确定. 还可能涉及到被积函数的形式的确定.
关于两个换元积分法的小结
积分换元法
不定积分换元法 定积分换元法 联系与区别 实例分析
定理1 (不定积分换元法) 定理1:(不定积分换元法)
假设 f ( x ) 连续 , 单调,连续, 函数 x−1 ( x ) . 如果 ∫ f (ϕ ( t ))ϕ ′( t )dt = G ( t ) + c , 则有
2 2 a
( a > 0)
详细分析不定积分换元法和定积分换元法的异同. 详细分析不定积分换元法和定积分换元法的异同 计算两种积分都需要作换元 x = a sin t dx = a cos tdt (1)两者的第一个区别是: (1)两者的第一个区别是: 两者的第一个区别是
定积分与不定积分

定理4.2.1 (微积分学基本定理)
(x) f (t)dt 在 [a,b] 上可导 ,且
a x
若函数 f (x)在区间 [a,b]上连续 ,则积分上限函数
证
d x (x) f (t)dt f (x) ,x [ a , b ] dx a 任取 x ,x x [ a , b ], 有 ( x ) ( x x ) ( x )
3 x 2有无穷多个原函数,且其中任意两个函数相差一个
常数,这一点具有普遍性
F(x)是 f (x)在区间 I上的一个原函数, 定理4.2.2 设
则 f (x ) 的原函数有无穷多个, 并且都可以表示 F(x) C,其中C为任意常数 因为 F ( x ) C F ( x ) f ( x ) , 证
(x) f () 从而得 x
积分上限函数是表示函 数关系的一种新方 , 一些性质 ,如单调性、极值、凸性 、拐点等 .
例4.2.1 求
d dx
我们可以用微分学方法 去研究积分上限函
x
a
sin t 2 dt
解
d x 2 2 sint dt sin x 例4.2.2 求 dx x b t2 d d x t2 x2 解 (e 1 ) dt ( e 1 ) dt ( e x dx b dx d lnx t e s in tdt 例4.2.3 求 dx 0 这里注意:
所以 F (x ) C也是 f (x) 的原函数 ,
由于C的任意性, 则f ( x)的原函数有无穷多个 .
设 G (x)是 f (x)在区间 I上的任意一个原函数, 则 G ( x ) f( x ) 又 G ( x ) F ( x ) F ( x )f( x ), 故
不定积分与定积分的联系

不定积分与定积分的联系
定积分与不定积分是积分计算中重要的概念,它们描述不同的积分计算方式。
一、联系
1.它们都属于积分计算的范畴;
2.求出的都是函数的定义域的积分;
3.可以由极限的方法求出;
4.都是Riemann积分的推广。
二、区别
1.定积分是该函数定义域上的积分,即在定义域上的确定的一段积分,而不定积分则是该函数定义域上的一般积分;
2.定积分能够通过对函数定义域上的分段积分,通过极限计算求出,而不定积分则要求在参数化求出积分结果;
3.定积分计算上只要求求出函数定义域上的积分,而不定积分则要求求出各参数下函数的积分。
第四章1-5 不定积分与定积分讲解

a2 − x2 cost = 1− sin t = a a2 x 1 arcsin + x a2 − x2 + C 原式= 原式= 2 a 2
2
例 5:求∫
dx x +a
2 2
(a > 0)
−
设 解: x = a tan t 原式= 原式=∫
π
2
<t <
π
2
asec2 t dt = ∫ sectdt = ln(sect + tant) + C asect
§
4.4ቤተ መጻሕፍቲ ባይዱ
分部积分法
′ uv′ = ( uv) − u′v 分析: 分析:(uv)′ = u′v + uv′ ∫uv′dx = ∫ (uv′)dx − ∫u′vdx
∫udv = uv − ∫ vdu 分部积分公式: 分部积分公式: ∫ udv = uv − ∫ vdu
例 1:求∫ xcos xdx
设 解: u = x,dv = cos x;dx = d(sin x), v = sin x 原式= 原式=∫ xd(sin x) = x ⋅ sin x − ∫ sin xdx =xsin x + cos x + C
例 2:求∫ xexdx
解:设u = x, dv = exdx
原式= 原式=∫ xd(ex ) = xex − ∫ exdx = xex − ex + C
例 3:求∫ x ln xdx
解:设u = ln x, dv = xdx 1 2 1 2 1 2 1 原式= 原式=∫ ln xd( x ) = x ⋅ ln x − ∫ x ⋅ dx 2 2 2 x 1 2 1 1 2 1 2 = x ⋅ ln x − ∫ xdx = x ln x − x + C 2 2 2 4
不定积分、定积分与反常积分及定积分的应用

不定积分、定积分与反常积分及定积分的应⽤不定积分、定积分与反常积分不定积分⼀、不定积分概念1.定义\begin{align} &原函数:设对于区间I上的任意⼀点x均有F'(x)=f(x),则称F(x)为f(x)在区间I上的⼀个原函数\\ &不定积分:设函数f(x)于区间I上有原函数,则其余原函数的全体称为f(x)于区间I上的不定积分,记为\int{f(x)dx}\\ &线性:\int[\alpha f(x)+\beta g(x)]dx=\alpha\int f(x)dx+\beta\int g(x)dx\\ \end{align}2.计算\begin{align} &计算⽅法\begin{cases}&1.基本公式\\&2.线性\\&3.积分法\begin{cases}&1.换元法\\&2.分部积分法\\\end{cases}\\\end{cases}\\ \end{align}(1)第⼀换元法(凑微分)\begin{align} &设F'(u)=f(u),则\int{f(\Phi(x))\Phi'(x)}dx=\int{f(\Phi(x))d(\Phi(x))}=F(\Phi(x))+C\\ &注解:找到合适的凑微分\Phi'(x)dx=d(\Phi(x)) \end{align}常见凑微分:\begin{align} &1.\int{f(ax+b)dx=\frac{1}{a}\int{f(ax+b)d(ax+b)}}(a\neq0)\\ &eg1.\int{\sin (2x+3)}dx=\frac{1}{2}\int\sin (2x+3)d(2x+3)=\frac{1}{2}\cos{(2x+3)}+C\\\ &2.\int{f(ax^n+b)x^{n-1}dx}=\frac{1}{na}\int{f(ax^n+b)d(ax^n+b)}\\ &eg2.\int{\cos(2x^4+3)x^3dx}=\frac{1}{4*2}\int{\cos(2x^4+3)d(2x^4+3)}=\frac{1}{8}\cos{(2x^4+3)}+C\\ &3.\int{f(a^x+c)a^xdx}=\frac{1}{\ln{a}}\int{f(a^x+c)}d(a^x+c)\\ &eg3.\int{\sin(2^x+3)2^xdx}=\frac{1}{\ln2}\int{\sin{(2^x+3)}d(2^x+3)}=\frac{1}{\ln 2}\cos{(2^x+3)}\\ &4.\int{f(\frac{1}{x})\frac{1}{x^2}}dx=-\int{f(\frac{1} {x})}d(\frac{1}{x})\\ &eg4.\int{\ln(\frac{1}{x})}\frac{1}{x^2}dx=-\int\ln (\frac{1}{x})d({\frac{1}{x}})+C\\ &5.\int{f(\ln |x|})\frac{1}{x}d(x)=\int{f(\ln{|x|)}}{d(\ln|x|)}\\ &eg5.\int{\sin ({\ln{|x|}}})\frac{1} {x}dx=\int{\sin(\ln(|x|)d(\ln{|x|})}=\cos(\ln x)+C\\ &6.\int{f(\sqrt x)\frac{1}{\sqrt x}}dx=2\int{f(\sqrt x)}d(\sqrt x)\\ &7.\int f(\sin x)\cos xdx=-\int{(\sin x)}d(\sin x)\\ &8.\int{f(\cos x)\sin dx}=\int{f(\cos x)d(\cos x)}\\ &9.\int{f(\tan x)\sec^2 xdx}=\int{f(\tan x)d(\tan x)}\\ &10.\int{f(\cot x)\csc^2xdx}=-\int{f(\cot x)d{(\cot x)}}\\ &11.\int{f{(\arcsin x)\frac{1}{\sqrt{1-x^2}}}}dx=\int{f(\arcsin x)d({\arcsin x})}\\ &12.\int{f(\arccos x)(-\frac{1}{\sqrt{1-x^2}}})dx=\int{f(\arccos x)d(\arccos x)}\\ &13.\int{f(\arctan x)\frac{1}{1+x^2}dx}=\int{f(\arctan x)d(\arctan x)}\\ &14.\int{f(\sqrt{x^2+a})}\frac{x} {\sqrt{x^2+a}}dx=\int{f(\sqrt{x^2+a})}d(\sqrt{x^2+a})\\ &注解:(\sqrt{x^2\pm a})'=\frac{x}{\sqrt{x^2+a}},(\sqrt{a^2-x^2})'=\frac{-x}{\sqrt{a^2-x^2}}\\ \end{align}(2)第⼆换元法\begin{align} &设F'(u)=f(\Phi(u))\Phi'(u),则\\ &\int{f(x)dx}\overset{x=\Phi(u)}{=}\int{f(\Phi(u))\Phi'(u)du}=F(u)+C=F(\Phi^{-1}(x))+C\\ &注解:找到合适的x=\Phi(u)\\ \end{align}1)三⾓换元\begin{align} &x=a\sin u,x=a\tan u,x=a \sec u\\ &\sqrt{a^2-x^2}\overset{x=a\sin u}{=}a\cos u,u\in[-\frac{\pi}{2},\frac{\pi}{2}],x\in[-a,a]\\ &\sqrt{a^2+x^2}\overset{x=a\tan u}{=}a\sec u,u\in{(-\frac{\pi}{2},\frac{\pi}{2})},x\in{(-\infty,\infty)}\\ &\sqrt{x^2-a^2}\overset{x=a\sec u}{=}a\tan u,u\in(\frac{\pi}{2},\pi]\cup(0,\frac{\pi}{2}]\\ \end{align}2)倒变换\begin{align} &x=\frac{1}{u}常⽤于含\frac{1}{x}的函数\\ \end{align}3)指数(或对数)变换\begin{align} &a^x=u或x=\frac{\ln u}{\ln a}常⽤于含a^x的函数\\ \end{align}4)⽤于有理化的变换\begin{align} &\frac{1}{\sqrt{x}+\sqrt[3]{x}}⽤x=u^6\\ &\sqrt[n]{\frac{ax+b}{cx+d}}⽤u=\sqrt[n]{\frac{ax+b}{cx+d}}或x=-\frac{du^n-b}{cu^n-a}\\ \end{align}(3)分部积分法\begin{align} &\int{u(x)v'(x)dx}=\int{u(x)d(v(x))}=u(x)v(x)-\int{v(x)u'(x)dx}\\ &注解:找到合适的u(x),v(x)\\ \end{align}1)降幂法\begin{align} &\int{x^ne^{ax}dx},\int{x^n\sin axdx},\int{x^n\cos ax dx}\\ &取u(x)=x^n\\ \end{align}2)升幂法\begin{align} &\int{x^a\ln xdx},\int{x^a\arcsin xdx},\int{x^a\arccos x dx},\int{x^a\arctan x dx}\\ &取u(x)=\ln x\\ \end{align}3)循环法\begin{align} &\int{e^{ax}\sin ax dx},\int{e^{ax}\cos {ax} dx}\\ &取u(x)=e^{ax}或\sin{ax} \end{align}4)递推公式法\begin{align} &与n有关的结果I_n,建⽴递推关系I_n=f(I_{n-1})或f(I_{n-2})\\ \end{align}定积分⼀、定积分概念1.定义\begin{align} &定义:设函数f(x)在区间[a,b]上有定义且有界\\ &(1)分割:将[a,b]分成n个[x_{i-1},x_{i}]⼩区间\\ &(2)求和:[x_{i-1},x_{i}]上取⼀点\xi_{i},\sum_{i=1}^{n}{f(\xi_{i})\Deltax_i},\lambda=\max{\Delta x_{1},\Delta x_{2},...,\Delta x_{n}}\\ &(3)取极限:若\lim_{\lambda \rightarrow 0}{\sum_{i=1}^{n}f(\xi_{i})\Delta x}\exist,且极值不依赖区间[a,b]分发以及点\xi_{i}的取法,则称f(x)在区间[a,b]上可积,\\ &\int^{b}_{a}{f(x)dx}=\lim_{\lambda \rightarrow 0}{f(\xi)\Delta x_{i}} &\\ &注解:\\ &(1)\lambda \rightarrow0 \rightarrow \nleftarrow n\rightarrow \infty\\ & (2)定积分表⽰⼀个值,与积分区间[a,b]有关,与积分变化量x⽆关\\ &\int_{a}^{b}{f(x)dx}=\int_{a}^{b}{f(t)dt}\\ &(3)如果积分\int_{0}^{1}{f(x)dx}\exist,将[0,1]n等分,此时\Delta{x_{i}}=\frac{1}{n},取\xi_{i}=\frac{i}{n},\\ &\int_{0}^{1}f(x)dx=\lim_{\lambda \rightarrow 0}{\sum_{i=1}{n}{f(\xi_{i})\Delta x_{i}}}=\lim_{n\rightarrow \infty}\sum_{i=1}^{n}f(\frac{i}{n})\\ \end{align}\begin{align} &\int^{b}_{a}{f(x)dx}=\lim_{\lambda \rightarrow 0}\sum^{n}_{i=1}f(\xi_i)\Delta_i=\begin{cases}&\lim_{n\rightarrow \infty}{\sum_{i=1}^{n}{f(a+(i-1)\frac{b-a}{n})\frac{b-a}{n}}},左侧\\&\lim_{n\rightarrow \infty}{\sum_{i=1}^{n}{f(a+i\frac{b-a}{n})\frac{b-a}{n}}},右侧\\\end{cases}\\ &中点:\Phi_i=a+(i-1)\frac{b-a}{n}+\frac{b-a}{2n}\\ \end{align}Processing math: 0%定理:(线性)\begin{align} &\int[\alpha f(x)+\beta g(x)]dx=\alpha\int f(x)dx+\beta\int g(x)dx\\ \end{align}注解:积分⽆⼩事\begin{align} &\int{e^{\pm x^2}dx,\int{\frac{\sin x}{x}}}积不出来\\ &F'(x)=f(x),x\in I,连续函数⼀定存在原函数,⽆穷多个\\ &[F(x)+C]'=f(x) \end{align}2.定积分存在的充分条件\begin{align} &若f(x)在[a,b]上连续,则\int^{b}_{a}{f(x)dx}必定存在\\ &若f(x)在[a,b]上有上界,且只有有限个间断点,则\int^{b}_{a}{f(x)dx}必定存在\\ &若f(x)在[a,b]上只有有限个第⼀类间断点,则\int^{b}_{a}{f(x)dx}必定存在\\ \end{align}3.定积分的⼏何意义\begin{align} &(1)f(x)\geqslant{0},\int_{a}^{b}{f(x)dx}=S\\ \end{align}\begin{align} &(2)f(x)\leqslant{0},\int_{a}^{b}{f(x)dx}=-S\\ \end{align}\begin{align} &(3)f(x)\geqslant{0}\cup f(x)\leqslant{0},\int_{a}^{b}{f(x)dx}=S_1+S_3-S_2\\ \end{align}注解:\begin{align} &(1)当f(x)\geq0时,定积分的⼏何意义是,以区间[a,b]为底,y=f(x)为曲边的曲边梯形⾯积\\ &(2)定积分是⼀个常数,只与f和区间[a,b]有关,与积分变量⽤什么字母⽆关\\ &\int_a^b{f(x)}dx=\int_a^b{f(t)dt}\\ &(3)\int_a^bdx=b-a\\ &(4)\int_{a}^{a}f(x)=0,\int_a^bf(x)dx=-\int_b^a{f(t)}dt \end{align}⼆、定积分的性质1.不等式性质\begin{align} &(1)保序性:若在区间[a,b]上f(x)\leqslant{g(x)},则\int_a^{b}{f(x)dx}\leqslant{\int_a^{b}{g(x)dx}}\\ &推论:\\ &(1)f(x)\geq0,\forall x\in[a,b],则\int_a^b{f(x)dx}\geq0\\ & (2)f(x)\geq0,\forall x\in[a,b],且[c,d]\subset[a,b],则\int_a^b{f(x)dx}\geq\int_c^d{f(x)dx}\\ &(3)|\int_a^bf(x)dx|\leq\int_a^b{|f(x)|dx}\\ &-|f|\leq f\leq |f|\Rightarrow \int_a^b-|f|\leq \int_a^bf\leq \int_a^b|f|\Rightarrow |\int_a^bf|\leq\int_a^b|f|\\ &如:x^2\leq x^3,x\in[0,1],则\int_0^1{x^3dx}\leq\int_0^1{x^2dx}\\ \end{align}\begin{align} &(4)(估值不等式)若M及m分别是f(x)在[a,b]上的最⼤值和最⼩值,\\ &则m(b-a)\leqslant{\int_a^{b}{f(x)dx}\leqslant{M(b-a)}}\\ \end{align}\begin{align} &证明:M(b-a)=S_{AFDC}=S_1+S_2+S_3\\ &m(b-a)=S_{EBDC}=S_3\\ &\int_a^{b}{f(x)dx}=S_{ADBC}=S_2+S_3\\ &S_3\leqslant{S_2+S_3\leqslant{S_1+S_2+S_3}}\\&\Leftrightarrow{m(b-a)\leqslant{\int_a^{b}{f(x)dx}\leqslant{M(b-a)}}}\\ \end{align}\begin{align} &(3)|\int_a^{b}{f(x)dx}|\leqslant{\int_a^{b}{|f(x)|dx}}\\ \end{align}2.中值定理\begin{align} &(1)若f(x)在[a,b]上连续,则\int_a^{b}{f(x)dx}=f(\xi)(b-a),(a<\xi<b)\\ &称\frac{1}{b-a}{\int_{a}^{b}{f(x)dx}为函数y=f(x)在区间[a,b]上的平均值}\\ &注解:F'(x)=f(x),F(b)-F(a)=\int_a^b{f(x)dx},f(\xi)(b-a)=F'(\xi)(b-a)\\ &(2)若f(x),g(x)在[a,b]上连续,g(x)不变号,则\int_{a}^{b}{f(x)g(x)dx}=f(\xi)\int_a^b{g(x)dx}\\ \end{align}注解:\begin{align} &\int_0^1{\frac{x}{\sin x}}dx\\ &f(x)=\begin{cases}&\frac{x}{\sin x},x\in[0,1]\\&1,x=0\\\end{cases}\\ &结论:有限处点的函数不影响定积分\\ &f(x)={\begin{cases}&x+1,[1,2]\\&x, [0,1]\\\end{cases}}\\ &\int_0^2{f(x)dx}=\int_0^1{xdx}+\int_1^2{(x+1)dx}\\ \end{align}\begin{align} &证明:\frac{1}{2}\leq\int_0^{\frac{1}{2}}\frac{1}{\sqrt{1-x^n}}dx\leq\frac{\pi}{6}\\ &估值积分:x\in[0,\frac{1}{2}]\\ &\\ \end{align}例题:\begin{align} &1.求极限\lim_{n\rightarrow \infty}\int_0^1{\frac{x^ne^x}{1+e^x}dx}\\ &根据积分容易知道0\leq\frac{x^ne^x}{1+e^x}\leq x^n,x\in[0,1],n\in N^*\\ &⽤积分的保号性\\&0\leq\int_0^1{\frac{x^ne^x}{1+e^x}dx}\leq \int_0^1{x^n}dx=\frac{1}{n+1}\\ &⽤夹逼定理\\ &\lim_{n\rightarrow\infty}\frac{1}{n+1}=0\\ &\lim_{n\rightarrow \infty}\int_0^1{\frac{x^ne^x}{1+e^x}dx}=0\\ \end{align}\begin{align} &2.设I_1=\int_0^{\frac{4}{\pi}}\frac{\tan x}{x}dx,I_2=\int_0^{\frac{4}{\pi}}\frac{x}{\tan x}dx则\\ &(A)I_1>I_2>1(B)1>I_1>I_2(C)I_2>I_1>1(D)1>I_2>I_1\\ &解:⽤保序性a<b,f(x)\leq g(x),\int_a^b f(x)\leq \int_a^b g(x)\\ &\tan x>x,x\in[0,\frac{\pi}{2}]\\ &\frac{\tan x}{x}>1>\frac{x}{\tan x},x\in[0,\frac{\pi}{4}]\\ &根据保序性\\ &\int_0^{\frac{\pi}{4}}\frac{\tan x}{x}dx>\int_0^{\frac{\pi}{4}}1dx=\frac{\pi}{4}>\int_0^{\frac{\pi}{4}}\frac{x}{\tan x},x\in[0,\frac{\pi}{4}]\\ &证:\int_0^{\frac{\pi}{4}}\frac{\tan x}{x}与1的关系\\ &积分中值定理\\ &\int_0^{\frac{\pi} {4}}\frac{\tan x}{x}=f(\xi)(\frac{\pi}{4}-0)=\frac{\tan \xi}{\xi}*\frac{\pi}{4},\xi\in{[0,\frac{\pi}{4}]}\\ &根据\frac{\tan x}{x}在x\in[0,\frac{\pi}{4}]上单调递增\\ &0<f(\xi)<\frac{4}{\pi},0<\int_0^{\frac{\pi} {4}}\frac{\tan x}{x}<1\\ &选(B)\\ \end{align}三、积分上限函数\begin{align} &如果f(x)在区间[a,b]上连续,则\Phi(x)=\int_a^b{f(t)dt}在[a,b]上可导,且\int_a^b{f(t)dt})\\ &(\int_a^xf(t)dt)'=f(x),(\int_a^{x^2}f(t)dt)'=f(x^2)*2x\\ &如果f(x)在区间[a,b]上连续,\phi_1(x),\phi_2(x)为可导函数,则\Phi(x)=\int_a^b{f(t)dt}在[a,b]上可导,且(\int_{\phi_1(x)}^{\phi_2(x)}{f(t)dt})'\\ &=f[\phi_2(x)]*\phi_2'(x)-f[\phi_1(x)]*\phi_1'(x)=(\int_{\phi_1(x)}^0{f(t)dt}+\int_{\phi_2(x)}^0{f(t)dt})'\\ &设函数f(x)在[-l,l]上连续,则\\ &如果f(x)为奇函数,那么\int_0^xf(t)dt必为偶函数\\ &如果f(x)为偶函数,那么\int_0^xf(t)dt必为奇函数\\\end{align}\begin{align} &任取x\in[a,b),取\Delta x>0,使x+\Delta x\in[a,b)\\ &\frac{\Delta F}{\Delta x}=\frac{F(x+\Delta x)-F(x)}{\Delta x}=\frac{1}{\Delta x}[\int_a^{x+\Delta x}f(t)dt-\int_a^xf(t)dt]=\frac{1} {\Delta x}\int_x^{x+\Delta x}f(t)dt=f(x+\sigma\Delta x)\rightarrow f(x)(\Delta x\rightarrow 0^+)\\ \end{align}推论:\begin{align} &若f(x)、\phi'(x)、\psi(x)于[a,b]上连续,则\\ &(1)(\int_a^{\phi(x)}f(t)dt)'=f(\phi(x))\phi'(x)\\ &(2)(\int_b^{\psi(x)}f(t)dt)'=-f(\psi(x))\psi'(x)\\ &(3)(\int_{\psi(x)}^{\phi(x)}f(t)dt)'=f(\phi(x))\phi'(x)-f(\psi(x))\psi'(x)\\ \end{align}例题\begin{align} &1.设函数f(x)在R上连续,且是奇函数,则其原函数均是偶函数.当f(x)是偶函数时?是周期函数?\\ &证:\\ &令F_0(x)\int_0^xf(t)dt,x\in R\\ &F_0(-x)=\int_0^{-x}f(t)dt\overset{t=-u} {=}\int_0^xf(-u)d(u)=\int_0^xf(u)du=F_0(x)\Rightarrow F_0(x)为偶函数\\ \end{align}\begin{align} &求变现积分导数\\ &(1)F(x)=\int_x^{e^{-x}}f(t)dt\\ &(2)F(x)=\int_0^{x^2}(x^2-t)f(t)dt\\ &(3)F(x)=\int_0^{x}f(x^2-t)dt\\ &(4)设函数y=y(x)由参数⽅程\begin{cases}&x=1+2t^2\\&y=\int_1^{1+2\ln t}\frac{e^u}{u}du\\\end{cases}(t>1),求\frac{d^2y}{dx^2}|_{x=9}\\ &解:\\ &(1)F(x)'=(\int_x^{e^{-x}}f(t)dt)'=f(e^{-x})(-e^{-x})-f(x)\\ &(2)F(x)'=(\int_0^{x^2}(x^2-t)f(t)dt)'=(\int_0^{x^2}x^2f(t)dt-\int_0^{x^2}tf(t)dt)'\\ &=2x\int_0^{x^2}f(t)dt+x^2f(x^2)2x-x^2f(x^2)2x=2x\int_0^{x^2}f(t)dt\\ &(3)F(x)=\int_0^{x}f(x^2-t)dt=-\frac{1}{2}\int_0^xf(x^2-t^2)d(x^2-t^2)\overset{u=x^2-t^2}{=}-\frac{1}{2}\int_0^xf(u)du\\ &F(x)'=\frac{1}{2}f(x^2)2x=xf(x^2)\\ &(4)\frac{dy}{dx}=\frac{\frac{e^{1+2\ln t}}{1+2\ln t}\frac{2}{t}}{4t^2}=\frac{e}{2(1+2\ln t)}\\ &\frac{d^2y}{dx^2}=\frac{d(\frac{dy}{dx})}{dx}=\frac{e}{2}(-\frac{\frac{2}{t}}{(1+2\ln t)^2})\frac{1}{4t}\\ \end{align}\begin{align} &2.求变现积分的积分:\\ &(1)设f(x)=\int_0^x{\frac{\sin t}{\pi -t}dt},求\int_0^\pi{f(x)}dx\\ &解:\\ &\int_0^\pi{f(x)}dx=\int_0^{\pi}\int_0^x\frac{\sin t}{\pi -t}dt\space dx\\&=x\int_0^x\frac{\sin t}{\pi t}|_0^{\pi}-\int_0^{\pi}x\frac{\sin x}{\pi -x}dx\\ &=\pi\int_0^{\pi}\frac{\sin x}{\pi t}+\int_0^{\pi}\frac{[(\pi-x)-\pi]\sin x}{\pi-x}dx=\int_0^{\pi}\sin xdx=2\\ &(2)\lim_{x\rightarrow\infty}{\frac{(\int_0^x{e^{t^2}}dt)^2}{\int_0^xe^{2t^2}dt}}=\lim_{x\rightarrow\infty}{\frac{(2\int_0^{x}e^{t^2}dt)e^{x^2}}{e^{2x^2}}}=\lim_{x\rightarrow\infty}\frac{2\int_0^{x}e^{t^2}}{e^{x^2}}=\lim_{x\rightarrow\infty}\frac{1}{2x}=0\\ \end{align}\begin{align} &(3)设f(x)连续,\phi(x)=\int_0^1{f(tx)dt},且\lim_{x\rightarrow0}\frac{f(x)}{x}=A(常数),求\phi'(x)并讨论\phi'(x)在x=0处的连续性\\ &当x\neq0时\\ &令u=tx,t\in[0,1],u=tx\in[0,x],\phi(x)=\int_0^1f(tx)dt\overset{tx=u}{=}\int_0^x{f(u)d(\frac{u}{x})}=\frac{\int_0^xf(u)du}{x}\\ &\phi'(x)=\frac{xf(x)-\int_0^xf(u)du}{x^2}\\ &当x=0时,f(0)=0,\phi(0)=f(0)=0,\phi'(0)=\lim_{x\rightarrow0}\frac{\phi(x)\phi(0)}{x-0}=\lim_{x\rightarrow0}\frac{\int_0^xf(u)du}{x^2}=\lim_{x\rightarrow 0}\frac{f(x)}{2x}=\frac{1}{2}A\\&\lim_{x\rightarrow0}\phi'(x)=\lim_{x\rightarrow 0}{\frac{xf(x)-\int_0^xf(u)du}{x^2}}=A-\frac{1}{2}A=\frac{1}{2}A=\phi'(0)\Leftrightarrow\phi'(x)在x=0处连续\\ \end{align}注解:\begin{align} &注意变限积分进⾏正逆运算时上下限的映射\\ &例如F(x)=\int_0^x{f(t)dt}\overset{t=-u}{=}\int_{-a}^{x}f(-u)d(-u)\\ \end{align}四、定积分的计算1.⽜顿莱布尼茨公式\int_a^bf(x)dx=F(x)|_a^b=F(b)-F(a)2.换元积分法\int_a^bf(x)dx=\int_\alpha^\beta{f(\Phi(t))\Phi'(t)dt}3.分部积分法\int_a^budv=uv|_a^b-\int_a^bvdu4.奇偶性和周期性\begin{align} &直接使⽤奇偶性周期性定义证明\\ &(1)设f(x)为[-a,a]上的连续函数(a>0),则\\ &\int_{-a}{a}f(x)dx=\begin{cases}0,&f(x)奇函数\\2\int_0^af(x)dx,&f(x)偶函数\end{cases}\\ &证:\int_{-a}^0{f(x)dx}\overset{x=-t}{=}\int_0^a{f(-t)d(-t)}=-\int_{0}^{a}f(t)d(t)=-\int_0^a{f(x)dx}\\ \end{align}\begin{align} &(2)设f(x)是以T为周期的连续函数,则对\forall A,有\int_a^{a+T}f(x)=\int_0^T{f(x)dx}\\ &\int_a^{a+T}f(x)dx\overset{x=a+t}{=}\int_0^T{f(a+t)d(a+t)}=\int_0^{a+t}f(a+t)dt\\\end{align}\begin{align} &\Phi:x\in[a,b]\rightarrow y\in[c,d],令\frac{x-a}{b-a}=\frac{y-c}{d-c},y=c+\frac{d-c}{b-a}(x-a)\\ \end{align}\\5.奇偶函数积分后的奇偶性(奇偶函数求导后的奇偶性)1.奇偶函数求导后的奇偶性\begin{align} &(1)f(x)为奇函数:\\ &f(-x)=-f(x)\\ &\Leftrightarrow f'(-x)(-1)=-f'(x)\\ &\Leftrightarrow f'(-x)=f'(x)\\ &\Leftrightarrow f'(x)为偶函数\\ &(2)f(x)为偶函数:\\ &f(-x)=f(x)\\ &\Leftrightarrowf'(-x)=f'(x)\\ &\Leftrightarrow f'(-x)(-1)=f'(x)\\ &\Leftrightarrow f'(-x)=-f'(x)\\ &\Leftrightarrow f'(x)为奇函数\\ \end{align}2.奇偶函数求积分后的奇偶性\begin{align} &设F(x)为f(x)的原函数\\ &(1)f(x)为奇函数:\\ &f(-x)=-f(x)\\ &\Leftrightarrow \int f(-x)dx=-\int f(x)dx\\ &\Leftrightarrow -\int f(-x)d(-x)=-\int f(x)dx\\ &\Leftrightarrow F(-x)=F(x)\\&\Leftrightarrow F(x)为偶函数\\ &(2)f(x)为偶函数:\\ &f(-x)=f(x)\\ &\Leftrightarrow \int f(-x)dx=\int f(x)dx\\ &\Leftrightarrow -\int f(-x)d(-x)=\int f(x)dx\\ &\Leftrightarrow F(-x)=-F(x)\\&\Leftrightarrow F(x)为奇函数\\ \end{align}3.奇偶函数复合后的奇偶性\begin{align} &\exist f(x),g(x),F(x)=f(g(x))\\ &设f(x)为奇函数\\ &(1)g(x)为偶函数\\ &F(-x)=f(g(-x))=f(g(x))=F(x),F(x)为偶函数\\ &(2)g(x)为奇函数\\ &F(-x)=f(g(-x))=f(-g(x))=-f(g(x))=-F(x),F(x)为奇函数\\ &设f(x)为偶函数\\ &(1)g(x)为奇函数\\ &F(-x)=f(g(-x))=f(g(x))=F(x),F(x)为偶函数\\ &(2)g(x)为偶函数\\ &F(-x)=f(g(-x))=f(g(x))=F(x),F(x)为偶函数\\ &注解:外偶全偶,外奇奇偶\\\end{align}例题:\begin{align} &1.设M=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}{\frac{\sin x}{1+x^2}\cos^4xdx},N=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}{(\sin x^3+\cos^4x)dx},P=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}(x^2\sin^3x-\cos^4x)dx,则\\ &(A)N<P<M(B)M<P<N(C)N<M<P(D)P<M<N\\ &根据对称性判断\\ &M:f_M(x)为奇函数,F_M(x)为偶函数\\ &N:N=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}{(\sinx^3+\cos^4x)dx}=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\sin ^3xdx+\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\cos ^4xdx\\ &\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\sin ^3xdx=0,\int_{-\frac{\pi}{2}}^{\frac{\pi} {2}}\cos ^4xdx\geq 0,\Rightarrow N\geq 0\\ &P:P=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}(x^2\sin^3x-\cos^4x)dx=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}x^2\sin^3xdx-\int_{-\frac{\pi}{2}}^{\frac{\pi} {2}}\cos^4xdx\\ &\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}x^2\sin^3xdx=0,\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\cos^4xdx\geq0,\Rightarrow P\leq0\\ &\Leftrightarrow P<M<N,\space\space选(D)\\\end{align}\begin{align} &2.设f(x)=\begin{cases}&kx,0\leq x\leq \frac{1}{2}a\\&c,\frac{1}{2}a<x\leq a\\\end{cases},求F(x)=\int_0^xf(t)dt,x\in[0,a]\\ &F(x)=\begin{cases}&\int_0^xktdt=\frac{1}{2}kt^2|_0^x=\frac{1}{2}kx^2,0\leq x\leq \frac{1}{2}a\\&\int_0^{\frac{1}{2}a}ktdt+\int_{\frac{1}{2}a}^c cdt=\frac{1}{8}ka^2+c^2-\frac{1}{2}ac,\frac{1}{2}a<x\leq a\\\end{cases}\\ \end{align} \begin{align} &3.证明:\int_0^{2\pi}f(|\cos x|)dx=4\int_0^{\frac{\pi}{2}}f(|\cos x|)dx\\ \end{align}6.已有公式\begin{align} &(1)\int_0^{\frac{\pi}{2}}{\sin^nxdx=\int_0^{\frac{\pi}{2}}\cos^n xdx=\begin{cases}\frac{n-1}{n}*\frac{n-3}{n-2}*...*\frac{1}{2}*\frac{\pi}{2},&n为偶数\\\frac{n-1}{n}*\frac{n-3}{n-2}*...*\frac{2}{3},&n为⼤于1的奇数\\\end{cases}}\\ &(2)\int_0^{\pi}xf(\sin x)dx=\frac{\pi}{2}\int_0^{\pi}f(\sin x)dx(f(x)为连续函数)\\ \end{align}7.与定积分有关的证明8.经典例题:例题1:\begin{align} &\lim_{n\rightarrow \infty}{(\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{n+n})}\\ &法1:夹逼定理+基本不等式\\ &\frac{1}{1+x}<\ln(x+1)<x\\ &令x=\frac{1}{n}\\ &得\frac{1}{n+1}=\frac{\frac{1}{n}}{\frac{1}{n}+1}<\ln(\frac{1}{n}+1)=\ln(n+1)-\ln(n)<\frac{1}{n}\\ &得\frac{1}{n+2}<ln(n+2)-ln(n+1)<\frac{1}{n+1}\\ &得\frac{1}{n+n}<\ln(n+n)-\ln(n+n-1)<\frac{1}{n+n-1}\\ &得\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{n+n}<ln(2n)-ln(n)=ln2\\ &法2:\lim_{n\rightarrow \infty}{(\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{n+n})}中\\ &\frac{1}{n+1}中n为主体,1为变体\\ &\frac{变体}{主体}\rightarrow^{n \rightarrow{\infty}}\begin{cases}0,次(夹逼定理)\\A\neq 0,同(定积分)\end{cases}\\ &\lim_{\lambda \rightarrow 0}{\sum_{i=1}^{n}{f(\xi_i)\Deltax_i}=\lim_{n\rightarrow \infty}\frac{1}{n}\sum_{i=1}^{n}f(\xi_i)(b-a)}=\int_0^1\frac{1}{1+x}=\ln(1+x)|_{0}^{1}=\ln2\\ \end{align}例题2\begin{align} &设f(x)=\int_0^{\pi}{\frac{\sin x}{\pi-t}dt},计算\int_0^{\pi}f(x)dx.\\ &法1:分部积分+换元法\\ &原式=xf(x)|_0^{\pi}-\int_0^{\pi}{\frac{x\sin x}{\pi-x}dx}\\ &=\pi{\int_0^{\pi}{\frac{\sin{t}}{\pi-t}dt}-\int_0^{\pi}{\frac{x\sin x}{\pi-x}}dx}\\ &=\int_0^{\pi}{\frac{(\pi-x)\sin x}{\pi-x}dx}=2\\ &法2:\\ &原式=\int_0^\pi{f(x)d(x-{\pi})}=(x-\pi)f(x)|_0^{\pi}-\int_0^{\pi}{\frac{(x-\pi)\sin x}{\pi-x}dx}=2\\ &法3:⼆重积分转化为累次积分\\ &原式=\int_0^{\pi}{\int_0^{\pi}\frac{x\sin t}{\pi-t}dt}dx\\ \end{align}例题3\begin{align} &法1:构造辅助函数\\ &根据题意f(1)=f(-1)=1,f(0)=-1\Rightarrow f(x)为偶函数,f最低点函数值为-1\\ &可以构造符合题意的辅助函数f(x)=2x^2-1\\ &法2:根据函数的性质直接判断 \end{align}例题4\begin{align} &因为\lim_{x\rightarrow 0}{\frac{ax-\sin x}{\int_b^x{\frac{\ln{1+t^3}}{t}dt}}}=c(c\neq 0)\\ &所以\lim_{x\rightarrow 0}{ax-\sin x}=0并且\lim_{x \rightarrow 0}{\int_b^x{\frac{\ln{1+t^3}}{t}dt}}=0\\ &化简,使⽤洛必达法则上下求导\\ &\lim_{x\rightarrow 0}{\frac{ax-\sin x}{\int_b^x{\frac{\ln{1+t^3}}{t}dt}}}=\lim_{x\rightarrow 0}{\frac{a-\cos x}{\frac{\ln{1+x^3}}{x}}}=\lim_{x\rightarrow 0}{\frac{a-\cos x}{x^2}}\\ &\Rightarrow a=1,c=\frac{1}{2},b=0\\ \end{align}反常积分⼀、⽆穷区间上的反常积分\begin{align} &(1)\int_a^{+\infty}{f(x)}dx=\lim_{t\rightarrow +\infty}{\int_{a}^{t}f(x)dx}\\ &(2)\int_{-\infty}^{b}{f(x)}dx=\lim_{t\rightarrow -\infty}{\int_{t}^{b}f(x)dx}\\ &(3)\int_{-\infty}^{0}{f(x)}dx和{\int_{0}^{+\infty}f(x)dx}都收敛,则{\int_{-\infty}^{+\infty}f(x)dx}收敛\\ &且{\int_{-\infty}^{+\infty}f(x)dx}=\int_{-\infty}^{0}{f(x)}dx+{\int_{0}^{+\infty}f(x)dx}\\ &如果其中⼀个发散,结果也发散\\ &常⽤结论:\int_a^{+\infty}{\frac{1}{x^p}dx}\begin{cases}&p>1,收敛\\&p\leq1 ,发散\\\end{cases},(a>0)\\ \end{align}⼆、⽆界函数的反常积分\begin{align} &如果函数f(x)在点a的任⼀领域内都⽆界,那么点a为函数f(x)的瑕点(也称为⽆界点).⽆界函数的反常积分也成为瑕积分\\ &(1)设函数f(x)在(a,b]上连续,点a为f(x)的瑕点.如果极限\lim_{t\rightarrow a^+}{\int_{t}^{b}{f(x)dx}}\exist,\\ &则称此极限为函数f(x)在区间[a,b]上的反常区间,记作\int_{a}^{b}f(x)dx,即\int_{a}^{b}f(x)dx=\lim_{t\rightarrow a^+}{\int_{t}^{b}{f(x)dx}}\\ &这时也称反常积分\int_a^b{f(x)dx}收敛,如果上述极限不存在,则反常积分\int_a^b{f(x)dx}发散\\ &(2)设函数f(x)在[a,b)上连续,点b为函数f(x)的瑕点,则可以类似定义函数f(x)在区间[a,b]上的反常积分\int_a^bf(x)dx=\lim_{t\rightarrow b^-}{\int_a^tf(x)dx}\\ &设函数f(x)在[a,b]上除点c(a<c<b)外连续,点c为函数f(x)的瑕点,如果反常积分\int_a^c{f(x)dx}和\int_c^b{f(x)dx}都收敛\\ &则称反常积分\int_a^b{f(x)dx}收敛,且\int_a^b{f(x)dx}=\int_a^c{f(x)dx}+\int_c^b{f(x)dx}\\ &如果⾄少⼀个发散,则称\int_a^b{f(x)dx}发散\\ &常⽤结论:\\ &\int_a^b{\frac{1}{(x-a)^p}}\begin{cases}&p<1,收敛\\&p\geq 1,发散\\\end{cases}\\ &\int_a^b{\frac{1}{(x-a)^p}}\begin{cases}&p<1,收敛\\&p\geq 1,发散\\\end{cases}\\ \end{align}三、例题例题1\begin{align} &\int\frac{1}{\ln^{\alpha}x}d(\ln x)\rightarrow^{\ln x=u}\int{\frac{du}{u^{\alpha+1}}}\begin{cases}&{\alpha-1< 1}\\&{\alpha+1>1}\\\end{cases}\Rightarrow 0<\alpha<2\\\end{align}定积分的应⽤⼀、⼏何应⽤1.平⾯图形的⾯积\begin{align} &(1)若平⾯域D由曲线y=f(x),y=g(x)(f(x)\geq g(x)),x=a,x=b(a<b)所围成,则平⾯域D的⾯积为\\ &S=\int_a^b{[f(x)-g(x)]dx}\\ &(2)若平⾯域D由曲线由\rho=\rho(\theta),\theta=\alpha,\theta=\beta(\alpha<\beta)所围成,则其⾯积为S=\frac{1}{2}\int_{\alpha}^{\beta}{\rho^2(\theta)d\theta} \end{align}2.旋转体的体积\begin{align} &若区域D由曲线y=f(x)(f(x)\geq 0)和直线x=a,x=b(0\leq a<b)及x轴所围成,则\\ &(1)区域D绕x轴旋转⼀周所得到的旋转体体积为V_x=\pi\int_a^b{f^2(x)dx}\\ &(2)区域D绕y轴旋转⼀周所得到的旋转体体积为V_y=2\pi\int_a^b{xf(x)dx}\\ &(3)区域D绕y=kx+b轴旋转⼀周所得到的旋转体体积为V=2\pi\int_D\int{r(x,y)d\sigma}\\ &例如:求y=x,y=x^2在第⼀象限的封闭图形绕转轴的体积\\ \end{align}\begin{align} &V_x=2\pi\int_D\int yd\sigma=2\pi\int_0^1{dx}\int_{x^2}^{x}ydy\\ &V_y=2\pi\int_D\int xd\sigma=2\pi\int_0^1{dx}\int_{x^2}^{x}xdy\\ &V_{x=1}=2\pi\int_D\int (1-x)d\sigma\\ &V_{y=2}=2\pi\int_D\int (2-y)d\sigma\\ \end{align}3.曲线弧长\begin{align} &(1)C:y=y(x),a\leq x\leq b,s=\int_a^b{\sqrt{1+y'^2}dx}\\ &(2)C:\begin{cases}&x=x(t)\\&y=y(t)\\\end{cases},\alpha \leq t\leq \beta,s=\int_{\alpha}^{\beta}{\sqrt{x'^2+y'^2}dx}\\ &(3)C:\rho=\rho(\theta),\alpha \leq \theta\leq \beta,s=\int_{\alpha}^{\beta}{\sqrt{\rho^2+\rho'^2}dx}\\ \end{align}4.旋转体侧⾯积\begin{align} &曲线y=f(x)(f(x)\geq 0)和直线x=a,x=b(0\leq a<b)及x轴所围成的区域绕x轴旋转所得到的旋转体的侧⾯积为\\ &S=2\pi\int_a^b{f(x)\sqrt{1+f'^2(x)}dx}\\ \end{align}⼆、物理应⽤1.压⼒2.变⼒做功3.引⼒(较少考)例题1\begin{align} &分析题意可知,该容器由x^2+y^2=1的圆和x^2+(y-1)^2=1的偏⼼圆组成\\ &根据图像的对称性可以避免不同表达式带来的困难\\ &对圆的⼩带⼦进⾏积分,带⼦长度为x,积分区间为-1到\frac{1}{2},\int_{-1}^{\frac{1}{2}}{\pi x^2dy}\\ &由于图像的对称性,将积分结果乘⼆\\ &(1)V=2\pi\int_{-1}^{\frac{1}{2}}{x^2}dy=2\pi\int_{-1}^{\frac{1}{2}}{(1-y^2)dy}=\frac{9\pi} {4}\\ \end{align}\begin{align} &(2)W=F*S=G*S=mg*S=\rho VSg\\ &上部为W_1=\int_{\frac{1}{2}}^{2}(2y-y^2)(2-y)dy*\rho g\\ &下部为W_2=\int^{\frac{1}{2}}_{-1}(1-y^2)(2-y)dy*\rho g\\ &W=W_1+W_2\\ \end{align}例题2\begin{align} &F_p=P*A=\rho gh*A\\ &将图像分为上部和下部,上部为矩形区域和下部的抛物线围成的⾯积区域,对其进⾏依次求解\\ &P_1=2\rho gh\int_1^{h+1}{h+1-y}dy=\rho gh^2\\ &P_2=2\rho gh\int_0^1{(h+1-y)\sqrt{y}dy=4\rho g(\frac{1}{3}h+\frac{2}{15})}\\ &\frac{P_1}{P_2}=\frac{4}{5}\Rightarrow h=2,h=-\frac{1}{3}(舍去) \end{align}。
简述不定积分与定积分的区别与联系
简述不定积分与定积分的区别与联系
不定积分和定积分都是数学中重要的概念,它们之间具有密切的联系,又存在着本质的区别。
不定积分是一种有穷数量的数学表达式,它表达的是在几何上分割焦点或曲线之间有关面积、重量等物体的大小,而定积分是一种无穷数量的数学表达式,它表达的是一个函数在一定范围内的积分值。
首先,不定积分和定积分的区别在于,不定积分表达的是在几何上分割焦点或曲线之间有关面积、重量等物体的大小,而定积分则表达的是一个函数在一定范围内的积分值,它可以用来表达特定的函数在一定的区域内的某个特性,例如曲线的长度、图形的面积等。
其次,不定积分和定积分之间还存在本质的联系,即定积分可以用不定积分来计算,因为定积分是无穷数量的积分,可以用特定的函数逐步地分割成若干不定积分项。
因此,在求某函数的定积分值时,首先要先求出该函数的不定积分形式,然后再利用定积分的方法将不定积分求值,得出最后的定积分值。
最后,不定积分和定积分各有其特征,可以为求解函数提供独特的解决方案。
不定积分可以让我们更清晰地看到几何上分割焦点或曲线之间有关面积或重量等物体的大小,而定积分可以让我们更准确地得出一个特定函数在一定范围内的积分值,从而更清晰地表达特定函数在一定的区域内的某个特性,例如曲线的长度、图形的面积等。
综上所述,不定积分和定积分具有明显的区别和联系,不定积分表达的是在几何上分割焦点或曲线之间有关面积、重量等物体的大小,
而定积分则表达的是一个函数在一定范围内的积分值,并且它们之间存在本质的联系,即定积分可以用不定积分来计算。
由于不定积分和定积分的存在,我们可以更加准确地求出一个函数在一定范围内的特性,为日常数学计算提供广泛的解决方案。
微积分中的定积分和不定积分
微积分中的定积分和不定积分微积分是数学中的一门重要学科,它研究的是函数的变化规律和求解问题的方法。
在微积分中,定积分和不定积分是两个核心概念,它们在数学和实际问题中有着广泛的应用。
定积分是微积分中的一个重要概念,它可以看作是对函数在一个区间上的加总。
定积分的符号表示为∫,下标表示积分的区间,上标表示被积函数。
例如,∫[a,b]f(x)dx表示函数f(x)在区间[a,b]上的定积分。
定积分的计算可以通过求解不定积分来实现。
不定积分是微积分中的另一个重要概念,它可以看作是求解函数的原函数。
不定积分的符号表示为∫f(x)dx,其中f(x)表示被积函数,dx表示变量。
不定积分的结果是一个函数,它的导数等于被积函数。
例如,∫x^2dx的结果是x^3/3+C,其中C是一个常数。
定积分和不定积分之间存在着紧密的联系。
根据牛顿-莱布尼茨公式,定积分可以通过不定积分来计算。
具体而言,如果F(x)是f(x)的一个原函数,那么函数f(x)在区间[a,b]上的定积分可以表示为F(b)-F(a)。
这个公式可以简化定积分的计算过程,特别是对于一些复杂的函数。
定积分和不定积分在数学和实际问题中有着广泛的应用。
在数学中,它们可以用于计算曲线下的面积、求解曲线的弧长和计算物体的体积等。
在物理学中,定积分可以用于计算物体的质量、力和功等。
在经济学中,定积分可以用于计算收益和成本等。
在工程学中,定积分可以用于计算电流、电压和功率等。
可以说,定积分和不定积分是微积分的基础,它们为解决各种实际问题提供了强大的工具。
除了定积分和不定积分,微积分中还有一些其他的重要概念和方法。
例如,导数是微积分中的一个基本概念,它表示函数在某一点上的变化率。
微分是导数的一种具体形式,它可以用来近似计算函数的变化。
微分方程是微积分中的一个重要分支,它研究的是包含导数的方程。
微积分还包括一元函数和多元函数的研究,以及一些高级的概念和方法,如级数、向量和曲线积分等。
不定积分与定积分
Q5∫ ex sin2xdx = ex sin2x 2ex cos2x
1 2 ∴∫ ex sin2xdx = ex sin2x ex cos2x + C 5 5
补充例题
首页
上页
返回
下页
结束
铃
分部积分法总结
xneaxdx ∫
xn lnk xdx ∫
1 ax 令u = x , dv = e dx = d e a
补充例题
首页
上页
返回
下页
结束
铃
4.分部积分法 4.分部积分法 求
2
2
∫ udv = uv ∫ vdu
1 1 x
2
∫ ( arcsin x) dx = x( arcsin x) ∫ x 2arcsin x
= x ( arcsin x) + ∫ arcsin x
2dxຫໍສະໝຸດ 1= x ( arcsin x) + 2∫ arcsin xd
下页 结束 铃
三、不定积分的几何意义 不定积分的几何意义 若F(x)是f(x) 一个原函数,则y=F(x)为f(x)的一条积分曲线. f(x)的不定积分的几何意义就表示积分曲线族. 求通过点(1,2),斜率为2x的曲线. 设所求曲线为y=F(x)
y = ∫ 2xdx = x2 + c
y y=F(x)+c y=F(x) o
补充例题
首页
上页
返回
下页
结束
铃
4.分部积分法 4.分部积分法 设u=u(x)及v=v(x)具有连续的导数,
( uv)′ = u′v + uv′
uv′ = ( uv)′ u′v
∫ udv = uv ∫ vdu
定积分与不定积分的区别与联系
定积分与不定积分的区别与联系大家好,今天我来给大家讲讲不定积分与定积分的区别与联系吧。
不定积分和定积分这两个名字想必大家都不陌生,可能有些人还比较熟悉,而另外一些人可能会觉得很陌生,甚至是闻所未闻。
其实他们就在你的身边,也许在某一天你就会用到它们。
定积分是数学中的基本概念,只有微积分学的内容中才会出现它的身影。
为了简化计算,通常把定积分记作c(n),这时的n可以取任意实数。
不过这种说法太抽象了,于是人们引入了极限的概念,对定积分进行近似求导,发现原来这样操作也是非常方便的。
不定积分又称原函数。
最常见的是不定积分的四种基本类型:第一种是如果f(x)在闭区间[-a,a]上可积且最大值等于f(a),那么就说f(x)=f(a),并且记作|f(x)|;(-a)就是闭区间的上限;如果f(x)=f(a),但f(a)不等于0,那么就说f(x)=0,并且记作|f(x)|。
第二种是设f(x)在区间[a,b]cap[-a,a]上可积,那么就说f(x)等于f(b),并且记作|f(x)|;如果f(x)=f(b),那么就说f(x)=f(a),并且记作|f(x)|。
第三种是设f(x)在区间[a,b]cap[-a,b]上可积,那么就说f(x)大于f(a),并且记作|f(x)|;如果f(x)>f(a),那么就说f(x)>f(b),并且记作|f(x)|。
第四种是设f(x)在区间[a,b]cap[-a,b]上可积,那么就说f(x)小于f(a),并且记作|f(x)|;如果f(x) <f(a),那么就说f(x)<f(b),并且记作|f(x)|。
对于定积分而言,即使是一个很小的常数都可以成为变量的增函数或者减函数。
不定积分呢?是不是比较简单一点?由于不定积分和定积分都是微积分里面的重要概念,所以在后续课程中我们会学习二者之间的联系和区别。
现在,我先来给大家解释一下什么叫做定积分吧!“定积分” [gPARAGRAPH3]说明:给定积分名称,若其上限和下限均有意义,则称为定积分;反之,若其上下限均无意义,则称为不定积分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定积分与不定积分
积分是微积分中的重要概念之一,分为定积分和不定积分。
在数学和物理学等领域中,积分广泛应用于求解曲线下面的面积、求解变化率、求解平衡点等问题。
在本文中,我们将详细讨论定积分和不定积分的概念、性质以及求解方法。
一、定积分
定积分是指对于一个函数在给定区间上的积分结果是一个确定的数值。
它常常用于求解曲线下面的面积。
在数学中,定积分可以通过黎曼和牛顿-莱布尼茨公式来进行计算。
黎曼和公式可以用如下形式表示:
∫[a,b] f(x)dx = lim(n→∞) Σ f(xi)Δx
其中,f(x)是被积函数,[a,b]是积分区间,xi是取自积分区间的一个点,Δx是每一小段区间的长度。
牛顿-莱布尼茨公式表示为:
∫[a,b] f(x)dx = F(b) - F(a)
其中,F(x)是f(x)的一个原函数。
从这两个公式可以看出,定积分的结果是一个数值,并且与所选取的具体积分区间无关。
定积分还具有求解变化率、求解物体质量等方面的应用。
二、不定积分
不定积分是指对于一个函数求出它的原函数,也称为不定积分。
不定积分的结果通常表示为∫f(x)dx = F(x) + C,其中C为常数。
不定积分解决的是反导数问题。
不定积分与定积分的关系可以用牛顿-莱布尼茨公式来表示。
定积分就是不定积分的上下限差:
∫[a,b] f(x)dx = F(b) - F(a) = F(x)|[a,b]
这意味着通过求解不定积分,我们可以求出定积分的值。
不定积分可以利用换元法、分部积分法等方法来求解。
其中,换元法是指通过换一种变量的表示方式,来简化积分形式。
分部积分法则是指求导运算和积分运算之间的一个关系,可以将一个复杂的积分转化为一个或多个简单的积分。
三、定积分与不定积分的性质
1.线性性质:定积分和不定积分都具有线性性质,即对于任意常数a和b,有∫(af(x) + bg(x))dx = a∫f(x)dx + b∫g(x)dx。
2.区间可加性:定积分具有区间可加性,即对于[a,b]和[b,c],有
∫[a,c]f(x)dx = ∫[a,b]f(x)dx + ∫[b,c]f(x)dx。
3.积分反演:定积分和不定积分具有积分反演的关系,即求不定积分的结果可以得到定积分的值。
4.积分的换元法:定积分和不定积分都可以应用换元法进行求解。
换元法可以将复杂的积分转化为简单的积分。
四、定积分与不定积分的应用
定积分和不定积分在数学和物理学的研究中具有广泛的应用。
它们在求解曲线下面的面积、求解变化率、求解物体质量等方面发挥了重要的作用。
在几何学中,我们可以利用定积分来计算曲线与曲线之间的相交面积。
在物理学中,我们可以利用定积分来求解物体的质量或者电荷分布等。
不定积分则主要用于求解原函数,可以求解出一个函数的无穷多个原函数。
在微分方程的研究中,不定积分是不可或缺的。
总结起来,定积分和不定积分是微积分中的重要概念。
定积分是求解一个函数在给定区间上的积分结果,而不定积分是求解一个函数的原函数。
它们在各自的应用领域发挥着重要作用,对于数学和物理学等学科的发展起着重要的推动作用。