2020-2021初二数学下期中模拟试卷带答案
2020-2021八年级数学下期中模拟试卷(及答案)(6)

到的四边形,下列判断正确的是( )
A.∠BCA=45°
B.AC=BD
C.BD 的长度变小
D.AC⊥BD
二、填空题
13.一次函数的图像经过点 A(3,2),且与 y 轴的交点坐标是 B(0, 2 ),则这个一 次函数的函数表达式是________________.
14.函数 y x 2 中,自变量 x 的取值范围是
二、填空题
13.y=x-2【解析】【分析】一次函数关系式 y=kx+b 将 AB 两点坐标代入解一元
一次方程组可求 kb 的值确定一次函数关系式【详解】设一次函数关系式
y=kx+b 将 A(32)B(0-2)代入得解得一次函数解析
解析:y= 4 x-2. 3
【解析】 【分析】 一次函数关系式 y=kx+b,将 A、B 两点坐标代入,解一元一次方程组,可求 k、b 的值, 确定一次函数关系式. 【详解】 设一次函数关系式 y=kx+b, 将 A(3,2)、B(0,-2)代入,得
A. x 3
B. x 3
C. x 3
D. x 3
12.为了研究特殊四边形,李老师制作了这样一个教具(如图 1):用钉子将四根木条钉
成一个平行四边形框架 ABCD,并在 A 与 C、B 与 D 两点之间分别用一根橡皮筋拉直固
定,课上,李老师右手拿住木条 BC,用左手向右推动框架至 AB⊥BC(如图 2)观察所得
=∠BCD;③AC⊥BD;④∠BAD+∠ABC=180°中,正确的个数有( )
A.1 个 B.2 个 C.3 个 D.4 个
8.若一次函数 y=(k-3)x-k 的图象经过第二、三、四象限,则 k 的取值范围是( )
A.k<3
2020-2021初二数学下期中第一次模拟试卷及答案(2)

2020-2021初二数学下期中第一次模拟试卷及答案(2)一、选择题1.小明搬来一架 3.5 米长的木梯,准备把拉花挂在 2.8 米高的墙上,则梯脚与墙脚的距离为( )A .2.7 米B .2.5 米C .2.1 米D .1.5 米2.实数a ,b 在数轴上的位置如图所示,则化简()()2212a b +--的结果是( )A .3a b -+B .1a b +-C .1a b --+D .1a b -++ 3.若一次函数y =(k -3)x -k 的图象经过第二、三、四象限,则k 的取值范围是( )A .k <3B .k <0C .k >3D .0<k <3 4.已知点(﹣2,y 1),(﹣1,y 2),(1,y 3)都在直线y =﹣x+b 上,则y 1,y 2,y 3的值的大小关系是( )A .y 1>y 2>y 3B .y 1<y 2<y 3C .y 3>y 1>y 2D .y 3>y 1>y 25.如图,在Rt ABC ∆中,90ACB ∠=︒,CD ,CE 分别是斜边上的高和中线,30B ∠=︒,4CE =,则CD 的长为( )A .25B .4C .23D .5 6.菱形ABCD 中,AC =10,BD =24,则该菱形的周长等于( )A .13B .52C .120D .240 7.如图1,∠DEF =25°,将长方形纸片ABCD 沿直线EF 折叠成图2,再沿折痕GF 折叠成图3,则∠CFE 的度数为( )A .105°B .115°C .130°D .155°8.在矩形ABCD 中,AB=2,AD=4,E 为CD 的中点,连接AE 交BC 的延长线于F 点,P 为BC 上一点,当∠PAE=∠DAE 时,AP 的长为 ( )A .4B .C .D .59.《九章算术》勾股章有一问题,其意思是:现有一竖立着的木柱,在木柱上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有3尺,牵着绳索退行,在离木柱根部8尺处时绳索用尽,请问绳索有多长?若设绳索长度为x 尺,根据题意,可列方程为 ( )A .82﹢x 2 = (x ﹣3)2B .82﹢(x +3)2= x 2C .82﹢(x ﹣3)2= x 2D .x 2﹢(x ﹣3)2= 8210.已知直角三角形中30°角所对的直角边长是23cm ,则另一条直角边的长是( ) A .4cm B .43 cm C .6cm D .63 cm11.如图所示,▱ABCD 的对角线AC ,BD 相交于点O ,AE EB =,3OE =,5AB =,▱ABCD 的周长( )A .11B .13C .16D .2212.小带和小路两个人开车从A 城出发匀速行驶至B 城.在整个行驶过程中,小带和小路两人车离开A 城的距离y (km)与行驶的时间t (h)之间的函数关系如图所示.有下列结论;①A ,B 两城相距300 km ;②小路的车比小带的车晚出发1 h ,却早到1 h ;③小路的车出发后2.5 h 追上小带的车;④当小带和小路的车相距50 km 时,t =54或t =154.其中正确的结论有( )A .①②③④B .①②④C .①②D .②③④二、填空题13.计算:221)=__________.14.已知51,x =则226x x +-=____________________. 15.在函数1x-x 的取值范围是_____. 16.如图,在△ABC 中,AB =6,AC =10,点D ,E ,F 分别是AB ,BC ,AC 的中点,则四边形ADEF 的周长为_____.17.在△ABC 中,∠C=90°,AC=1,BC=2,则AB 边上的中线CD=______.18.矩形两条对角线的夹角为60°,矩形的较短的一边为5,则矩形的对角线的长是_____.19.比较大小:23________13.20.如图,点P 是矩形ABCD 的对角线AC 上一点,过点P 作EF ∥BC ,分别交AB ,CD 于点E ,F ,连接PB ,PD .若AE =2,PF =8.则图中阴影部分的面积为___.三、解答题21.已知长方形的长1322a =,宽1183b =. (1)求长方形的周长;(2)求与长方形等面积的正方形的周长,并比较其与长方形周长的大小关系.22.已知a ,b 分别为等腰三角形的两条边长,且a ,b 满足33652b a a =+-+-,求此三角形的周长.23.已知:如图,90ABC ADC ∠=∠=o ,点M 是AC 的中点,MN BD ⊥于点N ,求证:N 是BD 的中点.24.如图,在平面直角坐标系中,一次函数y=kx+b 的图象经过点A (﹣2,6),且与x 轴相交于点B ,与正比例函数y=3x 的图象相交于点C ,点C 的横坐标为1.(1)求k 、b 的值;(2)若点D 在y 轴负半轴上,且满足S △COD =13S △BOC ,求点D 的坐标.25.直线AB 与x 轴交于点A (1,0),与y 轴交于点B (0,-2).(1)求直线AB 的表达式;(2)若直线AB 上有一动点C ,且2BOC S =V ,求点C 的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】仔细分析题意得:梯子、地面、墙刚好形成一直角三角形,梯高为斜边,利用勾股定理解此直角三角形即可.【详解】 223.5 2.8-=2.1(米).故选C .【点睛】本题考查了勾股定理的应用.善于提取题目的信息是解题以及学好数学的关键.2.A解析:A【解析】【分析】先根据数轴上两点的位置确定1a +和2b -的正负,再根据2a 的性质计算即可.【详解】观察数轴可得,1a >-,2b >,故10a +>,20b ->,∴()()2212a b +--()12a b =+--12a b =+-+3a b =-+故选:A.【点睛】本题结合数轴上点的位置考查了2a 的计算性质,熟练掌握该性质是解答的关键. 3.D解析:D【解析】【分析】由一次函数图象经过第二、三、四象限,利用一次函数图象与系数的关系,即可得出关于k 的一元一次不等式组,解之即可得出结论.【详解】∵一次函数y=(k-3)x-k 的图象经过第二、三、四象限,∴,解得:0<k <3,故选:D .【点睛】本题考查了一次函数图象与系数的关系,牢记“k <0,b <0⇔y=kx+b 的图象在二、三、四象限”是解题的关键.4.A解析:A【解析】【分析】先根据直线y =﹣x+b 判断出函数图象,y 随x 的增加而减少,再根据各点横坐标的大小进行判断即可.【详解】解:∵直线y =﹣x+b ,k =﹣1<0,∴y 随x 的增大而减小,又∵﹣2<﹣1<1,∴y 1>y 2>y 3.故选:A .【点睛】本题考查一次函数的图象性质:当k >0,y 随x 增大而增大;当k <0时,y 将随x 的增大而减小.5.C解析:C【解析】【分析】由直角三角形斜边上的中线求得AB 的长度,再根据含30°角直角三角形的性质求得AC 的长度,最后通过解直角△ACD 求得CD 的长度.【详解】Q 如图,在Rt ABC ∆中,90ACB ∠=︒,CE 是斜边上的中线,4CE =,28AB CE ∴==.30B Q ∠=︒,60A ∴∠=︒,142AC AB ==. CD Q 是斜边上的高,30ACD ∠=︒Q122AD AC ∴== 22224223CD AC AD ∴=-=-=故选:C .【点睛】考查了直角三角形斜边上的中线、含30度角直角三角形的性质.直角三角形斜边上的中线等于斜边的一半.6.B解析:B【解析】试题解析:菱形对角线互相垂直平分,∴BO =OD =12,AO =OC =5,2213AB OA BO ∴=+=,故菱形的周长为52.故选B.7.A解析:A【解析】【分析】由矩形的性质可知AD∥BC,由此可得出∠BFE=∠DEF=25°,再根据翻折的性质可知每翻折一次减少一个∠BFE的度数,由此即可算出∠CFE度数.【详解】解:∵四边形ABCD为长方形,∴AD∥BC,∴∠BFE=∠DEF=25°.由翻折的性质可知:图2中,∠EFC=180°-∠BFE=155°,∠BFC=∠EFC-∠BFE=130°,图3中,∠CFE=∠BFC-∠BFE=105°.故选:A.【点睛】本题考查翻折变换以及矩形的性质,解题的关键是找出∠CFE=180°-3∠BFE.解决该题型题目时,根据翻折变换找出相等的边角关系是关键.8.B解析:B【解析】【分析】根据矩形的性质结合等角对等边,进而得出CF的长,再利用勾股定理得出AP的长.【详解】在中,得故选:B点睛:此题主要考查了矩形的性质以及勾股定理等知识,正确得出FC的长是解题关键.9.C解析:C【解析】【分析】设绳索长为x尺,根据勾股定理列出方程解答即可.解:设绳索长为x尺,可列方程为(x-3)2+82=x2,故选:C.【点睛】本题考查了勾股定理的应用,找准等量关系,正确列出一元二次方程是解题的关键. 10.C解析:C【解析】如图,∵∠C=90°,∠B=30°,3,∴3cm,由勾股定理得:22-,AB AC故选C.11.D解析:D【解析】【分析】根据平行四边形性质可得OE是三角形ABD的中位线,可进一步求解.【详解】因为▱ABCD的对角线AC,BD相交于点O,AE EB=,所以OE是三角形ABD的中位线,所以AD=2OE=6所以▱ABCD的周长=2(AB+AD)=22故选D【点睛】本题考查了平行四边形性质,熟练掌握性质定理是解题的关键.12.C解析:C【解析】【分析】观察图象可判断①②,由图象所给数据可求得小带、小路两车离开A城的距离y与时间t 的关系式,可求得两函数图象的交点,可判断③,再令两函数解析式的差为50,可求得t,可判断④,可得出答案.由图象可知A,B两城市之间的距离为300 km,小带行驶的时间为5 h,而小路是在小带出发1 h后出发的,且用时3 h,即比小带早到1 h,∴①②都正确;设小带车离开A城的距离y与t的关系式为y小带=kt,把(5,300)代入可求得k=60,∴y小带=60t,设小路车离开A城的距离y与t的关系式为y小路=mt+n,把(1,0)和(4,300)代入可得0 4300 m nm n+=⎧⎨+=⎩解得100100 mn=⎧⎨=-⎩∴y小路=100t-100,令y小带=y小路,可得60t=100t-100,解得t=2.5,即小带和小路两直线的交点横坐标为t=2.5,此时小路出发时间为1.5 h,即小路车出发1.5 h后追上甲车,∴③不正确;令|y小带-y小路|=50,可得|60t-100t+100|=50,即|100-40t|=50,当100-40t=50时,可解得t=54,当100-40t=-50时,可解得t=154,又当t=56时,y小带=50,此时小路还没出发,当t=256时,小路到达B城,y小带=250.综上可知当t的值为54或154或56或256时,两车相距50 km,∴④不正确.故选C.【点睛】本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,特别注意t是甲车所用的时间.二、填空题13.3+2【解析】【分析】【详解】解:故答案为:3+2解析:【解析】【分析】【详解】解:222故答案为:.14.-2【解析】【分析】直接代入根据二次根式的运算法则即可求出答案【详解】解:当时原式【点睛】本题考查了学生的运算能力解题的关键是熟练运用运算法则本题属于基础题型解析:-2【解析】【分析】直接代入,根据二次根式的运算法则即可求出答案.【详解】解:当1x =时,原式21)1)6=+-5126=-+-2=-【点睛】本题考查了学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.15.x <1【解析】【分析】根据被开方数大于等于0分母不等于0列式进行计算即可求解【详解】解:根据题意得1-x≥0且1−x≠0解得x <1故答案为x <1【点睛】本题考查了函数自变量的取值范围函数自变量的范围解析:x <1【解析】【分析】根据被开方数大于等于0,分母不等于0列式进行计算即可求解.【详解】解:根据题意得,1-x≥0且1−x≠0,解得x <1.故答案为x <1.【点睛】本题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.16.16【解析】【分析】首先证明四边形ADEF 是平行四边形根据三角形中位线定理求出DEEF 即可解决问题【详解】解:∵BD=ADBE=EC∴DE=AC=5DE∥AC∵CF=FACE=BE∴EF=AB=3E解析:16【解析】【分析】首先证明四边形ADEF 是平行四边形,根据三角形中位线定理求出DE 、EF 即可解决问题.【详解】解:∵BD=AD ,BE=EC ,∴DE=12AC=5,DE ∥AC , ∵CF=FA ,CE=BE , ∴EF=12AB=3,EF ∥AB , ∴四边形ADEF 是平行四边形,∴四边形ADEF 的周长=2(DE+EF )=16,故答案为16.【点睛】本题考查三角形中位线定理、平行四边形的判定和性质等知识,熟练掌握三角形中位线定理是解题的关键.17.【解析】【分析】先运用勾股定理求出斜边AB 然后再利用直角三角形斜边上的中线等于斜边的一半解答即可【详解】解:由勾股定理得AB ∵∠C=90°CD 为AB 边上的中线∴CD=AB=故答案为【点睛】本题考查的【解析】【分析】先运用勾股定理求出斜边AB ,然后再利用直角三角形斜边上的中线等于斜边的一半解答即可.【详解】解:由勾股定理得,=∵∠C=90°,CD 为AB 边上的中线,∴CD=12 . 【点睛】 本题考查的是勾股定理和直角三角形的性质,掌握直角三角形斜边上的中线是斜边的一半是解答本题的关键.18.10【解析】【分析】首先根据题意画出图形然后再根据矩形两条对角线的夹角为60°证得△AOB是等边三角形即可解答本题【详解】解:如图:∵四边形ABCD是矩形∴OA=ACOB=BDAC=BD∴OA=OB解析:10【解析】【分析】首先根据题意画出图形,然后再根据矩形两条对角线的夹角为60°,证得△AOB是等边三角形,即可解答本题.【详解】解:如图:∵四边形ABCD是矩形,∴OA=12AC,OB=12BD,AC=BD∴OA=OB,∵∠A0B=60°,∴△AOB是等边三角形,∴OA=OB=AB=5,∴AC=2OA=10,即矩形对角线的长为10.故答案为:10.【点睛】本题考查了矩形的性质以及等边三角形的判定与性质,弄清题意、画出图形是解答本题的关键.19.<【解析】试题解析:∵∴∴解析:<【解析】试题解析:∵23=121213<∴2313<20.16【解析】【分析】作PM⊥AD于M交BC于N则有四边形AEPM四边形DFPM四边形CFPN四边形BEPN都是矩形可得S△PEB=S△PFD=8则可得出S阴【详解】作PM⊥AD于M交BC于N则有四边解析:16【解析】【分析】作PM ⊥AD 于M ,交BC 于N ,则有四边形AEPM 、四边形DFPM 、四边形CFPN 、四边形BEPN 都是矩形,可得S △PEB =S △PFD =8,则可得出S 阴.【详解】作PM ⊥AD 于M ,交BC 于N ,则有四边形AEPM 、四边形DFPM 、四边形CFPN 、四边形BEPN 都是矩形,∴S △ADC =S △ABC ,S △AMP =S △AEP ,S △PBE =S △PBN ,S △PFD =S △PDM ,S △PFC =S △PCN ,∴S △DFP =S △PBE =12×2×8=8, ∴S 阴=8+8=16.故答案是:16.【点睛】考查矩形的性质、三角形的面积等知识,解题的关键是证明S △PEB =S △PFD . 三、解答题21.(1)622)长方形的周长大.【解析】试题分析:(1)代入周长计算公式解决问题;(2)求得长方形的面积,开方得出正方形的边长,进一步求得周长比较即可. 试题解析:(1)()1111223218242322326 2.2323a b ⎛+=⨯=⨯⨯⨯=⨯= ⎝ ∴长方形的周长为6 2. .(2)111132184232 4.2323=⨯⨯= 正方形的面积也为4.4 2.=周长为:428.⨯=628.>∴长方形的周长大于正方形的周长.22.三角形的周长为7或8【解析】【分析】根据二次根式的非负性,可求得a =2、b=3,根据等腰三角形的性质,可得三边长为2、2、3或2、3、3,从而求得三角形周长.【详解】 ∵33652b a a =+-+-∴3a -6≥0,2-a ≥0∴a =2∴b=3∵a ,b 分别为等腰三角形的两条边长∴等腰三角形的另一条边为2或3∴等腰三角形的周长为:2+2+3=7或2+3+3=8【点睛】本题考查二次根式的非负性和等腰三角形的多解问题,解题关键是利用二次根式的非负性,得出a =2.23.见解析【解析】【分析】连接BM 、CM ,根据在直角三角形中,斜边上的中线等于斜边的一半得到BM =12AC ,DM =12AC ,根据等腰三角形的三线合一得到答案. 【详解】 证明:连接BM DM ,,在Rt ABC V 中,Q 点M 是斜边AC 的中点,12BM AC ∴=, 同理在1,2Rt ADC DM AC =V , BDM ∴V 是等腰三角形,MN BD ⊥Q ,N ∴是BD 的中点.【点睛】本题考查的是直角三角形的性质和等腰三角形的性质,掌握在直角三角形中,斜边上的中线等于斜边的一半、等腰三角形的三线合一是解题的关键.24.(1)k=-1,b=4;(2)点D 的坐标为(0,-4).【解析】【分析】【详解】分析:(1)利用一次函数图象上点的坐标特征可求出点C 的坐标,根据点A 、C 的坐标,利用待定系数法即可求出k 、b 的值;(2)利用一次函数图象上点的坐标特征可求出点B 的坐标,设点D 的坐标为(0,m )(m <0),根据三角形的面积公式结合S △COD =13S △BOC ,即可得出关于m 的一元一次方程,解之即可得出m 的值,进而可得出点D 的坐标.详解:(1)当x=1时,y=3x=3,∴点C 的坐标为(1,3).将A (﹣2,6)、C (1,3)代入y=kx+b , 得:263k b k b -+=⎧⎨+=⎩, 解得:14k b =-⎧⎨=⎩. (2)当y=0时,有﹣x+4=0,解得:x=4,∴点B 的坐标为(4,0).设点D 的坐标为(0,m )(m <0),∵S △COD =13S △BOC ,即﹣12m=13×12×4×3, 解得:m=-4,∴点D 的坐标为(0,-4). 点睛:本题考查了两条直线相交或平行问题、一次函数图象上点的坐标特征、待定系数法求一次函数解析式以及三角形的面积,解题的关键是:(1)根据点的坐标,利用待定系数法求出k 、b 的值;(2)利用三角形的面积公式结合结合S △COD =13S △BOC ,找出关于m 的一元一次方程.25.(1)22y x =-;(2)点C 的坐标为(2,2)或(-2,-6).【解析】【分析】(1)设直线解析式为y kx b =+(k≠0),把A 、B 两点坐标代入可得关于k 、b 的二元一次方程组,解方程组求出k 、b 的值即可得答案;(2)设C 点坐标为(),22x x -,根据2BOC S =V 列方程可求出x 的值,把x 的值代入直线AB 的解析式即可得C 点坐标.【详解】(1)设直线解析式为y kx b =+(k≠0),∵直线AB 与x 轴交于点A (1,0),与y 轴交于点B (0,-2),∴20b k b =-⎧⎨+=⎩, 解得:22k b =⎧⎨=-⎩, ∴直线AB 的解析式为:22y x =-.(2)设C 点坐标为(),22x x -,∵2BOC S =V , ∴1222x ⨯⨯=, 解得:2x =±,当x=2时,2x-2=2,当x=-2时,2x-2=-6,∴点C 的坐标为(2,2)或(-2,-6).【点睛】本题考查了待定系数法求函数解析式,解答此题不仅要熟悉函数图象上点的坐标特征,还要熟悉三角形的面积公式.。
2020-2021初二数学下期中一模试题(及答案)

2020-2021初二数学下期中一模试题(及答案) 一、选择题1.把式子1aa-号外面的因式移到根号内,结果是()A.a B.a-C.a-D.a--2.有一直角三角形纸片,∠C=90°BC=6,AC=8,现将△ABC按如图那样折叠,使点A 与点B重合,折痕为DE,则CE的长为( )A.27B.74C.72D.43.△ABC 的三边分别是 a,b,c,其对角分别是∠A,∠B,∠C,下列条件不能判定△ABC 是直角三角形的是()A.∠B =∠A -∠C B.a : b : c = 5 :12 :13 C.b2- a2= c2 D.∠A : ∠B : ∠C = 3 : 4 : 5 4.若正比例函数y=mx(m是常数,m≠0)的图象经过点A(m,4),且y的值随x值的增大而减小,则m等于()A.2B.﹣2C.4D.﹣45.如图,把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,若∠2=40°,则图中∠1的度数为()A.115°B.120°C.130°D.140°6.函数y1x+中,自变量x的取值范围是()A.x>-1B.x>-1且x≠1C.x≥一1D.x≥-1且x≠1 7.若一次函数y=(k-3)x-k的图象经过第二、三、四象限,则k的取值范围是() A.k<3B.k<0C.k>3D.0<k<38.有一个直角三角形的两边长分别为3和4,则第三边的长为()A.5B7C5D.579.下列二次根式:3418,,125,0.4823-12合并的有()A .1个B .2个C .3个D .4个10.要使代数式3x -有意义,则x 的取值范围是( ) A .3x ≠ B .3x > C .3x ≥ D .3x ≤11.下列运算正确的是( )A .532-=B .822-=C .114293= D .()22525-=- 12.小明搬来一架 3.5 米长的木梯,准备把拉花挂在 2.8 米高的墙上,则梯脚与墙脚的距离为( )A .2.7 米B .2.5 米C .2.1 米D .1.5 米二、填空题13.对于任意不相等的两个数a ,b ,定义一种运算※如下:a ※b =+-a b a b,如3※2=325+=.那么12※4=_____. 14.比较大小:52_____13.15.如图,已知点E 在正方形ABCD 的边AB 上,以BE 为边向正方形ABCD 外部作正方形BEFG ,连接DF ,M 、N 分别是DC 、DF 的中点,连接MN.若AB=7,BE=5,则MN=_______.16.计算2(2233)的结果等于_____.17.计算:662)=________.18.在矩形ABCD 中,点E 为AD 的中点,点F 是BC 上的一点,连接EF 和DF ,若AB=4,BC=8,5DF 的长为___________.19.123x x --有意义的x 的取值范围是_____. 20.在平行四边形ABCD 中,若∠A+∠C=140°,则∠B= .三、解答题21.如图,四边形ABCD 为菱形,E 为对角线AC 上的一个动点,连结DE 并延长交射线AB 于点F ,连结BE .(1)求证:∠AFD=∠EBC ;(2)若∠DAB=90°,当△BEF 为等腰三角形时,求∠EFB 的度数.22.如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,点O 关于直线CD 的对称点为E ,连接DE ,CE .(1)求证:四边形ODEC 为菱形;(2)连接OE ,若BC =22,求OE 的长.23.如图,在平面直角坐标系中,点(6,0)A -,(4,3)B -,边AB 上有一点(,2)P m ,点C ,D 分别在边OA ,OB 上,联结CD ,//CD AB ,联结PC ,PD ,BC .(1)求直线AB 的解析式及点P 的坐标;(2当CQ BQ =时,求出点C 的坐标;(3)在(2)的条件下,点R 在射线BC 上,ABO RBO S S ∆∆=,请直接写出点R 的坐标.24.如图,在ABCD Y 中,边AB 的垂直平分线交AD 于点E ,交CB 的延长线于点F ,连接,AF BE 求证:四边形 AFBE 是菱形25.如图在8×8的正方形网格中,△ABC 的顶点在边长为1的小正方形的顶点上. (1)填空:∠ABC= ,BC= ;(2)若点A 在网格所在的坐标平面里的坐标为(1,﹣2),请你在图中找出一点D ,并作出以A 、B 、C 、D 四个点为顶点的平行四边形,求出满足条件的D 点的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】先根据二次根式有意义的条件求出a 的范围,再把根号外的非负数平方后移入根号内即可.【详解】Q 1a- 10a∴-≥ 0a ∴<211a a a a∴-=-⨯=--故选D .【点睛】本题考查了二次根式的意义,解题的关键是能正确把根号外的代数式或数字移到根号内部,它是开方的逆运算.从根号外移到根号内要平方,并且移到根号内与原来根号内的式子是乘积的关系.如果根号外的数字或式子是负数时,代表整个式子是负值,要把负号留到根号外再平方后移到根号内.2.B解析:B【解析】【分析】已知,∠C=90°BC=6,AC=8,由勾股定理求AB ,根据翻折不变性,可知△DAE≌△DBE,从而得到BD=AD,BE=AE,设CE=x,则AE=8-x,在Rt△CBE中,由勾股定理列方程求解.【详解】∵△CBE≌△DBE,∴BD=BC=6,DE=CE,在RT△ACB中,AC=8,BC=6,∴.∴AD=AB-BD=10-6=4.根据翻折不变性得△EDA≌△EDB∴EA=EB∴在Rt△BCE中,设CE=x,则BE=AE=8-x,∴BE2=BC2+CE2,∴(8-x)2=62+x2,解得x=74.故选B.【点睛】此题考查了翻折变换的问题,找到翻折后图形中的直角三角形,利用勾股定理来解答,解答过程中要充分利用翻折不变性.3.D解析:D【解析】【分析】根据三角形内角和定理判断A、D即可;根据勾股定理的逆定理判断B、C即可.【详解】A、∵∠B=∠A-∠C,∴∠B+∠C=∠A,∵∠A+∠B+∠C=180°,∴2∠A=180°,∴∠A=90°,即△ABC是直角三角形,故本选项错误;B、∵52+122=132,∴△ABC是直角三角形,故本选项错误;C、∵b2-a2=c2,∴b2=a2+c2,∴△ABC是直角三角形,故本选项错误;D、∵∠A:∠B:∠C=3:4:5,∠A+∠B+∠C=180°,∴∠A=45°,∠B=60°,∠C=75°,∴△ABC不是直角三角形,故本选项正确;故选D.【点睛】本题考查了三角形内角和定理,勾股定理的逆定理的应用,主要考查学生的计算能力和辨析能力.4.B解析:B【解析】【分析】利用待定系数法求出m,再结合函数的性质即可解决问题.【详解】解:∵y=mx(m是常数,m≠0)的图象经过点A(m,4),∴m2=4,∴m=±2,∵y的值随x值的增大而减小,∴m<0,∴m=﹣2,故选:B.【点睛】本题考查待定系数法,一次函数的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.5.A解析:A【解析】解:∵把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,∴∠BFE=∠EFB',∠B'=∠B=90°.∵∠2=40°,∴∠CFB'=50°,∴∠1+∠EFB'﹣∠CFB'=180°,即∠1+∠1﹣50°=180°,解得:∠1=115°,故选A.6.D解析:D【解析】根据题意得:1010 xx+≥⎧⎨-≠⎩,解得:x≥-1且x≠1.故选D.7.D解析:D【解析】【分析】由一次函数图象经过第二、三、四象限,利用一次函数图象与系数的关系,即可得出关于k 的一元一次不等式组,解之即可得出结论.【详解】∵一次函数y=(k-3)x-k 的图象经过第二、三、四象限, ∴,解得:0<k <3,故选:D .【点睛】本题考查了一次函数图象与系数的关系,牢记“k <0,b <0⇔y=kx+b 的图象在二、三、四象限”是解题的关键.8.D解析:D【解析】【分析】分4是直角边、4是斜边,根据勾股定理计算即可.【详解】当4是直角边时,斜边2234+,当4是斜边时,另一条直角边22473-=故选:D .【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.9.B解析:B【解析】【分析】先将各二次根式进行化简,再根据同类二次根式的概念求解即可.【详解】 1832=4233=;12555=-230.48=. 1223=, 12合并的是12518故选:B .【点睛】本题考查了同类二次根式,解答本题的关键在于熟练掌握二次根式的化简及同类二次根式的概念. 10.B解析:B【解析】【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【详解】由题意得,x-3>0,解得x>3.故选:B.【点睛】本题考查了二次根式有意义的条件,二次根式中的被开方数必须是非负数,否则二次根式无意义.11.B解析:B【解析】【分析】根据二次根式的性质,结合算术平方根的概念对每个选项进行分析,然后做出选择.【详解】A.≠A错误;B.=,故B正确;C.=,故C错误;D.2=,故D错误.故选:B.【点睛】本题主要考查了二次根式的性质和二次根式的化简,熟练掌握运算和性质是解题的关键.12.C解析:C【解析】【分析】仔细分析题意得:梯子、地面、墙刚好形成一直角三角形,梯高为斜边,利用勾股定理解此直角三角形即可.【详解】=2.1(米).故选C.【点睛】本题考查了勾股定理的应用.善于提取题目的信息是解题以及学好数学的关键.二、填空题13.【解析】试题解析:根据题意可得:故答案为解析:1 2【解析】试题解析:根据题意可得:41 124.12482 ====-※故答案为1 . 214.>【解析】【分析】根据实数大小比较的方法比较即可【详解】解:∵5=∴5故答案为>【点睛】本题考查实数大小的比较熟练掌握实数大小的比较方法是解题关键解析:>【解析】【分析】根据实数大小比较的方法比较即可.【详解】解:∵∴故答案为>.【点睛】本题考查实数大小的比较,熟练掌握实数大小的比较方法是解题关键15.【解析】【分析】连接FC根据三角形中位线定理可得FC=2MN继而根据四边形ABCD四边形EFGB是正方形推导得出GBC三点共线然后再根据勾股定理可求得FC的长继而可求得答案【详解】连接FC∵MN分别解析:13 2【解析】【分析】连接FC,根据三角形中位线定理可得FC=2MN,继而根据四边形ABCD,四边形EFGB 是正方形,推导得出G、B、C三点共线,然后再根据勾股定理可求得FC的长,继而可求得答案.【详解】连接FC,∵M、N分别是DC、DF的中点,∴FC=2MN,∵四边形ABCD,四边形EFGB是正方形,∴∠FGB=90°,∠ABG=∠ABC=90°,FG=BE=5,BC=AB=7,∴∠GBC=∠ABG+∠ABC=180°,即G、B、C三点共线,∴GC=GB+BC=5+7=12,∴FC=22FG GC=13,∴MN=132,故答案为:13 2.【点睛】本题考查了正方形的性质,三角形中位线定理,勾股定理等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.16.35+12【解析】【分析】利用完全平方公式计算【详解】原式=8+12+27=3 5+12故答案为:35+12【点睛】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式然后进行二次根式的乘除解析:6【解析】【分析】利用完全平方公式计算.【详解】原式=6+27=6.故答案为:6.【点睛】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.17.2【解析】试题解析:原式=()2-22=6-4=2解析:2【解析】试题解析:原式=6)2-22=6-4=2.18.或【解析】【分析】分两种情况考虑①当BF>CF时②当BF<CF时然后过F作FG⊥AD于G根据勾股定理进行求解【详解】①如图所示当BF>CF时过F作FG⊥AD于G则GF=4Rt△EFG中又∵E是AD的解析:25或213【解析】【分析】分两种情况考虑,①当BF>CF时,②当BF<CF时,然后过F作FG⊥AD于G,根据勾股定理进行求解.【详解】①如图所示,当BF>CF时,过F作FG⊥AD于G,则GF=4,Rt△EFG中,()22EG=-=,2542又∵E是AD的中点,AD=BC=8,∴DE=4,∴DG=4﹣2=2,∴Rt△DFG中,224225DF=+=;②如图所示,当BF<CF时,过F作FG⊥AD于G,则GF=4,Rt△EFG中,()22EG=-=,2542又∵E是AD的中点,AD=BC=8,∴DE=4,∴DG=4+2=6,∴Rt△DFG中,22DF=+=,46213故答案为:25或213.【点睛】本题考查矩形的性质,勾股定理,学会运用分类讨论的思想与巧作辅助线构造直角三角形是解题的关键.19.x≥2且x≠3【解析】【分析】根据二次根式的性质和分式的意义被开方数大于或等于0分母不等于0列不等式组求解【详解】由题意得解得x≥2且x≠3故答案为x≥2且x≠3【点睛】本题主要考查自变量的取值范解析:x≥2且x≠3【解析】【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,列不等式组求解.【详解】由题意,得20 {30xx-≥-≠,解得x≥2且x≠3.故答案为x≥2且x≠3.【点睛】本题主要考查自变量的取值范围.用到的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.20.110°【解析】试题解析:∵平行四边形ABCD∴∠A+∠B=180°∠A=∠C∵∠A+∠C=140°∴∠A=∠C=70°∴∠B=110°考点:平行四边形的性质解析:110°【解析】试题解析:∵平行四边形ABCD,∴∠A+∠B=180°,∠A=∠C,∵∠A+∠C=140°,∴∠A=∠C=70°,∴∠B=110°.考点:平行四边形的性质.三、解答题21.(1)见解析;(2) ∠EFB=30°或120°.【解析】【分析】(1)直接利用全等三角形的判定方法得出△DCE≌△BCE(SAS),即可得出答案;(2)利用正方形的性质结合等腰三角形的性质得出:①当F在AB延长线上时;②当F在线段AB上时;分别求出即可.【详解】(1)证明:∵四边形ABCD是菱形,∴CD=AB,∠ACD=∠ACB,在△DCE和△BCE中,∴△DCE≌△BCE(SAS),∴∠CDE=∠CBE,∵CD∥AB,∴∠CDE=∠AFD,∴∠EBC=∠AFD.(2)分两种情况,①如图1,当F在AB延长线上时,∵∠EBF为钝角,∴只能是BE=BF,设∠BEF=∠BFE=x°,可通过三角形内角形为180°得:90+x+x+x=180,解得:x=30,∴∠EFB=30°.②如图2,当F在线段AB上时,∵∠EFB为钝角,∴只能是FE=FB,设∠BEF=∠EBF=x°,则有∠AFD=2x°,可证得:∠AFD=∠FDC=∠CBE,得x+2x=90,解得:x=30,∴∠EFB=120°.综上:∠EFB=30°或120°.【点睛】此题主要考查了菱形的性质以及正方形的性质以及全等三角形的判定与性质等知识,利用分类讨论得出是解题关键.22.(1)详见解析;(2)22【解析】【分析】(1)利用矩形性质可得OD=OC,再借助对称性可得OD=DE=EC=CO,从而证明了四边形ODEC为菱形;(2)证明四边形OBCE为平行四边形,即可得到OE=BC=22.【详解】(1)∵四边形ABCD是矩形,∴AC=BD,OC=12AC,OB=OD=12BD,∴OD=OC.∵点O关于直线CD的对称点为E,∴OD=ED,OC=EC.∴OD=DE=EC=CO.∴四边形ODEC为菱形;(2)连接OE.如图,由(1)知四边形ODEC为菱形,∴CE∥OD且CE=OD.又∵OB=OD,∴CE∥BO且CE=BO.∴四边形OBCE为平行四边形.∴22OE BC==【点睛】本题主要考查了矩形的性质,菱形的判定和性质、平行四边形的判定和性质,熟知特殊四边形的判定和性质是解题的关键.23.(1)直线AB解析式为y=32x+9,P点坐标为(-143,2)(2)C点坐标为(-2,0)(3)R(2,-6).【解析】【分析】(1)由A、B两点的坐标,利用待定系数法可求得直线AB的解析式,再把P点坐标代入直线解析式可求得P点坐标;(2)由条件可证明△BPQ≌△CDQ,可证得四边形BDCP为平行四边形,由B、P的坐标可求得BP的长,则可求得CD的长,利用平行线分线段成比例可求得OC的长,则可求得C的坐标;(3)由条件可知AR∥BO,故可先求出直线OB,BC的解析式,再根据直线平行求出AR 的解析式,联立直线AR、BC即可求出R点坐标.【详解】(1)设直线AB解析式为y=kx+b,把A、B两点坐标代入可得4360k bk b-+=⎧⎨-+=⎩,解得329kb⎧=⎪⎨⎪=⎩,∴直线AB解析式为y=32x+9,∵(,2)P m在直线AB上,∴2=−32m+9,解得m=-143,∴P点坐标为(-143,2);(2)∵//CD AB,∴∠PBQ=∠DCQ,在△PBQ和△DCQ中PBQ DCQCQ BQPQB DQC∠=∠⎧⎪=⎨⎪∠=∠⎩∴△PBQ≌△DCQ(ASA),∴BP=CD,∴四边形BDCP为平行四边形,∵(4,3)B-,(-143,2),∴CD=BP221413(4)(32)33-++-=,∵A(-6,0),∴OA=6,AB22(46)(30)13-++-=∵CD∥AB,∴△COD∽△AOB∴CO CDAO AB=,即133613CO=,解得CO=2,∴C点坐标为(-2,0);(3)∵ABO RBO S S ∆∆=,∴点A 和点R 到BO 的距离相等,∴BO ∥AR ,设直线BO 的解析式为y=nx ,把(4,3)B -代入得3=-4n ,解得n=-34x ∴直线BO 的解析式为y=-34x , ∴设直线AR 的解析式为y=-34x+e , 把A(-6,0)代入得0=-34×(-6)+e 解得e=-92∴直线AR 的解析式为y=-34x-92, 设直线BC 解析式为y =px +q , 把C 、B 两点坐标代入可得4320k b k b -+=⎧⎨-+=⎩,解得323k b ⎧=-⎪⎨⎪=-⎩, ∴直线AB 解析式为y =-32x-3, 联立3942332y x y x ⎧=--⎪⎪⎨⎪=--⎪⎩解得26x y =⎧⎨=-⎩∴R (2,-6).【点睛】本题为一次函数的综合应用,涉及待定系数法、全等三角形的判定和性质、勾股定理、平行四边形的判定和性质、相似三角形的判定与性质、三角形的面积等知识点,解题的关键是熟知待定系数法求出函数解析式.24.见解析【解析】【分析】由平行四边形的性质得出AD ∥BC ,得出∠EAG =∠FBG ,由AAS 证明△AGE ≌△BGF ,得出AE =BF ,由AD ∥BC ,可证四边形AFBE 是平行四边形,由EF ⊥AB ,即可得出结论.【详解】证明:Q 四边形ABCD 是平行四边形,// ,AE BF ∴,EAG FBG ∴∠=∠EF 是AB 的垂直平分线,,AG BG ∴=在AGE ∆和BGF ∆中,EAG FBG AG BG AGE BGF ∠=∠⎧⎪=⎨⎪∠=∠⎩Q ()AGE BGF ASA ∴∆≅∆AE BF ∴=又//AE BF Q∴四边形AFBE 是平行四边形EF Q 是AB 的垂直平分线AF BF ∴=AFBE ∴Y 是菱形【点睛】本题考查了平行四边形的性质、菱形的判定方法、全等三角形的判定与性质、线段垂直平分线的性质;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.25.(1)135°,;(2)D 1(3,-4)或D 2(7,-4)或D 3(-1,0).【解析】【分析】(1)根据图形知道CB 是一个等腰三角形的斜边,所以容易得出ABC ∠的度数,利用勾股定理可以求出BC 的长度;(2)根据A 点的坐标(1,-2),并且ABCD 为平行四边形,如图D 的位置有三种情况.【详解】解:(1)由图形可得:∠ABC=45°+90°=135°,故答案为:135°,;(2)满足条件的D 点共有3个,以A 、B 、C 、D 四个点为顶点的四边形为平行四边形分别是123ABCD ABD C AD BC Y Y Y ,,.其中第四个顶点的坐标为:D 1(3,-4)或D 2(7,-4)或D 3(-1,0)【点睛】本题考查等腰三角形的性质;勾股定理;平行四边形的判定和性质.。
2020-2021学年辽宁省沈阳市沈河区八年级(下)期中数学试卷

2020-2021学年辽宁省沈阳市沈河区八年级(下)期中数学试卷一、选择题(下列各题的备选答案中,只有一个答案是正确的,每小题2分,共20分)1.(2分)已知a>b,下列变形一定正确的是()A.3a<3b B.4+a>4﹣b C.ac2>bc2D.3+2a>3+2b 2.(2分)下列用数轴表示不等式组的解集正确的是()A.B.C.D.3.(2分)如图,平移△ABC得到△DEF,其中点A的对应点是点D,则下列结论中不成立的是()A.AD∥BE B.∠BAC=∠DFE C.AC=DF D.∠ABC=∠DEF 4.(2分)如图,A,B两点被池塘隔开,在AB外选一点C,连接AC,BC,分别取AC,BC的中点D,E,连接DE.若测得DE=5,则AB的长为()A.5B.8C.10D.无法确定5.(2分)如图,AC,BD相交于点O,∠A=∠D,如果请你再补充一个条件,使得△BOC 是等腰三角形,那么你补充的条件不能是()A.OA=OD B.AB=CD C.∠ABO=∠DCO D.∠ABC=∠DCB 6.(2分)下列不能判定四边形是平行四边形的条件是()A.∠A=∠C,∠B=∠D B.AB∥CD,AD∥BCC.AB∥CD,AD=BC D.AB=CD,AD=BC7.(2分)如图,直线l1∥l2,以直线l1上的点A为圆心、适当长为半径画弧,分别交直线l1、l2于点B、C,连接AC、BC.若∠ABC=67°,则∠1=()A.23°B.46°C.67°D.78°8.(2分)在△ABC中,AB=BC,两个完全一样的三角尺按如图所示摆放,它们一组较短的直角边分别在AB,BC上,另一组较长的对应边的顶点重合于点P,BP交边AC于点D,则下列结论错误的是()A.BP平分∠ABC B.AD=DCC.BD垂直平分AC D.AB=2AD9.(2分)如图,点D是△ABC外的一点,BD,CD分别平分外角∠CBE与∠BCF,连接AD交BC于点O.下列结论一定成立的是()A.DB=DC B.OA=OD C.∠BDA=∠CDA D.∠BAD=∠CAD 10.(2分)如图,直线y1=x+b与y2=kx﹣1相交于点P,若点P的横坐标为﹣1,则关于x 的不等式x+b>kx﹣1的解集是()A.x≥﹣1B.x>﹣1C.x≤﹣1D.x<﹣1二、填空题(每小题3分,共18分)11.(3分)3x﹣7≤2的解集是.12.(3分)如图,将△ABC绕点A旋转到△AEF的位置,点E在BC边上,EF与AC交于点G.若∠B=70°,∠C=25°,则∠FGC=°.13.(3分)如图,在平行四边形ABCD中,BE⊥CD,BF⊥AD,垂足分别为E、F,CE=2,DF=1,∠EBF=60°,则平行四边形ABCD的面积为.14.(3分)如图,▱ABCD的对角线AC与BD交于点O,BD⊥AD,AB=10,AD=6,则AC的长为.15.(3分)合肥政务银泰百货出售某种小家电商品,标价为360元,比进价高出80%,为了吸引顾客,又进行降价处理,若要使售后利润率不低于20%(利润率=×100%),则这种小家电最多可降价元.16.(3分)如图,D是等边三角形ABC外一点,AD=3,CD=2,当BD长最大时,△ABC 的面积为.三、解答题(第17小题8分,第18小题8分,第19小题6分,第20小题8分,共30分)17.(8分)下面是小颍同学解一元一次不等式的过程,请认真阅读并完成相应的任务.解不等式:.解:去分母,得2(x+2)﹣6<3(2x﹣1)……第一步去括号,得2x+4﹣6<6x﹣3.……第二步移项,合并同类项,得﹣4x<﹣1.……第三步两边同时除以﹣4,得x<﹣……第四步(1)上述过程中,第一步的依据是;第步出现错误;(2)该不等式的解集应为.18.(8分)利用数轴求出不等式组的解集.19.(6分)如图,作法,已知直线l和l外一点P,下面是小明设计的“过点P作直线的垂线”的作法:请结合图形阅读作法,并将证明“PQ⊥l”的过程补充完整.作法:①在直线l上取点A,B;②分别以点A、B为圆心,AP、BP为半径作弧,两弧在直线l下方交于点Q;③作直线PQ.结论:PQ⊥l,且PQ经过点P.证明:连接AP,AQ,BP,BQ.由作法可知,AP=AQ,BP=BQ.∴点A在线段PQ的垂直平分线上,点B在线段PQ的垂直平分线上,(依据)∴直线AB是线段PQ的垂直平分线(依据:)∴PQ⊥l.20.(8分)按要求画图及填空:在由边长为1个单位长度的小正方形组成的网格中建立如图所示平面直角坐标系,原点O及△ABC的顶点都在格点上.(1)图中线段AB的长度为;(2)将△ABC先向下平移2个单位长度,再向右平移5个单位长度得到△A1B1C1,画出△A1B1C1;(3)将△ABC绕点B逆时针旋转90°,画出旋转后得到的△A2B2C2,直接写出点A2、C2的坐标.四、(本题8分)21.(8分)在△ABC中,∠B+∠ACB=30°,AB=4,△ABC逆时针旋转一定角度后与△ADE重合,且点C恰好成为AD中点,如图.(1)旋转中心是,旋转角的大小是.(2)求出∠BAE的度数和AE的长.五、(本题10分)22.(10分)如图,在四边形ABCD中,E、F、G、H分别是AB、CD、AC、BD的中点.(1)求证:四边形EGFH是平行四边形;(2)若AD=8,则GF=.六、(本题10分)23.(10分)全球棉花看中国,中国棉花看新疆,某纺织厂大量进购一批新疆棉花,急需招聘A,B两个工种的工人180人,A、B两个工种的工人的月工资分别为2000元和3000元.现要求B工种的人数不少于A工种人数的2倍.(1)该工厂招聘A工种工人最多多少人?(2)招聘A工种工人多少人时,可使每月所付的工资总额最少,最少为多少元?七、(本题12分)24.(12分)如图,在平行四边形纸片ABCD中,AD=6cm,将纸片沿对角线BD对折,边AB的对应边BF与CD边交于点E,此时△BCE恰为等边三角形.(1)求AB的长度;(2)重叠部分的面积为;(3)将线段BC沿射线BA方向移动,平移后的线段记作B'C',请直接写出B'F+C'F的最小值.八、(本题12分)25.(12分)已知:△ABC,△CDE中,∠ACB=∠DCE=90°,AC=BC=6,CD=CE=4,△CDE可以绕点C旋转,作直线AD、直线BE,当它们有交点时.设相交点为H.(1)当△CDE转到如图位置时,求证:①AD=BE;②AD⊥BE;(2)△CDE可以绕点C旋转的过程中,连接AE,BD.猜想AE2+BD2的值是否发生变化(直接写出结论,不用证明)?直接写出当BD=8时,AE的长;(3)△CDE可以绕点C旋转的过程中,直接写出当∠CBD=30°时AE2的值.2020-2021学年辽宁省沈阳市沈河区八年级(下)期中数学试卷参考答案与试题解析一、选择题(下列各题的备选答案中,只有一个答案是正确的,每小题2分,共20分)1.(2分)已知a>b,下列变形一定正确的是()A.3a<3b B.4+a>4﹣b C.ac2>bc2D.3+2a>3+2b 【分析】根据不等式的基本性质,依次判断即可得出结论.【解答】解:A选项,在不等式的两边同时乘或除以同一个正数,不等号的方向不发生改变,这里应该是3a>3b,故A不正确,不符合题意;B选项,无法证明,故B选项不正确,不符合题意;C选项,当c=0时,不等式不成立,故C选项不正确,不符合题意;D选项,不等式的两边同时乘2再在不等式的两边同时3,不等式,成立,故D选项正确,符合题意.故选:D.【点评】本题主要考查不等式的基本性质,熟练记忆不等式的性质是解题关键.2.(2分)下列用数轴表示不等式组的解集正确的是()A.B.C.D.【分析】选项A根据“同大取大”判断即可;选项B根据“同小取小”判断即可;选项C根据“大小小大中间找”,包含实心圆点2,不包含空心圆点1;选项D根据“大小小大中间找”,包含实心圆点1,不包含空心圆点2.【解答】解:A、不等式组的解集为x≥2,故本选项不合题意;B、不等式组的解集为x<1,故本选项不合题意;C、不等式组的解集为1<x≤2,故本选项符合题意;D、不等式组的解集为1≤x<2,故本选项不合题意;故选:C.【点评】本题考查的是在数轴上表示不等式组的解集,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.3.(2分)如图,平移△ABC得到△DEF,其中点A的对应点是点D,则下列结论中不成立的是()A.AD∥BE B.∠BAC=∠DFE C.AC=DF D.∠ABC=∠DEF 【分析】利用平移的性质解决问题即可.【解答】解:由平移的性质可知:AD∥BE,AC=DF,∠ABC=∠DEF,故选项A,C,D正确.故选:B.【点评】本题考查平移的性质,解题的关键是熟练掌握平移变换的性质,属于中考常考题型.4.(2分)如图,A,B两点被池塘隔开,在AB外选一点C,连接AC,BC,分别取AC,BC的中点D,E,连接DE.若测得DE=5,则AB的长为()A.5B.8C.10D.无法确定【分析】根据三角形的中位线定理可直接求解.【解答】解:∵D,E分别为AC,BC的中点,∴AB=2DE,∵DE=5,∴AB=10,故选:C.【点评】本题主要考查三角形的中位线,掌握三角形的中位线定理是解题的关键.5.(2分)如图,AC,BD相交于点O,∠A=∠D,如果请你再补充一个条件,使得△BOC 是等腰三角形,那么你补充的条件不能是()A.OA=OD B.AB=CD C.∠ABO=∠DCO D.∠ABC=∠DCB 【分析】根据所给的补充条件证明△AOB≌△DOC或△ABC≌△DCB,然后再证明BO =CO或∠OCB=∠OBC即可得到△BOC是等腰三角形.【解答】解:A、补充AO=DO,可利用ASA证明△AOB≌△DOC,根据全等三角形的性质可得BO=CO,进而证明出△BOC是等腰三角形;B、补充AB=CD,可利用AAS证明△AOB≌△DOC,根据全等三角形的性质可得BO=CO,进而证明出△BOC是等腰三角形;C、补充∠ABO=∠DCO,不能证明△AOB≌△DOC,进而不能证明出△BOC是等腰三角形;D、补充∠ABC=∠DCB,可利用AAS证明△ABC≌△DCB,根据全等三角形的性质可得∠OCB=∠OBC,进而证明出△BOC是等腰三角形;故选:C.【点评】此题主要考查了全等三角形的判定与性质,关键是掌握等腰三角形的判定定理:等角对等边.6.(2分)下列不能判定四边形是平行四边形的条件是()A.∠A=∠C,∠B=∠D B.AB∥CD,AD∥BCC.AB∥CD,AD=BC D.AB=CD,AD=BC【分析】根据平行四边形的判定定理和平行线的性质判断即可.【解答】解:A、∵∠A=∠C,∠B=∠D,∴四边形ABCD是平行四边形,故本选项不符合题意;B、∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,故本选项不符合题意;C、∵AB∥CD,AD=BC,∴四边形ABCD可能是等腰梯形,故本选项符合题意;D、∵AB=CD,AD=BC,∴四边形ABCD是平行四边形,故本选项不符合题意.故选:C.【点评】本题考查了平行四边形的判定定理和平行线的性质,判定一个四边形是平行四边形的方法有:①有一组对边平行且相等的四边形是平行四边形,②有两组对边分别相等的四边形是平行四边形,③有两组对角分别相等的四边形是平行四边形,④有两组对边分别平行的四边形是平行四边形,⑤对角线互相平分的四边形是平行四边形.7.(2分)如图,直线l1∥l2,以直线l1上的点A为圆心、适当长为半径画弧,分别交直线l1、l2于点B、C,连接AC、BC.若∠ABC=67°,则∠1=()A.23°B.46°C.67°D.78°【分析】首先由题意可得:AB=AC,根据等边对等角的性质,即可求得∠ACB的度数,又由直线l1∥l2,根据两直线平行,内错角相等,即可求得∠2的度数,然后根据平角的定义,即可求得∠1的度数.【解答】解:根据题意得:AB=AC,∴∠ACB=∠ABC=67°,∵直线l1∥l2,∴∠2=∠ABC=67°,∵∠1+∠ACB+∠2=180°,∴∠1=180°﹣∠2﹣∠ACB=180°﹣67°﹣67°=46°.故选:B.【点评】此题考查了平行线的性质,等腰三角形的性质.此题难度不大,解题的关键是注意掌握两直线平行,内错角相等与等边对等角定理的应用.8.(2分)在△ABC中,AB=BC,两个完全一样的三角尺按如图所示摆放,它们一组较短的直角边分别在AB,BC上,另一组较长的对应边的顶点重合于点P,BP交边AC于点D,则下列结论错误的是()A.BP平分∠ABC B.AD=DCC.BD垂直平分AC D.AB=2AD【分析】先根据角平分线的判定定理得到BP平分∠ABC,再根据等腰三角形三线合一的性质得到AD=DC,BD垂直平分AC,进而求解即可求解.【解答】解:如图.由题意得,PE⊥AB,PF⊥BC,PE=PF,∴BP平分∠ABC,∵AB=BC,∴AD=DC,BD垂直平分AC,故选项A、B、C正确,不符合题意;只有当△ABC是等边三角形时,才能得出AB=2AD,故选项D错误,符合题意.故选:D.【点评】本题考查的是角平分线的判定,掌握到角的两边距离相等的点在角的平分线上是解题的关键.也考查了等腰三角形的性质.9.(2分)如图,点D是△ABC外的一点,BD,CD分别平分外角∠CBE与∠BCF,连接AD交BC于点O.下列结论一定成立的是()A.DB=DC B.OA=OD C.∠BDA=∠CDA D.∠BAD=∠CAD 【分析】过D点作DM⊥AE于M,DN⊥AF于N,DH⊥BC于H,如图,根据角平分线的性质得到DH=DM,DH=DN,则DM=DN,然后根据角平分线的性质定理的逆定理得到AD平分∠BAC,从而得到正确答案.【解答】解:过D点作DM⊥AE于M,DN⊥AF于N,DH⊥BC于H,如图,∵BD,CD分别平分外角∠CBE与∠BCF,∴DH=DM,DH=DN,∴DM=DN,∴AD平分∠BAC,∴∠BAD=∠CAD.故选:D.【点评】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.也考查了角平分线的性质定理的逆定理.10.(2分)如图,直线y1=x+b与y2=kx﹣1相交于点P,若点P的横坐标为﹣1,则关于x 的不等式x+b>kx﹣1的解集是()A.x≥﹣1B.x>﹣1C.x≤﹣1D.x<﹣1【分析】观察函数图象得到当x>﹣1时,函数y=x+b的图象都在y=kx﹣1的图象上方,所以不等式x+b>kx﹣1的解集为x>﹣1.【解答】解:当x>﹣1时,x+b>kx﹣1,即不等式x+b>kx﹣1的解集为x>﹣1.故选:B.【点评】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.二、填空题(每小题3分,共18分)11.(3分)3x﹣7≤2的解集是x≤3.【分析】先移项,再合并同类项,化系数为1即可求出x的取值范围.【解答】解:移项得,3x≤2+7,合并同类项得,3x≤9,系数化为1得,x≤3.故答案为:x≤3.【点评】本题考查的是解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的关键.12.(3分)如图,将△ABC绕点A旋转到△AEF的位置,点E在BC边上,EF与AC交于点G.若∠B=70°,∠C=25°,则∠FGC=65°.【分析】根据等腰三角形的性质以及三角形内角和定理求出∠BAE=180°﹣70°×2=40°,那么∠F AG=40°.得出∠F=∠C=25°,再根据三角形外角的性质即可求出∠FGC=∠F AG+∠F=65°.【解答】解:∵将△ABC绕点A旋转到△AEF的位置,∴AB=AE,∠B=70°,∴∠BAE=180°﹣70°×2=40°,∴∠F AG=∠BAE=40°.∵将△ABC绕点A旋转到△AEF的位置,∴△ABC≌△AEF,∴∠F=∠C=25°,∴∠FGC=∠F AG+∠F=40°+25°=65°.故答案为:65.【点评】本题考查了旋转的性质,全等三角形的性质,等腰三角形的性质,三角形内角和定理以及三角形外角的性质,熟练掌握旋转的性质是解题的关键.13.(3分)如图,在平行四边形ABCD中,BE⊥CD,BF⊥AD,垂足分别为E、F,CE=2,DF=1,∠EBF=60°,则平行四边形ABCD的面积为12.【分析】根据四边形的内角和等于360°,求出∠D=120°,根据平行四边形的性质得到∠A=∠C=60°,进一步求出∠ABF=∠EBC=30°,根据CE=2,DF=1,求出BC、AB的长,根据勾股定理求出BE的长,根据平行四边形的面积公式即可求出答案.【解答】解:∵BE⊥CD,BF⊥AD,∴∠BEC=∠BFD=90°,∵∠EBF=60°,∵∠D+∠BED+∠BFD+∠EBF=360°,∴∠D=120°,∵平行四边形ABCD,∴DC∥AB,AD∥BC,∠A=∠C∴∠A=∠C=180°﹣120°=60°,∴∠ABF=∠EBC=30°,∴AD=BC=2EC=4在△BEC中由勾股定理得:BE=2,在△ABF中AF=4﹣1=3,∵∠ABF=30,∴AB=6,∴平行四边形ABCD的面积是AB•BE=6×2=12.故答案为:12.【点评】本题主要考查了平行四边形的性质,三角形的内角和定理,四边形的内角和定理,勾股定理,含30°角的直角三角形的性质等知识点,解此题的关键是综合运用性质求出BE和AB的长.14.(3分)如图,▱ABCD的对角线AC与BD交于点O,BD⊥AD,AB=10,AD=6,则AC的长为.【分析】直接利用勾股定理得出BD的长,再由平行四边形的性质求出DO,结合勾股定理即可得出答案.【解答】解:∵BD⊥AD,AB=10,AD=6.∴BD==8.∵四边形ABCD是平行四边形.∴DO=BD=4.AC=2AO.∵△ADO是直角三角形.∴AO===.∴故答案为:.【点评】此题主要考查了平行四边形的性质以及勾股定理,正确得出DO的长是解题关键.15.(3分)合肥政务银泰百货出售某种小家电商品,标价为360元,比进价高出80%,为了吸引顾客,又进行降价处理,若要使售后利润率不低于20%(利润率=×100%),则这种小家电最多可降价120元.【分析】设可降价x元,根据利润率=×100%结合售后利润率不低于20%,即可得出关于x的一元一次不等式,解之取其中的最大值即可得出结论.【解答】解:设可降价x元,根据题意得:×100%≥20%,解得:x≤120,∴这种小家电最多可降价120元,故答案120.【点评】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.16.(3分)如图,D是等边三角形ABC外一点,AD=3,CD=2,当BD长最大时,△ABC 的面积为.【分析】以CD为边作等边△DCE,连接AE.利用全等三角形的性质证明BD=AE,利用三角形的三边关系,可得BD的最大值为5,利用直角三角形的性质和勾股定理可求AB2,即可求解.【解答】解:如图1,以CD为边作等边△DCE,连接AE.∵BC=AC,CD=CE,∠BCA=∠DCE=60°,∴∠BCD=∠ACE,在△BCD和△ACE中,,∴△BCD≌△ACE(SAS),∴BD=AE,在△ADE中,∵AD=3,DE=CD=2,∴AE≤AD+DE,∴AE≤5,∴AE的最大值为5,∴BD的最大值为5,此时点D在AE上,如图2,过点A作AF⊥BD于F,∵△BCD≌△ACE,∴∠BDC=∠E=60°,∴∠ADF=60°,∵AF⊥BD,∴∠DAF=30°,∴DF=AD=,AF=DF=,∴BF=,∴AB2=AF2+BF2=19,∴△ABC的面积=AB2=,故答案为:.【点评】本题考查等边三角形的性质,全等三角形的判定和性质,三角形的三边关系等知识,解题的关键是学会添加辅助线,构造全等三角形解决问题,属于中考常考题型.三、解答题(第17小题8分,第18小题8分,第19小题6分,第20小题8分,共30分)17.(8分)下面是小颍同学解一元一次不等式的过程,请认真阅读并完成相应的任务.解不等式:.解:去分母,得2(x+2)﹣6<3(2x﹣1)……第一步去括号,得2x+4﹣6<6x﹣3.……第二步移项,合并同类项,得﹣4x<﹣1.……第三步两边同时除以﹣4,得x<﹣……第四步(1)上述过程中,第一步的依据是不等式的基本性质2;第四步出现错误;(2)该不等式的解集应为x>.【分析】根据解一元一次不等式的一般步骤,第一步去分母,依据是不等式的基本性质2,第二步去括号,第三步是移项,依据是不等式的基本性质1,第四步是把x的系数化为1,注意不等号方向的变化.【解答】解:(1)上述过程中,第一步的依据是不等式的基本性质2;第四步开始出现错误;(2)该不等式的解集应为x>.故答案为:不等式的基本性质2;四;x>.【点评】本题考查了一元一次不等式的解法,解一元一次不等式的依据是不等式的基本性质.18.(8分)利用数轴求出不等式组的解集.【分析】先求出不等式组中各个不等式的解集,再利用数轴确定不等式组的解集.【解答】解:解不等式①得:x<﹣1解不等式②得:x≥﹣4在数轴上表示不等式①、②的解集,得:∴不等式组的解集是:﹣4≤x<﹣1.【点评】主要考查了解不等式组,时要注意解集的确定原则:同大取大,同小取小,大小小大取中间,大大小小无解了.19.(6分)如图,作法,已知直线l和l外一点P,下面是小明设计的“过点P作直线的垂线”的作法:请结合图形阅读作法,并将证明“PQ⊥l”的过程补充完整.作法:①在直线l上取点A,B;②分别以点A、B为圆心,AP、BP为半径作弧,两弧在直线l下方交于点Q;③作直线PQ.结论:PQ⊥l,且PQ经过点P.证明:连接AP,AQ,BP,BQ.由作法可知,AP=AQ,BP=BQ.∴点A在线段PQ的垂直平分线上,点B在线段PQ的垂直平分线上,(依据到线段两端点的距离相等的点在这条线段的垂直平分线上)∴直线AB是线段PQ的垂直平分线(依据:两点确定一直线)∴PQ⊥l.【分析】利用作法得到AP=AQ,BP=BQ,则根据线段垂直平分线的性质定理的逆定理得到点A在线段PQ的垂直平分线上,点B在线段PQ的垂直平分线上,从而可判断直线AB是线段PQ的垂直平分线.【解答】证明:连接AP,AQ,BP,BQ.由作法可知,AP=AQ,BP=BQ.∴点A在线段PQ的垂直平分线上,点B在线段PQ的垂直平分线上(到线段两端点的距离相等的点在这条线段的垂直平分线上),∴直线AB是线段PQ的垂直平分线(两点确定一直线),∴PQ⊥l.故答案为到线段两端点的距离相等的点在这条线段的垂直平分线上;两点确定一直线.【点评】本题考查了作图﹣复杂作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了线段垂直平分线的性质.20.(8分)按要求画图及填空:在由边长为1个单位长度的小正方形组成的网格中建立如图所示平面直角坐标系,原点O及△ABC的顶点都在格点上.(1)图中线段AB的长度为;(2)将△ABC先向下平移2个单位长度,再向右平移5个单位长度得到△A1B1C1,画出△A1B1C1;(3)将△ABC绕点B逆时针旋转90°,画出旋转后得到的△A2B2C2,直接写出点A2、C2的坐标.【分析】(1)利用勾股定理计算AB的长;(2)利用点平移的坐标变换规律写出A1、B1、C1的坐标,然后描点即可;(3)利用网格特点和旋转的性质画出A、C的对应点A2、C2即可.【解答】解:(1)如图,AB==;(2)如图,△A1B1C1为所作;(3)如图,△A2B2C2为所作,点A2的坐标为(0,0),点C2的坐标为(3,2).【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.四、(本题8分)21.(8分)在△ABC中,∠B+∠ACB=30°,AB=4,△ABC逆时针旋转一定角度后与△ADE重合,且点C恰好成为AD中点,如图.(1)旋转中心是A,旋转角的大小是150°.(2)求出∠BAE的度数和AE的长.【分析】(1)先由图可以确定旋转后的对应点,进一步确定旋转中心,确定那些角是旋转角,在△ABC中,利用三角形内角和计算出∠BAC的度数,即可解决;(2)根据旋转的性质可以得到△ABC≌△ADE,得到∠EAD=∠BAC=150°,再利用周角定义,即可求出∠BAE的度数,同时,还可以得到AB=AD=4,AC=AE,再利用C 是AD的中点,得到AC的长度,从而求得AE的长度.【解答】解:(1)由图可得,当,△ABC逆时针旋转一定角度后与△ADE重合,A,B,C的对应点分别为A,D,E,∴旋转中线是点A,∠BAC是旋转角,在△ABC中,∠B+∠ACB=30°,∴∠BAC=180°﹣(∠B+∠BAC)=150°,故答案为:A,150°;(2)∵△ABC逆时针旋转一定角度后与△ADE重合,∴△ABC≌△ADE,∴∠BAC=∠DAE=150°,AB=AD=4,∴∠BAE=360°﹣∠BAC﹣∠DAE=60°,∵C是AD的中点,∴AC=CD=2,∵△ABC≌△ADE,∴AE=AC=2,即∠BAE=60°,AE=2.【点评】本题考查了旋转的性质,利用旋转的性质可以得到旋转前、后的图形全等,是解决问题的突破口.五、(本题10分)22.(10分)如图,在四边形ABCD中,E、F、G、H分别是AB、CD、AC、BD的中点.(1)求证:四边形EGFH是平行四边形;(2)若AD=8,则GF=4.【分析】(1)根据三角形中位线定理求出FH=BC,FH=BC,GE=BC,GE∥BC,求出FH=GE,FH∥GE,再根据平行四边形的判定推出即可;(2)根据三角形中位线定理得出GF=AD,再求出答案即可.【解答】(1)证明:∵E、F、G、H分别是AB、CD、AC、BD的中点,∴FH=BC,FH=BC,GE=BC,GE∥BC,∴FH=GE,FH∥GE,∴四边形EGFH是平行四边形;(2)解:∵F、G分别是DC、AC的中点,∴GF=AD,∵AD=8,∴GF=4,故答案为:4.【点评】本题考查了三角形中位线定理,平行四边形的判定等知识点,能灵活运用知识点进行推理是解此题的关键,注意:三角形的中位线平行于第三边,并且等于第三边的一半.六、(本题10分)23.(10分)全球棉花看中国,中国棉花看新疆,某纺织厂大量进购一批新疆棉花,急需招聘A,B两个工种的工人180人,A、B两个工种的工人的月工资分别为2000元和3000元.现要求B工种的人数不少于A工种人数的2倍.(1)该工厂招聘A工种工人最多多少人?(2)招聘A工种工人多少人时,可使每月所付的工资总额最少,最少为多少元?【分析】(1)设该工厂招聘A工种工人x人,则招聘B工种工人(180﹣x)人,根据B工种的人数不少于A工种人数的2倍,即可得出关于x的一元一次不等式,解之取其中的最大值即可得出结论;(2)设每月所付的工资总额为w元,根据每月所付的工资总额=各工种工人的月工种×招聘该工种工人数,即可得出w关于x的函数关系式,再利用一次函数的性质,即可解决最值问题.【解答】解:(1)设该工厂招聘A工种工人x人,则招聘B工种工人(180﹣x)人,依题意得:180﹣x≥2x,解得:x≤60.答:该工厂招聘A工种工人最多60人;(2)设每月所付的工资总额为w元,则w=2000x+3000(180﹣x)=﹣1000x+540000.∵k=﹣1000<0,∴w随x的增大而减小,∴当x=60时,w取得最小值,最小值=﹣1000×60+540000=480000.答:招聘A工种工人60人时,可使每月所付的工资总额最少,最少为480000元.【点评】本题考查了一元一次不等式的应用以及一次函数的性质,解题的关键是:(1)根据各数量之间的关系,正确列出一元一次不等式;(2)根据各数量之间的关系,找出w关于x的函数关系式.七、(本题12分)24.(12分)如图,在平行四边形纸片ABCD中,AD=6cm,将纸片沿对角线BD对折,边AB的对应边BF与CD边交于点E,此时△BCE恰为等边三角形.(1)求AB的长度;(2)重叠部分的面积为9cm2;(3)将线段BC沿射线BA方向移动,平移后的线段记作B'C',请直接写出B'F+C'F的最小值.【分析】(1)可证出△ABF是等边三角形,得AB=AF即可;(2)由(1)知DE=BE=CE,则S△DEB=,代入计算即可;(3)采取动静互换,将线段BC沿射线BA方向移动,可看成BC不动,将点F沿射线AB方向平移到F',则B'F+C'F的最小值即为求BF'+CF'的最小值,画出图形利用勾股定理即可解决.【解答】解:(1)由翻折得∠ABD=∠DBF,∴∠EDB=∠EBD,∴ED=EB=EC,∠DBC=90°,∵AD∥BC,∴BD⊥AF,∴A,D,F共线,AD=DF=6cm,∵BA=BF,∠A=60°,∴△ABF是等边三角形,∴AB=AF=12(cm),(2)∵∠DBC=90°,BC=AD=6,∠C=60°,∴BD=BC=6(cm),∵DE=EC,∴S△DEB===9(cm2),(3)将线段BC沿射线BA方向移动,可看成BC不动,将点F沿射线AB方向平移到F',则所求B'F+C'F的最小值即为求BF'+CF'的最小值,过点F作l∥AB,过点C作CH⊥AB交AB延长线于H,作C关于l的对称点G,连接BG交l于F',则CF'=GF',∴BF'+CF'=BF'+GF',即B、F'、G共线时,BF'+CF'最小值为BG,∵BC=6cm,∠CBH=60°,∴BH=3,CH=3,∵点D为AF的中点,CD∥AH∥l,∴C'H=9,在Rt△BGH中,由勾股定理得:BG=,∴B'F+C'F的最小值为6.【点评】本题平行四边形的性质,等边三角形的判定与性质,利用轴对称求线段和最小值等知识,采用动静互换,将两动一定转化为一动两定是解题的关键.八、(本题12分)25.(12分)已知:△ABC,△CDE中,∠ACB=∠DCE=90°,AC=BC=6,CD=CE=4,△CDE可以绕点C旋转,作直线AD、直线BE,当它们有交点时.设相交点为H.(1)当△CDE转到如图位置时,求证:①AD=BE;②AD⊥BE;(2)△CDE可以绕点C旋转的过程中,连接AE,BD.猜想AE2+BD2的值是否发生变化(直接写出结论,不用证明)?直接写出当BD=8时,AE的长;(3)△CDE可以绕点C旋转的过程中,直接写出当∠CBD=30°时AE2的值.【分析】(1)根据全等三角形的判定与性质结论;(2)直接由勾股定理可得问题的答案;(3)①过C作CF⊥BD,交BD延长线于点F,根据直角三角形的性质及勾股定理可得答案;②过C作CF⊥BD,根据直角三角形的性质及勾股定理可得答案.【解答】(1)证明:如图,标记如下:∵∠ACB=∠ECD=90°,∴∠ACB+∠1=∠ECD+∠1,即∠ACD=∠ECB,∵AC=BC,CD=CE,∴△ACD≌△ECB(SAS),∴AD=BE,∠2=∠3,∵∠ACB=90°,∴∠2+∠4=90°,∵∠4=∠5,∴∠3+∠5=90°,AD⊥BE.(2)解:∵AE2+BD2=AH2+EH2+BH2+DH2,AB2+DE2=AH2+BH2+EH2+DH2,∴AE2+BD2=AB2+DE2=(6)2+(4)2=72+32=104,。
2020-2021学年八年级下学期期中考试数学试题 含答案

一、选择题(每小题2分,共14分)每小题有唯一正确答案,请将正确的选项代号填在右边的括号内.1、函数2y x =-的自变量x的取值范围是( )A .2x >B .2x <C .2x ≥D .2x ≤ 2、若分式242--x x 的值为零,则x 的值是( )A 、2或-2B 、2C 、-2D 、4 3、点(1,-3)在( )A、第一象限内 B、第二象限内 C、第三象限内 D、第四象限内4、下列命题中属于真命题的是()A .多边形的内角和等于180°B .全等三角形的对应边相等C .两个锐角相等D .若a>b,则a2>b25、某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带③去,这样做根据的三角形全等判定方法为( ). A. S.A.S. B. A.S.A. C. A.A.S. D. S.S.S.6、如果一次函数y=kx+b 的图象不经过第一象限,那么 ( ) A. k>0,b >0 B. k>0,b <0 C. k<0,b>0 D. k<0,b <07、打开某洗衣机开关,在洗涤衣服时(洗衣机内无水),洗衣机经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量y (升)与时间x (分钟)之间满足某种函数关系,其函数图象大致为()二、填空题(每小题3分,共30分) 8、计算:20120=____________.9、计算:111---x x x = ________________. 10、某种感冒病毒的直径是0.00000012米,用科学记数法表示为_____________ 米.11、点P(-2,4)关于原点的对称点的坐标是。
12、将直线 向下平移3个单位所得直线的解析式为___________________.13、把命题“全等三角形的对应角相等”改写成“如果……,那么……”的形式._________________________________________________ .x y 31=14、若直线()0≠=k kx y 经过点()6,2-,则y 随x 的增大而________. 15、反比例函数xy 3-=的图象在第二象限与第_____象限.16、如图,在△ABC 和△DEF 中,∠A =∠D =90°,AC =DE ,若要用“斜边直角边(H.L.)”直接证明Rt △ABC ≌Rt △DEF ,则还需补充条件:_______________.17.如图,在平面直角坐标系xoy 中,分别平行x 、y 轴的两直线a 、b 相交于点A(3,4).连接OA ,(1)线段OA 的长;(2)若在直线a上存在点P ,使△AOP 是等腰三角形.那么所有满足条件的点P 的坐标是.第16题图三、解答题(8小题,共56分)18. (7分)计算:121(2)2(3)3-⎛⎫-+⨯-+ ⎪⎝⎭baxAO第17题图19、(7分)先化简下面代数式,再求值:aa a a ---211, 其中2-=a20、(6分)解分式方程:2x –3=3x+221、(6分)已知:如图,在等腰梯形ABCD中,AD∥BC,M是AD的中点.求证:△ABM≌△DCM.22、(7分)初三年一班全体同学到距学校30千米的游览区,男学生骑自行车,出发1.5小时后,女学生乘客车出发,结果他们同时到达游览区,已知客车的速度是自行车的3倍,求自行车的速度.23、(7分)某工艺品销售公司今年5月份调整了职工的月工资分配方案,调整后月工资由基本保障工资和计件奖励工资两部分组成(计件奖励工资=销售每件的奖励金额×销售的件数).右表是甲、乙两位职工今年5月份的工资情况信息:(1)试求月工资y元与月销售件数x件之间的函数关系式;(2)若职工丙今年6月份的工资不低于3000元,那么丙该月至少应销售多少件产品?职工甲乙月销售件数(x件)203024、(8分)如图,一次函数y=kx+b 的图象与反比例函数y=xm 的图象于A (-2,1)B (1,n )两点.(1)试确定上述反比例函数和一次函数的表达式; (2)根据图像直接写出当一次函数的值大于反比例函数的值时 x 的取值范围。
2020-2021初二数学下期中模拟试题(含答案)(6)

2020-2021初二数学下期中模拟试题(含答案)(6)一、选择题1.下列运算中,正确的是( )A .235+=;B .2(32)32-=-;C .2a a =;D .2()a b a b +=+.2.按图(1)﹣(3)的方式摆放餐桌和椅子,照这样的方式维续摆放,如果摆放的餐桌为x 张,摆放的椅子为y 把,则y 与x 之间的关系式为( )A .y =6xB .y =4x ﹣2C .y =5x ﹣1D .y =4x+23.如图,在矩形ABCD 中,AB=2,BC=3.若点E 是边CD 的中点,连接AE ,过点B 作BF ⊥AE 交AE 于点F ,则BF 的长为( )A .3102B .310C .105D .3554.为了让市民享受到更多的优惠,相关部门拟确定一个折扣线,计划使50%左右的人获得折扣优惠.某市针对乘坐地铁的人群进行了调查.调查小组在各地铁站随机调查了该市1000人上一年乘坐地铁的月均花费(单位:元),绘制了频数分布直方图,如图所示.下列说法正确的是( )①每人乘坐地铁的月均花费最集中的区域在80~100元范围内;②每人乘坐地铁的月均花费的平均数范围是40~60元范围内;③每人乘坐地铁的月均花费的中位数在60~100元范围内;④乘坐地铁的月均花费达到80元以上的人可以享受折扣.A .①②④B .①③④C .③④D .①②5.已知点(﹣2,y 1),(﹣1,y 2),(1,y 3)都在直线y =﹣x+b 上,则y 1,y 2,y 3的值的大小关系是( )A .y 1>y 2>y 3B .y 1<y 2<y 3C .y 3>y 1>y 2D .y 3>y 1>y 2 6.下列各组数据中能作为直角三角形的三边长的是( )A .1,2,2B .1,1,3C .4,5,6D .1,3,2 7.星期天晚饭后,小丽的爸爸从家里出去散步,如图描述了她爸爸散步过程中离家的距离(km )与散步所用的时间(min )之间的函数关系,依据图象,下面描述符合小丽爸爸散步情景的是( )A .从家出发,休息一会,就回家B .从家出发,一直散步(没有停留),然后回家C .从家出发,休息一会,返回用时20分钟D .从家出发,休息一会,继续行走一段,然后回家8.如图所示□ABCD ,再添加下列某一个条件, 不能判定□ABCD 是矩形的是( )A .AC=BDB .AB ⊥BC C .∠1=∠2D .∠ABC=∠BCD9.下列各组数是勾股数的是( )A .3,4,5B .1.5,2,2.5C .32,42,52D 34510.对于次函数21y x =-,下列结论错误的是( )A .图象过点()0,1-B .图象与x 轴的交点坐标为1(,0)2C .图象沿y 轴向上平移1个单位长度,得到直线2y x =D .图象经过第一、二、三象限11.如图,两张等宽的纸条交叉重叠在一起,重叠的部分为四边形ABCD ,若测得A ,C 之间的距离为12cm ,点B ,D 之间的距离为16m ,则线段AB 的长为( )A .9.6cmB .10cmC .20cmD .12cm 12.菱形周长为40cm ,它的条对角线长12cm , 则该菱形的面积为( )A .24B .48C .96D .36 二、填空题13.一次函数的图像经过点A (3,2),且与y 轴的交点坐标是B (0,2- ),则这个一次函数的函数表达式是________________.14.函数21x y x +=-中,自变量x 的取值范围是 . 15.若由你选择一个喜欢的数值m ,使一次函数()2y m x m =-+的图象经过第一、二、四象限,则m 的值可以是___________.16.甲、乙两人分别从A ,B 两地相向而行,匀速行进甲先出发且先到达B 地,他们之间的距离s(km)与甲出发的时间t(h)的关系如图所示,则乙由B 地到A 地用了______h .17.如图,已知正方形ABCD ,以BC 为边作等边△BCE ,则∠DAE 的度数是_____.18.如图,在平行四边形ABCD 中,P 是CD 边上一点,且AP 和BP 分别平分∠DAB 和∠CBA ,若AD=5,AP=8,则△APB 的周长是 .19.如图,在∠MON 的两边上分别截取OA 、OB ,使OA =OB ;分别以点A 、B 为圆心,OA 长为半径作弧,两弧交于点C ;连接AC 、BC 、AB 、OC .若AB =2cm ,四边形OACB 的面积为4cm 2.则OC 的长为_____cm .20.如图,点P 是矩形ABCD 的对角线AC 上一点,过点P 作EF ∥BC ,分别交AB ,CD 于点E ,F ,连接PB ,PD .若AE =2,PF =8.则图中阴影部分的面积为___.三、解答题21.如图,四边形ABCD 为菱形,E 为对角线AC 上的一个动点,连结DE 并延长交射线AB 于点F ,连结BE .(1)求证:∠AFD=∠EBC ;(2)若∠DAB=90°,当△BEF 为等腰三角形时,求∠EFB 的度数.22.计算:(56215)15⨯-÷.23.已知 90, 23,8,ACB BC AC CD ︒∠===是边AB 上的高,求CD 的长24.如图在8×8的正方形网格中,△ABC 的顶点在边长为1的小正方形的顶点上. (1)填空:∠ABC= ,BC= ;(2)若点A 在网格所在的坐标平面里的坐标为(1,﹣2),请你在图中找出一点D ,并作出以A 、B 、C 、D 四个点为顶点的平行四边形,求出满足条件的D 点的坐标.25.如图,在平行四边形ABCD 中,过点D 作DE AB ⊥于点E ,点F 在边CD 上,DF BE =,连接AF ,BF .(1)求证:四边形BFDE 是矩形;(2)若CF=3,BE=5,AF 平分∠DAB ,求平行四边形ABCD 的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】 23与()23223-=-误;2a a =,故错误; D. ()2a b a b +=+,正确;故选D.2.D解析:D【解析】【分析】观察可得,第一张餐桌上可以摆放6把椅子,进一步观察发现:多一张餐桌,多放4把椅子.第x 张餐桌共有6+4(x-1)=4x+2,由此即可解答.【详解】有1张桌子时有6把椅子,有2张桌子时有10把椅子,10=6+4×1,有3张桌子时有14把椅子,14=6+4×2,∵多一张餐桌,多放4把椅子,∴第x 张餐桌共有6+4(x-1)=4x+2.∴y 与x 之间的关系式为:y =4x +2.故选D .【点睛】本题考查了图形的变化类问题,注意结合图形进行观察,发现数字之间的运算规律,利用规律即可求得y 与x 之间的关系式.3.B解析:B【解析】【分析】根据S △ABE =12S 矩形ABCD =3=12•AE•BF ,先求出AE ,再求出BF 即可. 【详解】如图,连接BE .∵四边形ABCD 是矩形,∴AB=CD=2,BC=AD=3,∠D=90°,在Rt △ADE 中,22AD DE +2231+10, ∵S △ABE =12S 矩形ABCD =3=12•AE•BF , ∴BF=310. 故选:B .【点睛】本题考查矩形的性质、勾股定理、三角形的面积公式等知识,解题的关键是灵活运用所学知识解决问题,学会用面积法解决有关线段问题,属于中考常考题型.4.C解析:C【解析】【分析】根据频数分布直方图中的数据,求得众数,平均数,中位数,即可得出结论.【详解】解:①根据频数分布直方图,可得众数为60−80元范围,故每人乘坐地铁的月均花费最集中的区域在60−80元范围内,故①不正确;②每人乘坐地铁的月均花费的平均数=876001000=87.6=87.6元,所以每人乘坐地铁的月均花费的平均数范围是80~100元,故②错误;③每人乘坐地铁的月均花费的中位数约为80元,在60~100元范围内,故③正确;④为了让市民享受到更多的优惠,若使50%左右的人获得折扣优惠,则乘坐地铁的月均花费达到80元以上的人可以享受折扣,故④正确.故选:C【点睛】本题主要考查了频数分布直方图,平均数以及中位数的应用,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.5.A解析:A【解析】【分析】先根据直线y=﹣x+b判断出函数图象,y随x的增加而减少,再根据各点横坐标的大小进行判断即可.【详解】解:∵直线y=﹣x+b,k=﹣1<0,∴y随x的增大而减小,又∵﹣2<﹣1<1,∴y1>y2>y3.故选:A.【点睛】本题考查一次函数的图象性质:当k>0,y随x增大而增大;当k<0时,y将随x的增大而减小.6.D解析:D【解析】【分析】根据勾股定理的逆定理对各选项进行逐一分析即可.【详解】解:A、∵12+22=5≠22,∴此组数据不能作为直角三角形的三边长,故本选项错误;B、∵12+12=2≠)2,∴此组数据不能作为直角三角形的三边长,故本选项错误;C、∵42+52=41≠62,∴此组数据不能作为直角三角形的三边长,故本选项错误;D、∵12+2=4=22,∴此组数据能作为直角三角形的三边长,故本选项正确.故选D.【点睛】本题考查的是勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解答此题的关键.7.D解析:D【解析】【分析】利用函数图象,得出各段的时间以及离家的距离变化,进而得出答案.【详解】由图象可得出:小丽的爸爸从家里出去散步10分钟,休息20分钟,再向前走10分钟,然后利用20分钟回家.故选:D.【点睛】本题考查了函数的图象,解题的关键是要看懂图象的横纵坐标所表示的意义,然后再进行解答.8.C解析:C【解析】【分析】根据矩形的判定定理逐项排除即可解答.【详解】解:由对角线相等的平行四边形是矩形,可得当AC=BD时,能判定口ABCD是矩形;由有一个角是直角的平行四边形是矩形,可得当AB⊥BC时,能判定口ABCD是矩形;由平行四边形四边形对边平行,可得AD//BC,即可得∠1=∠2,所以当∠1=∠2时,不能判定口ABCD是矩形;由有一个角是直角的平行四边形是矩形,可得当∠ABC=∠BCD时,能判定口ABCD是矩形.故选答案为C.【点睛】本题考查了平行四边形是矩形的判定方法,其方法有①有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线互相平分且相等的四边形是矩形.9.A解析:A【解析】【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证较小两数的平方和是否等于最大数的平方.【详解】A.32+42=52,是勾股数;B .1.5,2,2.5中,1.5,2.5不是正整数,故不是勾股数;C .(32)2+(42)2≠(52)2,不是勾股数;D 2+22 故选A .【点睛】本题考查了勾股数,解答此题要深刻理解勾股数的定义,并能够熟练运用.10.D解析:D【解析】【分析】根据一次函数的性质对D 进行判断;根据一次函数图象上点的坐标特征对A 、B 进行判断;根据一次函数的几何变换对C 进行判断.【详解】A 、图象过点()0,1-,不符合题意;B 、函数的图象与x 轴的交点坐标是1(,0)2,不符合题意;C 、图象沿y 轴向上平移1个单位长度,得到直线2y x =,不符合题意;D 、图象经过第一、三、四象限,符合题意;故选:D .【点睛】本题考查了一次函数的性质、一次函数图象上点的坐标特征和一次函数图象的几何变换,属于基础题. 11.B解析:B【解析】【分析】作AR ⊥BC 于R ,AS ⊥CD 于S ,根据题意先证出四边形ABCD 是平行四边形,再由AR =AS 推出BC =CD 得平行四边形ABCD 是菱形,再根据根据勾股定理求出AB 即可.【详解】作AR ⊥BC 于R ,AS ⊥CD 于S ,连接AC 、BD 交于点O .由题意知:AD ∥BC ,AB ∥CD ,∴四边形ABCD 是平行四边形,∵两个矩形等宽,∴AR =AS ,∵AR •BC =AS •CD ,∴BC =CD ,∴平行四边形ABCD 是菱形,∴AC ⊥BD ,在Rt△AOB中,∵OA=12AC=6cm,OB=12BD=8cm,∴AB=2268=10(cm),故选:B.【点睛】本题主要考查菱形的判定和性质,证得四边形ABCD是菱形是解题的关键.12.C解析:C【解析】【分析】根据菱形的性质,四条边相等且对角线互相平分且互相垂直,由勾股定理得出BO的长,进而得其对角线BD的长,再根据菱形的面积等于对角线乘积的一半计算即可.【详解】解:如图:四边形ABCD是菱形,对角线AC与BD相交于点O,∵菱形的周长为40,∴AB=BC=CD=AD=10,∵一条对角线的长为12,当AC=12,∴AO=CO=6,在Rt△AOB中,根据勾股定理,得BO=8,∴BD=2BO=16,∴菱形的面积=12AC•BD=96,故选:C.【点睛】此题主要考查了菱形的性质、菱形的面积公式以及勾股定理等知识,根据题意得出BO的长是解题关键.二、填空题13.y=x-2【解析】【分析】一次函数关系式y=kx+b将AB两点坐标代入解一元一次方程组可求kb 的值确定一次函数关系式【详解】设一次函数关系式y=kx+b 将A (32)B (0-2)代入得解得一次函数解析解析:y=43x-2. 【解析】【分析】一次函数关系式y=kx+b ,将A 、B 两点坐标代入,解一元一次方程组,可求k 、b 的值,确定一次函数关系式.【详解】设一次函数关系式y=kx+b ,将A (3,2)、B (0,-2)代入,得 322k b b +⎧⎨-⎩==,解得432k b ⎧⎪⎨⎪-⎩==, 一次函数解析式为y=43x-2. 故答案为:y=43x-2. 【点睛】此题考查利用待定系数法求一次函数解析式,解题关键在于利用待定系数法进行求解. 14.x≠1【解析】x≠1解析:x≠1【解析】10x -≠,x≠115.(答案不唯一满足均可)【解析】【分析】一次函数的图象经过第一二四象限列出不等式组求解即可【详解】解:一次函数的图象经过第一二四象限解得:m 的值可以是1故答案为:1(答案不唯一满足均可)【点睛】此题主 解析:(答案不唯一,满足02m <<均可)【解析】【分析】一次函数()2y m x m =-+的图象经过第一、二、四象限,列出不等式组200,m m -<⎧⎨>⎩求解即可.【详解】解:一次函数()2y m x m =-+的图象经过第一、二、四象限, 200m m -<⎧⎨>⎩解得:02m <<m 的值可以是1.故答案为:1(答案不唯一,满足02m <<均可).【点睛】此题主要考查了一次函数图象,一次函数y kx b =+的图象有四种情况:①当0,0k b >>时,函数y kx b =+的图象经过第一、二、三象限;②当0,0k b ><时,函数y kx b =+的图象经过第一、三、四象限;③当0,0k b <>时,函数y kx b =+的图象经过第一、二、四象限;④当0,0k b <<时,函数y kx b =+的图象经过第二、三、四象限.16.10【解析】【分析】根据函数图象中的数据可以求得甲的速度和乙的速度从而可以求得乙由B 地到A 地所用的时间【详解】解:由图可得甲的速度为:36÷6=6(km/h)则乙的速度为:=36(km/h)则乙由B解析:10【解析】【分析】根据函数图象中的数据可以求得甲的速度和乙的速度,从而可以求得乙由B 地到A 地所用的时间.【详解】解:由图可得,甲的速度为:36÷6=6(km/h), 则乙的速度为:366 4.54.52-⨯-=3.6(km/h), 则乙由B 地到A 地用时:36÷3.6=10(h), 故答案为:10.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答. 17.15°【解析】【分析】由正方形的性质和等边三角形的性质可得∠DAB=∠ABC=90°AB=BC=BE∠EBC=60°可求∠BAE=75°即可得∠DAE 的度数【详解】∵四边形ABCD 是正方形∴∠DAB解析:15°【解析】【分析】由正方形的性质和等边三角形的性质可得,∠DAB=∠ABC=90°,AB=BC=BE ,∠EBC=60°,可求∠BAE=75°,即可得∠DAE 的度数.【详解】∵四边形ABCD 是正方形∴∠DAB =∠ABC =90°,AB =BC ,∵△BEC 是等边三角形∴BC =BE ,∠EBC =60°∴AB=BE=BC,∠ABE=∠ABC﹣∠EBC=30°∴∠BAE=75°∴∠DAE=∠BAD﹣∠BAE=15°故答案为15°.【点睛】本题考查了正方形的性质,等边三角形的性质,熟记各性质并准确识图是解题的关键.18.【解析】试题分析:∵四边形ABCD是平行四边形∴AD∥CBAB∥CD∴∠DAB+∠CBA=180°又∵AP和BP分别平分∠DAB和∠CBA∴∠PAB=∠DAB∠PBA=∠ABC∴∠PAB+∠PBA=解析:【解析】试题分析:∵四边形ABCD是平行四边形,∴AD∥CB,AB∥CD,∴∠DAB+∠CBA=180°,又∵AP和BP分别平分∠DAB和∠CBA,∴∠PAB=∠DAB,∠PBA=∠ABC,∴∠PAB+∠PBA=(∠DAB+∠CBA)=90°,∴∠APB=180°﹣(∠PAB+∠PBA)=90°;∵AB∥CD,∴∠PAB=∠DPA,∴∠DAP=∠DPA,∴AD=DP=5,同理:PC=CB=5,即AB=DC=DP+PC=10,在Rt△APB中,AB=10,AP=8,∴BP==6,∴△APB的周长=6+8+10=24.考点:1平行四边形;2角平分线性质;3勾股定理;4等腰三角形.19.【解析】【分析】根据作法判定出四边形OACB是菱形再根据菱形的面积等于对角线乘积的一半列式计算即可得解【详解】根据作图AC=BC=OA∵OA =OB∴OA=OB=BC=AC∴四边形OACB是菱形∵AB解析:【解析】【分析】根据作法判定出四边形OACB是菱形,再根据菱形的面积等于对角线乘积的一半列式计算即可得解.【详解】根据作图,AC=BC=OA,∵OA=OB,∴OA=OB=BC=AC,∴四边形OACB是菱形,∵AB=2cm,四边形OACB的面积为4cm2,∴12AB•OC=12×2×OC=4,解得OC=4cm.故答案为:4.【点睛】本题考查菱形的判定与性质,菱形的面积.解决本题的关键是能根据题目中作图的过程得出线段的等量关系.20.16【解析】【分析】作PM⊥AD于M交BC于N则有四边形AEPM四边形DFPM四边形CFPN四边形BEPN都是矩形可得S△PEB=S△PFD=8则可得出S阴【详解】作PM⊥AD于M交BC于N则有四边解析:16【解析】【分析】作PM⊥AD于M,交BC于N,则有四边形AEPM、四边形DFPM、四边形CFPN、四边形BEPN都是矩形,可得S△PEB=S△PFD=8,则可得出S阴.【详解】作PM⊥AD于M,交BC于N,则有四边形AEPM、四边形DFPM、四边形CFPN、四边形BEPN都是矩形,∴S△ADC=S△ABC,S△AMP=S△AEP,S△PBE=S△PBN,S△PFD=S△PDM,S△PFC=S△PCN,∴S△DFP=S△PBE=12×2×8=8,∴S阴=8+8=16.故答案是:16.【点睛】考查矩形的性质、三角形的面积等知识,解题的关键是证明S△PEB=S△PFD.三、解答题21.(1)见解析;(2) ∠EFB=30°或120°.【解析】【分析】(1)直接利用全等三角形的判定方法得出△DCE≌△BCE(SAS),即可得出答案;(2)利用正方形的性质结合等腰三角形的性质得出:①当F在AB延长线上时;②当F在线段AB上时;分别求出即可.【详解】(1)证明:∵四边形ABCD是菱形,∴CD=AB,∠ACD=∠ACB,在△DCE和△BCE中,∴△DCE≌△BCE(SAS),∴∠CDE=∠CBE,∵CD∥AB,∴∠CDE=∠AFD,∴∠EBC=∠AFD.(2)分两种情况,①如图1,当F在AB延长线上时,∵∠EBF为钝角,∴只能是BE=BF,设∠BEF=∠BFE=x°,可通过三角形内角形为180°得:90+x+x+x=180,解得:x=30,∴∠EFB=30°.②如图2,当F在线段AB上时,∵∠EFB为钝角,∴只能是FE=FB,设∠BEF=∠EBF=x°,则有∠AFD=2x°,可证得:∠AFD=∠FDC=∠CBE,得x+2x=90,解得:x=30,∴∠EFB=120°.综上:∠EFB=30°或120°.【点睛】此题主要考查了菱形的性质以及正方形的性质以及全等三角形的判定与性质等知识,利用分类讨论得出是解题关键.2222【解析】【分析】直接利用无理数的混合运算法则计算得出答案.【详解】原式2== 【点睛】 此题主要考查了实数运算,正确化简各数是解题关键.23 【解析】【分析】已知两直角边,利用勾股定理求出斜边长,再利用面积法即可求出斜边上的高.【详解】解:Rt ABC ∆中,由勾股定理得AB ===1122ABC S AC AB AB CD ∆==Q g gAC BC CD AB ∴===g 【点睛】此题考查勾股定理,关键是利用勾股定理求出斜边长.24.(1)135°,;(2)D 1(3,-4)或D 2(7,-4)或D 3(-1,0).【解析】【分析】(1)根据图形知道CB 是一个等腰三角形的斜边,所以容易得出ABC ∠的度数,利用勾股定理可以求出BC 的长度;(2)根据A 点的坐标(1,-2),并且ABCD 为平行四边形,如图D 的位置有三种情况.【详解】解:(1)由图形可得:∠ABC=45°+90°=135°,故答案为:135°,;(2)满足条件的D 点共有3个,以A 、B 、C 、D 四个点为顶点的四边形为平行四边形分别是123ABCD ABD C AD BC Y Y Y ,,.其中第四个顶点的坐标为:D 1(3,-4)或D 2(7,-4)或D 3(-1,0)【点睛】本题考查等腰三角形的性质;勾股定理;平行四边形的判定和性质.25.(1)见解析;(2)32【解析】【分析】(1)先求出四边形BFDE是平行四边形,再根据矩形的判定推出即可;(2)根据勾股定理求出DE长,即可得出答案.【详解】证明:(1)∵四边形ABCD是平行四边形,∴AB∥DC,∵DF=BE,∴四边形BFDE是平行四边形,∵DE⊥AB,∴∠DEB=90°,∴四边形BFDE是矩形;(2)∵AF平分∠DAB,∴∠DAF=∠F AB,∵平行四边形ABCD,∴AB∥CD,∴∠F AB=∠DF A,∴∠DF A=∠DAF,∴AD=DF=5,h-=-,在Rt△ADE中,DE=()210∴平行四边形ABCD的面积=AB•DE=4×8=32,【点睛】考查了平行四边形的性质,矩形的性质和判定等知识点,能综合运用定理进行推理是解此题的关键.。
2020-2021初二数学下期中模拟试卷(及答案)(5)
解析:C 【解析】 【分析】 直接根据题意画出平移后的三角形进而利用勾股定理得出 BE 的长. 【详解】 如图所示:
BE 12 22 5 .
故选:C. 【点睛】 此题主要考查了勾股定理以及坐标与图形的变化,正确得出对应点位置是解题关键.
7.B
解析:B 【解析】
试题解析:菱形对角线互相垂直平分, ∴BO=OD=12,AO=OC=5,
24.已知一次函数图象经过(-2,1)和(1,3)两点. (1)求这个一次函数的解析式;
(2)当 x 3 时,求 y 的值.
25.一次函数 y1=kx+b 和 y2=﹣4x+a 的图象如图所示,且 A(0,4),C(﹣2,0).
(1)由图可知,不等式 kx+b>0 的解集是
;
(2)若不等式 kx+b>﹣4x+a 的解集是 x>1.
2
2
∴AB= 62 82 =10(cm),
故选:B.
【点睛】 本题主要考查菱形的判定和性质,证得四边形 ABCD 是菱形是解题的关键.
11.B
解析:B 【解析】 【分析】 根据矩形的性质即可判断; 【详解】 解:∵四边形 ABCD 是平行四边形, 又∵AB⊥BC, ∴∠ABC=90°,
∴四边形 ABCD 是矩形, ∴AC=BD. 故选 B. 【点睛】 本题考查平行四边形的性质.矩形的判定和性质等知识,解题的关键是熟练掌握基本知 识,属于中考常考题型.
C、图象沿 y 轴向上平移1个单位长度,得到直线 y 2x ,不符合题意;
D、图象经过第一、三、四象限,符合题意; 故选:D. 【点睛】 本题考查了一次函数的性质、一次函数图象上点的坐标特征和一次函数图象的几何变换, 属于基础题.
人教版2020-2021学年初二数学下学期期中检测题 (含答案)
2020-2021学年八年级第二学期期中数学试卷一、填空题(共6小题).1.(3分)计算×2=.2.(3分)已知一个直角三角形的两直角边长分别为3和4,则斜边长是.3.(3分)要使式子有意义,则x的取值范围是.4.(3分)如图,在△ABC中,D、E分别为AB、AC边的中点,若DE=2,则BC边的长为.5.(3分)如图,一棵大树在离地面3m、5m两处折成三段,中间一段AB恰好与地面平行,大树顶部落在离大树底部6m处,则大树折断前的高度是.6.(3分)菱形ABCD的对角线AC=4,BD=2,以AC为边作正方形ACEF,则BF的长为.二、选择题(本大题共8小题,每小题4分,共32分)7.(4分)下列式子是最简二次根式的是()A.B.C.D.8.(4分)判断下列各组数能作为直角三角形三边的是()A.3,4,6B.4,5,7C.2,3,D.7,6,9.(4分)如图,已知菱形ABCD的对角线交于点O,DB=6,AD=5,则菱形ABCD的面积为()A.20B.24C.30D.3610.(4分)在Rt△ABC中,∠ABC=90°,D为斜边AC的中点,BD=5,则AC=()A.5B.6C.8D.1011.(4分)下列计算中,正确的是()A.B.C.D.12.(4分)不能判定四边形ABCD为平行四边形的条件是()A.AB∥CD,AD=BC B.AB∥CD,∠A=∠CC.AD∥BC,AD=BC D.∠A=∠C,∠B=∠D13.(4分)如图,延长矩形ABCD的边BC至点E,使CE=CA,连接AE,若∠BAC=52°,则∠E的度数是()A.18°B.19°C.20°D.40°14.(4分)已知a=2+,b=2﹣,则a2+b2的值为()A.12B.14C.16D.18三、解答题(本大题共9小题,共70分)15.(6分)计算:16.(6分)国家交通法规定:小汽车在城市街道上行驶速度不得超过60km/h,一辆小汽车在一条城市街道上由西向东行驶,此时在小汽车正南方向25m处有一个车速检测仪,过了4s后,测得小汽车距离测速仪65m.这辆小汽车超速了吗?通过计算说明理由(1m/s =3.6km/h)17.(8分)如图,四边形ABCD是平行四边形,E为BC的中点,连接AE交DC延长线于点F.求证:DC=CF.18.(6分)如图,在四边形ABCD中,AB=1,AD=,BD=2,∠ABC+∠ADC=180°,CD=.求四边形ABCD的面积.19.(7分)先化简,再求值:,其中a=﹣1.20.(8分)如图,在笔直的高速路旁边有A、B两个村庄,A村庄到公路的距离AC=8km,B村庄到公路的距离BD=14km,测得C、D两点的距离为20km,现要在CD之间建一个服务区E,使得A、B两村庄到E服务区的距离相等,求CE的长.21.(8分)如图,在四边形ABCD中,AD∥BC,∠ABC=∠ADC,对角线AC、BD相交于点O,OA=OB.(1)求证:四边形ABCD是矩形;(2)若AB=5,∠AOB=60°,求BC的长.22.(9分)观察下列等式等式一:﹣1;等式二:;等式三:;……;解决下列问题:(1)化简:;(2)若有理数a、b满足,求a+b的值.23.(12分)如图,四边形ABCD是菱形,∠ABC=60°,AB=10,连接BD,点P是BC上的点,连接AP,交BD于点E,连接EC(1)求证:△ABE≌△CBE;(2)求菱形ABCD的面积;(3)当点P在线段BC的延长线上时,是否存在点P,使得△PEC是直角三角形?若存在,求出BP的长;若不存在,请说明理由.参考答案一、填空题1.(3分)计算×2=4.解:×2=2×2=4.故答案为:4.2.(3分)已知一个直角三角形的两直角边长分别为3和4,则斜边长是5.解:由勾股定理得,斜边长==5,故答案为:5.3.(3分)要使式子有意义,则x的取值范围是x≥﹣5.解:因为式子有意义,则x的取值范围是x≥﹣5.故答案为:x≥﹣5.4.(3分)如图,在△ABC中,D、E分别为AB、AC边的中点,若DE=2,则BC边的长为4.解:∵D、E分别为AB、AC边的中点,∴DE是△ABC的中位线,∴BC=2DE=4,故答案为:4.5.(3分)如图,一棵大树在离地面3m、5m两处折成三段,中间一段AB恰好与地面平行,大树顶部落在离大树底部6m处,则大树折断前的高度是10m.解:如图,作BE⊥OC于点E,由题意得:AD=BE=3m,AB=DE=2m,∵DC=6m,∴EC=4m,∴由勾股定理得:BC==5(m),∴大树的高度为5+5=10(m),故答案为:10m.6.(3分)菱形ABCD的对角线AC=4,BD=2,以AC为边作正方形ACEF,则BF的长为或.解:∵四边形ABCD是菱形,AC=4,BD=2,∴AO=AC=2,BO=BD=1,①如图1,正方形ACEF在AC的上方时,过点B作BG⊥AF交FA的延长线于G,则BG=AO=2,AG=OB=1,FG=AF+AG=4+1=5,在Rt△BFG中,BF===;②如图2,正方形ACEF在AC的下方时,过点B作BG⊥AF于G,则BG=AO=2,FG=AF﹣AG=4﹣1=3,在Rt△BFG中,BF===,综上所述,BF长为或.故答案为:或.二、选择题(本大题共8小题,每小题4分,共32分)7.(4分)下列式子是最简二次根式的是()A.B.C.D.解:A、是最简二次根式;B、==,被开方数含分母,不是最简二次根式;C、==2,被开方数含能开得尽方的因数,不是最简二次根式;D、=,被开方数含分母,不是最简二次根式;故选:A.8.(4分)判断下列各组数能作为直角三角形三边的是()A.3,4,6B.4,5,7C.2,3,D.7,6,解:A、∵32+42≠62,∴不能作为直角三角形三边;B、∵42+52≠72,∴不能作为直角三角形三边;C、∵22+()2≠32,∴不能作为直角三角形三边;D、∵62+()2=72,∴能作为直角三角形三边.故选:D.9.(4分)如图,已知菱形ABCD的对角线交于点O,DB=6,AD=5,则菱形ABCD的面积为()A.20B.24C.30D.36解:∵四边形ABCD是菱形,∴AO=CO=AC,BO=DO=BD=3,AC⊥BD,∴AO===4,∴AC=8,∴菱形ABCD的面积=×AC×BD=×6×8=24,故选:B.10.(4分)在Rt△ABC中,∠ABC=90°,D为斜边AC的中点,BD=5,则AC=()A.5B.6C.8D.10解:∵在Rt△ABC中,∠ABC=90°,D为斜边AC的中点,BD=5,∴AC=2BD=2×5=10,故选:D.11.(4分)下列计算中,正确的是()A.B.C.D.解:(A)原式=3,故A错误.(B)原式==3,故B错误.(D)原式=×=2,故D错误.故选:C.12.(4分)不能判定四边形ABCD为平行四边形的条件是()A.AB∥CD,AD=BC B.AB∥CD,∠A=∠CC.AD∥BC,AD=BC D.∠A=∠C,∠B=∠D解:A、AB∥CD,AD=BC,不能判定四边形ABCD为平行四边形,错误;B、∵AB∥CD,∴∠A+∠D=180°,∵∠A=∠C,∴∠C+∠D=180°,∴AD∥BC,∴四边形ABCD为平行四边形,正确;C、∵AD∥BC,AD=BC,∴四边形ABCD为平行四边形,正确;D、∵∠A=∠C,∠B=∠D,∴∠A+∠D=∠C+∠D=180°,∴AD∥BC,AB∥CD,∴四边形ABCD为平行四边形,正确;故选:A.13.(4分)如图,延长矩形ABCD的边BC至点E,使CE=CA,连接AE,若∠BAC=52°,则∠E的度数是()A.18°B.19°C.20°D.40°解:∵CE=CA,∴∠E=∠CAE,∵四边形ABCD是矩形,∴∠B=90°,∴∠ACB=90°﹣∠BAC=90°﹣52°=38°,∵∠ACB=∠E+∠CAE=2∠E,∴∠E=19°;故选:B.14.(4分)已知a=2+,b=2﹣,则a2+b2的值为()A.12B.14C.16D.18解:∵a=2+,b=2﹣,∴a+b=4,ab=4﹣3=1,∴a2+b2=(a+b)2﹣2ab=42﹣2×1=14.故选:B.三、解答题(本大题共9小题,共70分)15.(6分)计算:解:原式=2+1﹣+8=+9.16.(6分)国家交通法规定:小汽车在城市街道上行驶速度不得超过60km/h,一辆小汽车在一条城市街道上由西向东行驶,此时在小汽车正南方向25m处有一个车速检测仪,过了4s后,测得小汽车距离测速仪65m.这辆小汽车超速了吗?通过计算说明理由(1m/s =3.6km/h)解:由勾股定理得:BC=(米);60÷4=15米/秒=54千米/小时<60千米/小时,所以不超速了.17.(8分)如图,四边形ABCD是平行四边形,E为BC的中点,连接AE交DC延长线于点F.求证:DC=CF.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠B=∠FCE,∠F=∠BAE,∵E为BC中点,∴BE=CE,在△ABE和△FCE中,,∴△ABE≌△FCE(AAS),∴AB=CF,∵AB=DC,∴DC=CF.18.(6分)如图,在四边形ABCD中,AB=1,AD=,BD=2,∠ABC+∠ADC=180°,CD=.求四边形ABCD的面积.解:∵AB=1,AD=,BD=2,∴AB2+AD2=BD2,∴∠DAB=90°,∵∠ABC+∠ADC=180°,∴∠C=90°∴BC===,∴四边形ABCD的面积=×AB×AD+×CD×CB=×1×+××=1+.19.(7分)先化简,再求值:,其中a=﹣1.解:===,当a=﹣1时,原式==.20.(8分)如图,在笔直的高速路旁边有A、B两个村庄,A村庄到公路的距离AC=8km,B村庄到公路的距离BD=14km,测得C、D两点的距离为20km,现要在CD之间建一个服务区E,使得A、B两村庄到E服务区的距离相等,求CE的长.解:设CE=x,则DE=20﹣x,由勾股定理得:在Rt△ACE中,AE2=AC2+CE2=82+x2,在Rt△BDE中,BE2=BD2+DE2=142+(20﹣x)2,由题意可知:AE=BE,所以:82+x2=142+(20﹣x)2,解得:x=13.3所以,E应建在距C点13.3km,即CE=13.3km.21.(8分)如图,在四边形ABCD中,AD∥BC,∠ABC=∠ADC,对角线AC、BD相交于点O,OA=OB.(1)求证:四边形ABCD是矩形;(2)若AB=5,∠AOB=60°,求BC的长.【解答】(1)证明:∵AD∥BC,∴∠ABC+∠BAD=180°,∠ADC+∠BCD=180°,∵∠ABC=∠ADC,∴∠BAD=∠BCD,∴四边形ABCD是平行四边形,∴OA=OC=AC,OB=OD=BD,∵OA=OB,∴AC=BD,∴四边形ABCD是矩形.(2)解:∵OA=OB,∠AOB=60°,∴△AOB是等边三角形,∴OA=AB=5,由(1)得:四边形ABCD是矩形,∴∠ABC=90°,AC=2OA=10,∴BC===5.22.(9分)观察下列等式等式一:﹣1;等式二:;等式三:;……;解决下列问题:(1)化简:;(2)若有理数a、b满足,求a+b的值.解:(1)化简:,观察已知等式可知:原式=﹣;(2)因为,所以a(﹣1)+b(+1)=2﹣1,(a+b)﹣(a﹣b)=2﹣1,所以a+b=2,a﹣b=1,答:a+b的值为2.23.(12分)如图,四边形ABCD是菱形,∠ABC=60°,AB=10,连接BD,点P是BC上的点,连接AP,交BD于点E,连接EC(1)求证:△ABE≌△CBE;(2)求菱形ABCD的面积;(3)当点P在线段BC的延长线上时,是否存在点P,使得△PEC是直角三角形?若存在,求出BP的长;若不存在,请说明理由.【解答】(1)证明:∵四边形ABCD是菱形,∴BA=BC,∠ABE=∠CBE.在△ABE和△CBE中,,∴△ABE≌△CBE(SAS);(2)解:连接AC,BD交于点O,则AC⊥BD,∵菱形ABCD中,∠ABC=60°,AB=10,∴∠ABD=30°,AC=10,∴BO=5,∴BD=10,∴菱形ABCD的面积为==50;(3)解:因为点P在线段BC的延长线上,所以∠EPC不可能为直角.如图2所示:①当∠ECP=90°时,∵△ABE≌△CBE,∴∠BAE=∠BCE=90°,∵∠ABC=60°,AB=10,∴BP=2AB=20.②当∠CEP=90°时,∵△ABE≌△CBE,∴∠AEB=∠CEB=45°,∴AO=OE=AB=5,∴OB=OD=5,∴ED=5﹣5,BE=5+5.∵AD∥BP,∴△ADE∽△PBE,∴,∴,∴BP=10+5.综上所述,当△EPC是直角三角形时,线段BP的长为20或10+5.1、三人行,必有我师。
2020-2021初二数学下期中一模试卷(附答案)(4)
2020-2021初二数学下期中一模试卷(附答案)(4)一、选择题1.下列运算正确的是( )A .347+=B .1232=C .2(-2)2=-D .142136= 2.下列运算中,正确的是( )A .235+=;B .2(32)32-=-;C .2a a =;D .2()a b a b +=+.3.如图,数轴上点A ,B 表示的数分别是1,2,过点B 作PQ ⊥AB ,以点B 为圆心,AB 长为半径画弧,交PQ 于点C ,以原点O 为圆心,OC 长为半径画弧,交数轴于点M ,则点M 表示的数是( )A .3B .5C .6D .7 4.如图,由四个全等的直角三角形拼成的图形,设CE =a ,HG =b ,则斜边BD 的长是( )A .a+bB .a ﹣bC .222a b +D .222a b - 5.如图,在矩形ABCD 中,AB=2,BC=3.若点E 是边CD 的中点,连接AE ,过点B 作BF ⊥AE 交AE 于点F ,则BF 的长为( )A .3102B 310C .105D .3556.平行四边形的对角线长为x、y,一边长为12,则x、y的值可能是()A.8和14B.10和14C.18和20D.10和347.如图,在平行四边形ABCD中,AC、BD相交于点O,下列结论:①OA=OC;②∠BAD =∠BCD;③AC⊥BD;④∠BAD+∠ABC=180°中,正确的个数有()A.1个 B.2个 C.3个 D.4个8.若一次函数y=(k-3)x-k的图象经过第二、三、四象限,则k的取值范围是() A.k<3B.k<0C.k>3D.0<k<39.如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为()A.95B.185C.165D.12510.已知直角三角形中30°角所对的直角边长是23cm,则另一条直角边的长是()A.4cm B.43 cm C.6cm D.63 cm11.为了研究特殊四边形,李老师制作了这样一个教具(如图1):用钉子将四根木条钉成一个平行四边形框架ABCD,并在A与C、B与D两点之间分别用一根橡皮筋拉直固定,课上,李老师右手拿住木条BC,用左手向右推动框架至AB⊥BC(如图2)观察所得到的四边形,下列判断正确的是()A.∠BCA=45°B.AC=BDC.BD的长度变小D.AC⊥BD12.下列各式不成立的是()A8718293=B22233+=C.8184952==D3232=+二、填空题13.对于任意不相等的两个数a ,b ,定义一种运算※如下:a ※b =+-a b a b ,如3※2=32532+=-.那么12※4=_____. 14.化简()2-2的结果是________;3.14π-的相反数是________;364-的绝对值是_________.15.如图,正方形ABCD 的边长为3,点E 在BC 上,且CE=1,P 是对角线AC 上的一个动点,则PB+PE 的最小值为______.16.若菱形的两条对角线长分别是6㎝和8㎝,则该菱形的面积是 ㎝2.17.如图,矩形纸片ABCD 中,已知AD =8,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE ,且EF =3,则AB 的长为____.18.化简|25|-=_____;计算384-+=_____.19.如图,菱形ABCD 的周长为20,点A 的坐标是(4,0),则点B 的坐标为_______.20.如图,在平行四边形ABCD 中,P 是CD 边上一点,且AP 和BP 分别平分∠DAB 和∠CBA ,若AD=5,AP=8,则△APB 的周长是 .三、解答题21.已知长方形的长1322a =1183b =.(1)求长方形的周长;(2)求与长方形等面积的正方形的周长,并比较其与长方形周长的大小关系.22.已知a ,b 分别为等腰三角形的两条边长,且a ,b 满足33652b a a =+-+-,求此三角形的周长.23.如图,BD 是▱ABCD 的对角线,AE ⊥BD ,CF ⊥BD ,垂足分别为E 、F ,求证:AE=CF .24.在Rt △ABC 中,∠BAC=90°,D 是BC 的中点,E 是AD 的中点.过点A 作AF ∥BC 交BE 的延长线于点F(1)求证:△AEF ≌△DEB ;(2)证明四边形ADCF 是菱形;(3)若AC=4,AB=5,求菱形ADCFD 的面积.25.由于持续高温和连日无雨,水库蓄水量普遍下降,如图是某水库的蓄水量V (万立方米)与干旱持续时间t (天)之间的关系图,请根据此图,回答下列问题:(1)该水库原蓄水量为多少万立方米?持续干旱10天后,水库蓄水量为多少万立方米? (2)若水库的蓄水量小于400万立方米时,将发出严重干旱警报,请问持续干旱多少天后,将发出严重干旱警报?(3)按此规律,持续干旱多少天时,水库将干涸?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据二次根式的加减法对A 进行判断;根据二次根式的性质对B 、C 进行判断;根据分母有理化和二次根式的性质对D 进行判断.【详解】A 2,所以A 选项错误;B 、原式=B 选项错误;C 、原式=2,所以C 选项错误;D =,所以D 选项正确. 故选D .【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍. 2.D解析:D【解析】2=-误;a =,故错误; D. ()2a b =+,正确;故选D.3.B解析:B【解析】【分析】先依据勾股定理可求得OC 的长,从而得到OM 的长,于是可得到点M 对应的数.【详解】解:由题意得可知:OB=2,BC=1,依据勾股定理可知:.∴故选:B .【点睛】本题考查勾股定理、实数与数轴,熟练掌握相关知识是解题的关键.4.C解析:C【解析】【分析】解:设CD=x ,则DE=a-x ,求得AH=CD=AG-HG=DE-HG=a-x-b=x ,求得CD=2a b - ,得到BC=DE=22a b a b a -+-=,根据勾股定理即可得到结论. 【详解】设CD =x ,则DE =a ﹣x ,∵HG =b ,∴AH =CD =AG ﹣HG =DE ﹣HG =a ﹣x ﹣b =x ,∴x =2a b -, ∴BC =DE =a ﹣2a b -=2a b +, ∴BD 2=BC 2+CD 2=(2a b +)2+(2a b -)2=222a b +, ∴BD =222a b +, 故选:C .【点睛】本题考查了勾股定理,全等三角形的性质,正确的识别图形,用含,a b 的式子表示各个线段是解题的关键.5.B解析:B【解析】【分析】根据S △ABE =12S 矩形ABCD =3=12•AE•BF ,先求出AE ,再求出BF 即可. 【详解】如图,连接BE .∵四边形ABCD 是矩形,∴AB=CD=2,BC=AD=3,∠D=90°,在Rt △ADE 中,22AD DE +2231+10, ∵S △ABE =12S 矩形ABCD =3=12•AE•BF ,∴BF=3105. 故选:B .【点睛】本题考查矩形的性质、勾股定理、三角形的面积公式等知识,解题的关键是灵活运用所学知识解决问题,学会用面积法解决有关线段问题,属于中考常考题型.6.C解析:C【解析】【分析】【详解】解:平行四边形的两条对角线的一半,和平行四边形的一边能够构成三角形, ∴2x 、y 2、6能组成三角形,令x>y ∴x-y<6<x+y20-18<6<20+18 故选C .【点睛】本题考查平行四边形的性质.7.C解析:C【解析】试题分析:根据平行四边形的性质依次分析各选项即可作出判断.∵平行四边形ABCD∴OA =OC ,∠BAD =∠BCD ,∠BAD +∠ABC =180°,但无法得到AC ⊥BD故选C.考点:平行四边形的性质点评:平行四边形的判定和性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.8.D解析:D【解析】【分析】由一次函数图象经过第二、三、四象限,利用一次函数图象与系数的关系,即可得出关于k 的一元一次不等式组,解之即可得出结论.【详解】∵一次函数y=(k-3)x-k 的图象经过第二、三、四象限,∴,解得:0<k <3,故选:D .【点睛】本题考查了一次函数图象与系数的关系,牢记“k <0,b <0⇔y=kx+b 的图象在二、三、四象限”是解题的关键.9.B解析:B【解析】【分析】连接BF ,由折叠可知AE 垂直平分BF ,根据勾股定理求得AE=5,利用直角三角形面积的两种表示法求得BH=125,即可得BF=245,再证明∠BFC=90°,最后利用勾股定理求得CF=185. 【详解】 连接BF ,由折叠可知AE 垂直平分BF ,∵BC=6,点E 为BC 的中点,∴BE=3,又∵AB=4, ∴222243AB BE +=+=5, ∵1122AB BE AE BH ⋅=⋅, ∴1134522BH ⨯⨯=⨯⨯, ∴BH=125,则BF=245, ∵FE=BE=EC ,∴∠BFC=90°, ∴CF=2222246()5BC BF -=-185 . 故选B .【点睛】本题考查的是翻折变换的性质、矩形的性质及勾股定理的应用,掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.10.C解析:C【解析】如图,∵∠C=90°,∠B=30°,3,∴3cm,由勾股定理得:22AB AC-,故选C.11.B解析:B【解析】【分析】根据矩形的性质即可判断;【详解】解:∵四边形ABCD是平行四边形,又∵AB⊥BC,∴∠ABC=90°,∴四边形ABCD是矩形,∴AC=BD.故选B.【点睛】本题考查平行四边形的性质.矩形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.12.C解析:C【解析】【分析】根据二次根式的性质、二次根式的加法法则、除法法则计算,判断即可.【详解】82272==A选项成立,不符合题意;1829==B选项成立,不符合题意;222==,C选项不成立,符合题意;==D选项成立,不符合题意;故选C.【点睛】本题考查的是二次根式的混合运算,掌握二次根式的性质、二次根式的混合运算法则是解题的关键.二、填空题13.【解析】试题解析:根据题意可得:故答案为解析:1 2【解析】试题解析:根据题意可得:41 124.124882 ====-※故答案为1 . 214.4【解析】分析:根据二次根式的性质相反数的定义绝对值的意义解答即可详解:==2314﹣π的相反数为π﹣31=4故答案为2π﹣3144点睛:本题考查了二次根式的性质相反数的定义绝对值的意义是基础题熟记解析: 3.14π-4【解析】分析:根据二次根式的性质,相反数的定义,绝对值的意义解答即可.=2,3.14﹣π的相反数为π﹣3.14=-=4.故答案为2,π﹣3.14,4.点睛:本题考查了二次根式的性质,相反数的定义,绝对值的意义,是基础题,熟记概念是解题的关键.15.【解析】【分析】已知ABCD是正方形根据正方形性质可知点B与点D关于AC对称DE=PB+PE求出DE长即是PB+PE最小值【详解】∵四边形ABCD是正方形∴点B与点D关于AC对称连接DE交AC于点P【解析】【分析】已知ABCD是正方形,根据正方形性质可知点B与点D关于AC对称,DE=PB+PE,求出DE长即是PB+PE最小值.【详解】∵四边形ABCD是正方形∴点B与点D关于AC对称,连接DE,交AC于点P,连接PB,则PB+PE=DE的值最小∵CE=1,CD=3,∠ECD=90°∴22221310=++=DE CE CD∴PB+PE1010【点睛】本题考查正方形性质,作对称点,再连接,根据两点之间直线最短得结论.16.24【解析】已知对角线的长度根据菱形的面积计算公式即可计算菱形的面积解:根据对角线的长可以求得菱形的面积根据S=ab=×6×8=24cm2故答案为24 解析:24【解析】已知对角线的长度,根据菱形的面积计算公式即可计算菱形的面积.解:根据对角线的长可以求得菱形的面积,根据S=12ab=12×6×8=24cm2,故答案为24.17.6【解析】【分析】先根据矩形的特点求出BC的长再由翻折变换的性质得出△CEF是直角三角形利用勾股定理即可求出CF的长再在△ABC中利用勾股定理即可求出AB的长【详解】解:∵四边形ABCD是矩形AD=解析:6【解析】【分析】先根据矩形的特点求出BC的长,再由翻折变换的性质得出△CEF是直角三角形,利用勾股定理即可求出CF的长,再在△ABC中利用勾股定理即可求出AB的长.【详解】解:∵四边形ABCD是矩形,AD=8,∴BC=8,∵△AEF是△AEB翻折而成,∴BE=EF=3,AB=AF,△CEF是直角三角形,∴CE=8-3=5,在Rt△CEF中,CF===4设AB=x,在Rt△ABC中,AC2=AB2+BC2,即(x+4)2=x2+82,解得x=6,则AB=6.故答案为:6.【点睛】本题考查了翻折变换及勾股定理,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键.18.【解析】【分析】(1)根据是负数根据负数绝对值等于它的相反数可得到答案;(2)根据立方根和算术平方根的求法可得到答案【详解】==﹣2+2=0故答案为:;0【点睛】去绝对值要考虑绝对值符号内的正负正数-【解析】【分析】(1)根据是负数,根据负数绝对值等于它的相反数可得到答案;(2)根据立方根和算术平方根的求法可得到答案【详解】+2+2=0,0.【点睛】去绝对值要考虑绝对值符号内的正负,正数的绝对值等于其本身,负数的绝对值等于其相反数;立方根的符号与原数相同,算术平方根为非负数19.(03)【解析】【分析】先根据菱形的性质确定菱形的长度再设B点的坐标为(0y)最后根据两点之间的距离公式即可求得B点的坐标【详解】解:设B点的坐标为(0y)根据菱形的性质得AB=20÷4=5;由两点解析:(0,3)【解析】【分析】先根据菱形的性质确定菱形的长度,再设B点的坐标为(0,y),最后根据两点之间的距离公式即可求得B点的坐标.【详解】解:设B点的坐标为(0,y),根据菱形的性质,得AB=20÷4=5;由两点间距离公式可得:22(0-4)(y-0)5+=(y >0),解得y=3所以B 点坐标为(0,3).故答案为(0,3).【点睛】本题考查了菱形的性质和两点间的距离公式,掌握菱形的性质和两点间的距离公式是解答本题的关键.20.【解析】试题分析:∵四边形ABCD 是平行四边形∴AD∥CBAB∥CD∴∠DAB+∠CBA=180°又∵AP 和BP 分别平分∠DAB 和∠CBA∴∠PAB=∠DAB∠PBA=∠ABC∴∠PAB+∠PBA=解析:【解析】试题分析: ∵四边形ABCD 是平行四边形,∴AD ∥CB ,AB ∥CD ,∴∠DAB+∠CBA=180°,又∵AP 和BP 分别平分∠DAB 和∠CBA ,∴∠PAB=∠DAB ,∠PBA=∠ABC ,∴∠PAB+∠PBA=(∠DAB+∠CBA )=90°,∴∠APB=180°﹣(∠PAB+∠PBA )=90°;∵AB ∥CD ,∴∠PAB=∠DPA ,∴∠DAP=∠DPA ,∴AD=DP=5,同理:PC=CB=5,即AB=DC=DP+PC=10,在Rt △APB 中,AB=10,AP=8,∴BP==6,∴△APB 的周长=6+8+10=24.考点:1平行四边形;2角平分线性质;3勾股定理;4等腰三角形. 三、解答题21.(1)622)长方形的周长大.【解析】试题分析:(1)代入周长计算公式解决问题;(2)求得长方形的面积,开方得出正方形的边长,进一步求得周长比较即可. 试题解析:(1)()1111223218242322326 2.2323a b ⎛+=⨯=⨯⨯⨯=⨯= ⎝ ∴长方形的周长为6 2. .(2)111132184232 4.2323=⨯⨯= 正方形的面积也为4.4 2.=周长为:428.⨯=628.>∴长方形的周长大于正方形的周长.22.三角形的周长为7或8【解析】【分析】根据二次根式的非负性,可求得a =2、b=3,根据等腰三角形的性质,可得三边长为2、2、3或2、3、3,从而求得三角形周长.【详解】 ∵33652b a a =+-+-∴3a -6≥0,2-a ≥0∴a =2∴b=3∵a ,b 分别为等腰三角形的两条边长∴等腰三角形的另一条边为2或3∴等腰三角形的周长为:2+2+3=7或2+3+3=8【点睛】本题考查二次根式的非负性和等腰三角形的多解问题,解题关键是利用二次根式的非负性,得出a =2.23.详见解析.【解析】试题分析:根据平行四边形的性质可得AB=CD ,AB ∥CD ,再由平行线的性质证得∠ABE=∠CDF ,根据AE ⊥BD ,CF ⊥BD 可得∠AEB=∠CFD=90°,由AAS 证得△ABE ≌△CDF ,根据全等三角形的性质即可证得结论.试题解析:证明:∵四边形ABCD 是平行四边形,∴AB=CD ,AB ∥CD ,∴∠ABE=∠CDF ,∵AE ⊥BD ,CF ⊥BD ,∴∠AEB=∠CFD=90°,在△ABE 和△CDF 中,,∴△ABE ≌△CDF (AAS ),∴AE=CF .考点:平行四边形的性质;全等三角形的判定及性质.24.(1)证明详见解析;(2)证明详见解析;(3)10.【解析】【分析】(1)利用平行线的性质及中点的定义,可利用AAS 证得结论;(2)由(1)可得AF=BD ,结合条件可求得AF=DC ,则可证明四边形ADCF 为平行四边形,再利用直角三角形的性质可证得AD=CD ,可证得四边形ADCF 为菱形;(3)连接DF ,可证得四边形ABDF 为平行四边形,则可求得DF 的长,利用菱形的面积公式可求得答案.【详解】(1)证明:∵AF ∥BC ,∴∠AFE =∠DBE ,∵E 是AD 的中点,∴AE =DE ,在△AFE 和△DBE 中,AFE DBE FEA BED AE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AFE ≌△DBE (AAS );(2)证明:由(1)知,△AFE ≌△DBE ,则AF =DB .∵AD 为BC 边上的中线∴DB =DC ,∴AF =CD .∵AF ∥BC ,∴四边形ADCF 是平行四边形,∵∠BAC =90°,D 是BC 的中点,E 是AD 的中点,∴AD =DC=12BC , ∴四边形ADCF 是菱形;(3)连接DF ,∵AF ∥BD ,AF =BD ,∴四边形ABDF 是平行四边形, ∴DF =AB =5, ∵四边形ADCF 是菱形,∴S 菱形ADCF =12AC ▪DF =12×4×5=10. 【点睛】本题主要考查菱形的性质及判定,利用全等三角形的性质证得AF=CD 是解题的关键,注意菱形面积公式的应用.25.(1)水库原蓄水量为1 000万立方米,持续干旱10天后,蓄水量为800万立方米;(2)当v=400时,t=30,∴持续干旱30天后将发出严重干旱警报;(3)持续干旱50天后水库将干涸.【解析】【分析】(1)原蓄水量即t=0时v的值,t=50时,v=0,得v与t的函数关系,持续干旱10天后的蓄水量即t=10时v的值;(2)即找到v=400时,相对应的t的值;(3)从第10天到第30天,水库下降了800−400=400万立方米,一天下降=20万立方米,第30天的400万立方米还能用=20天,即50天时干涸.【详解】解:(1)当t=0时,v=1000∴水库原蓄水量为1000万米3,干涸的速度为1000÷50=20,所以v=1000-20t,当t=10时,v=800,∴水库原蓄水量为1 000万立方米,持续干旱10天后,蓄水量为800万立方米.(2)当v=400时,t=30,∴持续干旱30天后将发出严重干旱警报.(3)从第10天到第30天,水库下降了(800﹣400)万立方米,一天下降=20万立方米,故根据此规律可求出:30+=50天,那么持续干旱50天后水库将干涸.【点睛】本题考查了函数图象的问题,解题的关键是正确理解函数图象横纵坐标表示的意义,理解问题的过程,得到相应的点的意义.。
2020-2021学年八年级下学期期中考试数学试卷及答案
2020-2021学年八年级下学期期中考试数学试卷一.选择题(共10小题,满分30分,每小题3分)1.下列属于最简二次根式的是()A.√8B.√5C.√4D.√1 32.在Rt△ABC中,∠B=90°,BC=1,AC=2,则AB的长是()A.1B.√3C.2D.√5 3.下列各式中,化简后能与√2合并的是()A.√12B.√8C.√23D.√0.24.下列计算正确的是()A.2√3+3√2=5B.√8÷√2=2C.5√3×5√2=5√6D.√412=2√125.下列命题是真命题的是()A.如果a2=b2,那么a=bB.0的平方根是0C.如果∠A与∠B是内错角,那么∠A=∠BD.三角形的一个外角等于它的两个内角之和6.如图,▱ABCD的对角线相交于点O,且AB≠AD,过点O作OE⊥BD交BC于点E,若△CDE的周长为10,则▱ABCD的周长为()A.14B.16C.20D.187.以下列三个数据为三角形的三边,其中能构成直角三角形的是()A.2,3,4B.4,5,6C.5,12,13D.5,6,78.如图,下面不能判断四边形ABCD是平行四边形的是()A.AB=CD,AB∥CD B.∠A=∠C,∠B=∠DC.AB=CD,AD∥BC D.AB=CD,AD=BC9.如图,▱ABCD中,AC.BD为对角线,BC=3,BC边上的高为2,则阴影部分的面积为()A.3B.6C.12D.2410.如图,▱ABCD的对角线AC、BD相交于点O,AE平分∠BAD,分别交BC、BD于点E、P,连接OE,∠ADC=60°,AB=12BC=1,则下列结论:①∠CAD=30°;②BD=√7;③S平行四边形ABCD=AB•AC;④OE=14AD;⑤S△APO=√310中,正确的个数是()A.2B.3C.4D.5二.填空题(共5小题,满分15分,每小题3分)11.计算√3x⋅√13xy(x>0)结果为.12.若√x−3在实数范围内有意义,则x的取值范围是.13.如图,在平行四边形ABCD中,AB=2,BC=5.∠BCD的平分线交AD于点F,交BA 的延长线于点E,则AE的长为.14.如图,小巷左右两侧是竖直的墙.一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7m,顶端距离地面2.4m.若梯子底端位置保持不动,将梯子斜靠在右墙时,顶端距离地面2m,则小巷的宽度为m.15.如图,在等边△ABC中,BC=5cm,射线AG∥BC,点E从点A出发沿射线AG以1cm/s 的速度运动,点F从点B出发沿射线BC以2cm/s的速度运动.如果点E、F同时出发,设运动时间为t(s),当t=时,以A、C、E、F为顶点四边形是平行四边形.三.解答题(共8小题,满分75分)16.(8分)计算下列各题(1)(√2+1)(√2−1)+(√3−2)2(2)−12√1024×5.17.(9分)计算题:(1)2√12÷12√50×12√34−35√2;(2)先化简,再求值.(6x√yx+3y√xy3)﹣(4x√x y+√36xy),其中x=32,y=27.18.(9分)如图,在▱ABCD中,E为BC边上一点,且AB=AE.(1)求证:△ABC≌△EAD;(2)若∠B=65°,∠EAC=25°,求∠AED的度数.19.(9分)观察下列各式:√1+112+122=1+11−12=112√1+122+132=1+12−13=116√1+132+142=1+13−14=1112请你根据上面三个等式提供的信息,猜想:(1)√1+142+152=(2)请你按照上面每个等式反映的规律,写出用n(n为正整数)表示的等式:;(3)利用上述规律计算:√5049+164(仿照上式写出过程)20.(9分)如图,方格中的点A、B、C、D、E称为格点(格线的交点),以这5个格点中的3点为顶点画三角形,一共可以画多少个?其中,哪些是直角三角形、钝角三角形、锐角三角形?哪些是等腰三角形?21.(10分)如图所示,已知O为坐标原点,矩形ABCD(点A与坐标原点重合)的顶点D、B分别在x轴、y轴上,且点C的坐标为(﹣4,8),连接BD,将△ABD沿直线BD翻折至△A′BD,交CD于点E.(1)求点A′坐标.(2)试在x轴上找点P,使A'P+PB的长度最短,请求出这个最短距离.22.(10分)在平行四边形ABCD中,以AB为边作等边△ABE,点E在CD上,以BC为边作等边△BCF,点F在AE上,点G在BA延长线上且FG=FB.(1)若CD=6,AF=3,求△ABF的面积;(2)求证:BE=AG+CE.23.(11分)如图,已知∠A=90°,BD=BE,BC是边DE的中线,BC=15.(1)若AB=7,求AC的长度;(2)若DE=16,求△BED的周长.2020-2021学年八年级下学期期中考试数学试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.下列属于最简二次根式的是()A.√8B.√5C.√4D.√1 3【解答】解:A.√8=2√2,不符合题意;B.√5是最简二次根式;C.√4=2,不符合题意;D.√13=√33,不符合题意;故选:B.2.在Rt△ABC中,∠B=90°,BC=1,AC=2,则AB的长是()A.1B.√3C.2D.√5【解答】解:在Rt△ABC中,∠B=90°,BC=1,AC=2,∴AB=√AC2−BC2=√22−12=√3,故选:B.3.下列各式中,化简后能与√2合并的是()A.√12B.√8C.√23D.√0.2【解答】解:A、√12=2√3,不能与√2合并;B、√8=2√2,能与√2合并;C、√23=√63,不能与√2合并;D、√0.2=√55,不能与√2合并;故选:B.4.下列计算正确的是()A.2√3+3√2=5B.√8÷√2=2C.5√3×5√2=5√6D.√412=2√12【解答】解:A、2√3与3√2不能合并,所以A选项错误;B、原式=√8÷2=2,所以B选项正确;C、原式=25√3×2=25√6,所以C选项错误;D、原式=√92=3√22,所以D选项错误.故选:B.5.下列命题是真命题的是()A.如果a2=b2,那么a=bB.0的平方根是0C.如果∠A与∠B是内错角,那么∠A=∠BD.三角形的一个外角等于它的两个内角之和【解答】解:A、如果a2=b2,那么a=b或a=﹣b,故原题说法错误;B、0的平方根是0,故原题说法正确;C、如果∠A与∠B是内错角,∠A不一定等于∠B,故原题说法错误;D、三角形的一个外角等于与它不相邻的两个内角之和,故原题说法错误;故选:B.6.如图,▱ABCD的对角线相交于点O,且AB≠AD,过点O作OE⊥BD交BC于点E,若△CDE的周长为10,则▱ABCD的周长为()A.14B.16C.20D.18【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,BC=AD,OB=OD,∵OE⊥BD,∴BE=DE,∵△CDE的周长为10,∴DE+CE+CD=BE+CE+CD=BC+CD=10,∴平行四边形ABCD的周长=2(BC+CD)=20;故选:C.7.以下列三个数据为三角形的三边,其中能构成直角三角形的是()A.2,3,4B.4,5,6C.5,12,13D.5,6,7【解答】解:A、22+32≠42,故不能构成直角三角形;B 、42+52≠62,故不能构成直角三角形;C 、52+122=132,故能构成直角三角形;D 、52+62≠72,故不能构成直角三角形.故选:C .8.如图,下面不能判断四边形ABCD 是平行四边形的是( )A .AB =CD ,AB ∥CDB .∠A =∠C ,∠B =∠DC .AB =CD ,AD ∥BC D .AB =CD ,AD =BC 【解答】解:A 、∵AB =CD ,AB ∥CD ,∴四边形ABCD 是平行四边形,正确;B 、∵∠A =∠C ,∠B =∠D ,∴四边形ABCD 是平行四边形,正确;C 、∵AB =CD ,AD ∥BC ,不能得出四边形ABCD 是平行四边形,错误;D 、∵AB =CD ,AD =BC ,∴四边形ABCD 是平行四边形,正确;故选:C .9.如图,▱ABCD 中,AC .BD 为对角线,BC =3,BC 边上的高为2,则阴影部分的面积为( )A .3B .6C .12D .24【解答】解:∵▱ABCD 中,AC .BD 为对角线,BC =3,BC 边上的高为2,∴S ▱ABCD =3×2=6,AD ∥BC ,∴OA =OC ,∠OAE =∠OCF ,在△AOE 和△COF 中,{∠OAE =∠OCF OA =OC ∠AOE =∠COF,∴△AOE ≌△COF (ASA ),∴S △AOE =S △COF ,同理:S△EOG=S△FOH,S△DOG=S△BOH,∴S阴影=S△ABD=12S▱ABCD=12×6=3.故选:A.10.如图,▱ABCD的对角线AC、BD相交于点O,AE平分∠BAD,分别交BC、BD于点E、P,连接OE,∠ADC=60°,AB=12BC=1,则下列结论:①∠CAD=30°;②BD=√7;③S平行四边形ABCD=AB•AC;④OE=14AD;⑤S△APO=√310中,正确的个数是()A.2B.3C.4D.5【解答】解:①∵AE平分∠BAD,∴∠BAE=∠DAE,∵四边形ABCD是平行四边形,∴AD∥BC,∠ABC=∠ADC=60°,∴∠DAE=∠BEA,∴∠BAE=∠BEA,∴AB=BE=1,∴△ABE是等边三角形,∴AE=BE=1,∵BC=2,∴EC=1,∴AE=EC,∴∠EAC=∠ACE,∵∠AEB=∠EAC+∠ACE=60°,∴∠ACE=30°,∵AD∥BC,∴∠CAD=∠ACE=30°,故①正确;②∵BE=EC,OA=OC,∴OE=12AB=12,OE∥AB,∴∠EOC=∠BAC=60°+30°=90°,Rt△EOC中,OC=√12−(12)2=√32,∵四边形ABCD是平行四边形,∴∠BCD=∠BAD=120°,∴∠ACB=30°,∴∠ACD=90°,Rt△OCD中,OD=12+(32)2=√72,∴BD=2OD=√7,故②正确;③由②知:∠BAC=90°,∴S▱ABCD=AB•AC,故③正确;④由②知:OE是△ABC的中位线,∴OE=12AB,∵AB=12BC,∴OE=14BC=14AD,故④正确;⑤∵四边形ABCD是平行四边形,∴OA=OC=√3 2,∴S△AOE=S△EOC=12OE•OC=12×12×√32=√38,∵OE∥AB,∴EPAP =OEAB=12,∴S△POES△AOP =12,∴S△AOP=23S△AOE=23×√38=√312;故⑤错误;本题正确的有:①②③④,4个,故选:C.二.填空题(共5小题,满分15分,每小题3分)11.计算√3x⋅√13xy(x>0)结果为x√y.【解答】解:原式=√3x⋅13xy=√x2y=x√y.故答案为:x√y.12.若√x−3在实数范围内有意义,则x的取值范围是x≥3.【解答】解:根据题意得x﹣3≥0,解得x≥3.故答案为:x≥3.13.如图,在平行四边形ABCD中,AB=2,BC=5.∠BCD的平分线交AD于点F,交BA 的延长线于点E,则AE的长为3.【解答】解:在平行四边形ABCD中,AB=2,BC=5,∴CD=AB=2,AD=BC=5,AD∥BC,∴∠DFC=∠FCB,∵CE平分∠DCB,∴∠DCF=∠BCF,∴∠DFC=∠DCF,∴DC=DF=2,∴AF=3,∵AB∥CD,∴∠E=∠DCF,又∵∠EF A=∠DFC,∠DFC=∠DCF,∴∠AEF=∠EF A,∴AE=AF=3,故答案为:3.14.如图,小巷左右两侧是竖直的墙.一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7m,顶端距离地面2.4m.若梯子底端位置保持不动,将梯子斜靠在右墙时,顶端距离地面2m,则小巷的宽度为 2.2m.【解答】解:在Rt△ACB中,∵∠ACB=90°,BC=0.7米,AC=2.4米,∴AB2=0.72+2.42=6.25.在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2(米).故答案为:2.2.15.如图,在等边△ABC 中,BC =5cm ,射线AG ∥BC ,点E 从点A 出发沿射线AG 以1cm /s的速度运动,点F 从点B 出发沿射线BC 以2cm /s 的速度运动.如果点E 、F 同时出发,设运动时间为t (s ),当t = 53或5 时,以A 、C 、E 、F 为顶点四边形是平行四边形.【解答】解:①当点F 在C 的左侧时,根据题意得:AE =tcm ,BF =2tcm ,则CF =BC ﹣BF =5﹣2t (cm ),∵AG ∥BC ,∴当AE =CF 时,四边形AECF 是平行四边形,即t =5﹣2t ,解得:t =53;②当点F 在C 的右侧时,根据题意得:AE =tcm ,BF =2tcm ,则CF =BF ﹣BC =2t ﹣5(cm ),∵AG ∥BC ,∴当AE =CF 时,四边形AEFC 是平行四边形,即t =2t ﹣5,解得:t =5;综上可得:当t =53s 或5s 时,以A 、C 、E 、F 为顶点四边形是平行四边形.故答案为:53或5. 三.解答题(共8小题,满分75分)16.(8分)计算下列各题(1)(√2+1)(√2−1)+(√3−2)2(2)−12√1024×5.【解答】解:(1)原式=2﹣1+5﹣4√3=6﹣4√3;(2)原式=−12×2×4√5=−4√5.17.(9分)计算题:(1)2√12÷12√50×12√34−35√2;(2)先化简,再求值.(6x √y x +3y √xy 3)﹣(4x √x y +√36xy ),其中x =32,y =27. 【解答】解:(1)原式=2×2×12√12÷50×34−35√2=2×310√2−35√2=35√2−35√2 =0;(2)原式=6x √y x +3y √xy 3−4x √x y −√36xy=6√xy +3√xy −4x y √xy −6√xy =(3−4x y )√xy =3y−4x y √xy , 当x =32,y =27时,原式=81−627√812=252√2.18.(9分)如图,在▱ABCD 中,E 为BC 边上一点,且AB =AE .(1)求证:△ABC ≌△EAD ;(2)若∠B =65°,∠EAC =25°,求∠AED 的度数.【解答】(1)证明:∵在平行四边形ABCD 中,AD ∥BC ,BC =AD ,∴∠EAD =∠AEB ,又∵AB =AE ,∴∠B =∠AEB ,∴∠B =∠EAD ,在△ABC 和△EAD 中,{AB =AE ∠ABC =∠EAD BC =AD,∴△ABC ≌△EAD (SAS ).(2)解:∵AB =AE ,∴∠B=∠AEB,∴∠BAE=50°,∴∠BAC=∠BAE+∠EAC=50°+25°=75°,∵△ABC≌△EAD,∴∠AED=∠BAC=75°.19.(9分)观察下列各式:√1+112+122=1+11−12=112√1+122+132=1+12−13=116√1+132+142=1+13−14=1112请你根据上面三个等式提供的信息,猜想:(1)√1+142+152=1120(2)请你按照上面每个等式反映的规律,写出用n(n为正整数)表示的等式:√1+1n2+1(n+1)2=1+1n(n+1);(3)利用上述规律计算:√5049+164(仿照上式写出过程)【解答】解:(1)√1+142+152=1+14−15=1120;故答案为:1120;(2)√1+1n2+1(n+1)2=1+1n−1n+1=1+1n(n+1);故答案为:√1+1n2+1(n+1)2=1+1n(n+1);(3)√5049+164=√1+172+182=1156.20.(9分)如图,方格中的点A、B、C、D、E称为格点(格线的交点),以这5个格点中的3点为顶点画三角形,一共可以画多少个?其中,哪些是直角三角形、钝角三角形、锐角三角形?哪些是等腰三角形?【解答】解:如图,一共可以画9个三角形,其中,△ABE,△BCE,△CDE是直角三角形、△ACD,△BCD,ABD是钝角三角形、△ADE,△AEC,△BDE是锐角三角形,△AEC,△CDE是等腰三角形.21.(10分)如图所示,已知O为坐标原点,矩形ABCD(点A与坐标原点重合)的顶点D、B分别在x轴、y轴上,且点C的坐标为(﹣4,8),连接BD,将△ABD沿直线BD翻折至△A′BD,交CD于点E.(1)求点A′坐标.(2)试在x轴上找点P,使A'P+PB的长度最短,请求出这个最短距离.【解答】解:(1)∵点C的坐标为(﹣4,8),∴OD=BC=4,CD=OB=8,连接AA′,与BD交于点G,过A′作A′F⊥OB于点F,由折叠知,A′B=OA=8,OG=A′G,OA′⊥BD,∴S△OBD=12BD⋅OG=12OD⋅OB,∴OG=OD⋅OBBD=√4+8=8√55,∴OA′=2OG=16√5 5,设OF =x ,则BF =8﹣x ,∵OA ′2﹣OF 2=A ′F 2=A ′B 2﹣BF 2,即(16√55)2−x 2=82−(8−x)2, 解得,x =165,即OF =165, ∴A′F =2−OF 2=325,∴A ′(−325,165);(2)作A ′点关于x 轴的对称点A ″,连接BA ″,与x 轴交于点P ,则A 'P +PB =A ″P +PB =A ″B 的值最小,∴A ″(−325,−165),∵B (0,8),∴A″B =√(325)2+(8+165)2=8√655故A 'P +PB 的长度的最短距离为8√655.22.(10分)在平行四边形ABCD 中,以AB 为边作等边△ABE ,点E 在CD 上,以BC 为边作等边△BCF ,点F 在AE 上,点G 在BA 延长线上且FG =FB .(1)若CD =6,AF =3,求△ABF 的面积;(2)求证:BE =AG +CE .【解答】(1)解:∵△ABE是等边三角形,∴∠BAF=60°,AB=AE,∵四边形ABCD是平行四边形,∴AB=CD=6,∴AE=AB=6,∵AF=3,∴AF=EF,∴S△ABF=12S△ABE=12•√34•62=9√32.(2)作FH⊥AB于H,CJ⊥AE交AE的延长线于J.∵△ABE,△FBC都是等边三角形,∴BA=BE,BF=BC,∠ABE=∠FBC=60°,∴∠ABF=∠EBC,∴△ABF≌△EBC(SAS),∴AF=EC,∵AB∥CD,∴∠CEJ=∠F AH,∵∠FHA=∠J=90°,∴△FHA≌△CJE(AAS),∴FH=CJ,AH=EJ,∵FB=FG=FC,FH=CJ,∴Rt△FGH≌Rt△CJF(HL),∴GH=FJ,∵AH=EJ,∴EF=AG,∵BE=AE=AF+EF,∴BE=EC+AG.23.(11分)如图,已知∠A=90°,BD=BE,BC是边DE的中线,BC=15.(1)若AB=7,求AC的长度;(2)若DE=16,求△BED的周长.【解答】解:(1)在Rt△ABC中,∵∠A=90°,BC=15,AB=7,∴AC=√BC2−AB2=√152−72=4√11.(2)∵BD=BE,CD=CE=8,∴BC⊥DE,∴∠BCD=∠BCE=90°,∴BD=BE=√BC2+CD2=√152+82=17,∴△BDE的周长=17+17+16=50.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∵ ,
∴ ,
∴BH= ,则BF= ,
∵FE=BE=EC,
∴∠BFC=90°,
∴CF= = .
故选B.
【点睛】
本题考查的是翻折变换的性质、矩形的性质及勾股定理的应用,掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.
9.A
解析:A
解析:2
【解析】
【分析】
【详解】
解:如图,连接FB
∵四边形EFGB为正方形
∴∠FBA=∠BAC=45°,
∴FB∥AC
∴△ABC与△AFC是同底等高的三角形
18.果字成熟后从树上落到地面,它落下的高度与经过的时间有如下的关系:
时间 (秒)
0.5
0.6
0.7
0.8
0.9
1
落下的高度 (米)
如果果子经过2秒落到地上,那么此果子开始落下时离地面的高度大约是__________米.
19.在平面直角坐标系中, 若以 为顶点的四边形是平行四边形,则 点坐标是________________.
①求点B的坐标;
②求a的值.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.B
解析:B
【解析】
A、y= +1不是一次函数,故错误;B、y=-2x是一次函数,故正确;C、y=x2+2是二次函数,故错误;D、y=kx+b(k、b是常数),当k=0时不是一次函数,故本选项错误,
故选B.
2.B
解析:B
A.4B.6C.8D.10
6.菱形ABCD中,AC=10,BD=24,则该菱形的周长等于( )
A.13B.52C.120D.240
7.如图,要测量被池塘隔开的A,B两点的距离,小明在AB外选一点C,连接AC,BC,并分别找出它们的中点D,E,并分别找出它们的中点D,E,连接DE,现测得DE=45米,那么AB等于()
【解析】
【分析】
先依据勾股定理可求得OC的长,从而得到OM的长,于是可得到点M对应的数.
【详解】
解:由题意得可知:OB=2,BC=1,依据勾股定理可知:OC= = .
∴OM= .
故选:B.
【点睛】
本题考查勾股定理、实数与数轴,熟练掌握相关知识是解题的关键.
3.C
解析:C
【解析】
【分析】
矩形与菱形相比,菱形的四条边相等、对角线互相垂直;矩形四个角是直角,对角线相等,由此结合选项即可得出答案.
8.B
解析:B
【解析】
【分析】
连接BF,由折叠可知AE垂直平分BF,根据勾股定理求得AE=5,利用直角三角形面积的两种表示法求得BH= ,即可得BF= ,再证明∠BFC=90°,最后利用勾股定理求得CF= .
【详解】
连接BF,由折叠可知AE垂直平分BF,
∵BC=6,点E为BC的中点,
∴BE=3,
又∵AB=4,
2020-2021初二数学下期中模拟试卷带答案
一、选择题
1.下列函数中,是一次函数的是( )
A. B.y=﹣2x
C.y=x2+2D.y=kx+b(k、b是常数)
2.如图,数轴上点A,B表示的数分别是1,2,过点B作PQ⊥AB,以点B为圆心,AB长为半径画弧,交PQ于点C,以原点O为圆心,OC长为半径画弧,交数轴于点M,则点M表示的数是( )
∴∠OAE+∠AOE=90°,
∵四边形OABC是正方形,
∴OA=CO,∠AOC=90°,
∴∠AOE+∠COD=90°,
∴∠OAE=∠COD,
在△AOE和△OCD中,
,
∴△AOE≌△OCD(AAS),
∴AE=OD,OE=CD,
∵点A的坐标是(-3,1),
∴OE=3,AE=1,
∴OD=1,CD=3,
∴C(1,3),故选:A.
故选A.
【点睛】本题考查了函数图象,弄清题意,读懂图象,从中找到必要的信息是解题的关键.10.A解析Fra bibliotekA【解析】
【分析】
因为一般四边形的中点四边形是平行四边形,当对角线BD=AC时,中点四边形是菱形,当对角线AC⊥BD时,中点四边形是矩形,当对角线AC=BD,且AC⊥BD时,中点四边形是正方形.
【详解】
【点睛】
本题考查了正方形的性质、全等三角形的判定与性质、坐标与图形性质;熟练掌握正方形的性质,证明三角形全等是解题的关键.
5.C
解析:C
【解析】
【分析】
由平行四边形的性质和已知条件得出AD= (AB+BC+CD+AD),求出AD即可.
【详解】
∵四边形ABCD是平行四边形,
∴CD=AB=6,AD=BC,
15.如图,平面直角坐标系中,点A、B分别是x、y轴上的动点,以AB为边作边长为2的正方形ABCD,则OC的最大值为_____.
16.一组数据4、5、 、6、8的平均数 ,则方差 ________.
17.如图,△ABC中,∠ACB=90°,CD是斜边上的高,AC=4,BC=3,则CD=______.
故菱形的周长为52.
故选B.
7.A
解析:A
【解析】
【分析】
根据中位线定理可得:AB=2DE=90米.
【详解】
解:∵D是AC的中点,E是BC的中点,
∴DE是△ABC的中位线,∴DE= AB.
∵DE=45米,∴AB=2DE=90米.
故选A.
【点睛】
本题考查了三角形的中位线定理,属于基础题,熟练掌握三角形的中位线平行于第三边,并且等于第三边的一半.
(2)兔子在起初每分钟跑米,乌龟每分钟爬米.
(3)乌龟用了分钟追上了正在睡觉的兔子.
(4)兔子醒来,以48千米/时的速度跑向终点,结果还是比乌龟晚到了0.5分钟,请你算算兔子中间停下睡觉用了多少分钟?
24.如图,在 中,点 是 的中点,点 是线段 的延长线上的一动点,连接 ,过点 作 的平行线 ,与线段 的延长线交于点 ,连接 、 .
4.A
解析:A
【解析】
【分析】
作CD⊥x轴于D,作AE⊥x轴于E,由AAS证明△AOE≌△OCD,得出AE=OD,OE=CD,由点A的坐标是(-3,1),得出OE=3,AE=1,∴OD=1,CD=3,得出C(1,3)即可.
【详解】
解:如图所示:作CD⊥x轴于D,作AE⊥x轴于E,
则∠AEO=∠ODC =90°,
【详解】
由题意得,x-3>0,
解得x>3.
故选:B.
【点睛】
本题考查了二次根式有意义的条件,二次根式中的被开方数必须是非负数,否则二次根式无意义.
二、填空题
13.35+12【解析】【分析】利用完全平方公式计算【详解】原式=8+12+27=35+12故答案为:35+12【点睛】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式然后进行二次根式的乘除
A.1B.2C.3D.4
11.菱形周长为 ,它的条对角线长 ,则该菱形的面积为()
A. B. C. D.
12.要使代数式 有意义,则 的取值范围是()
A. B. C. D.
二、填空题
13.计算 的结果等于_____.
14.如图,正方形ABCD的边长为2,点E在AB边上.四边形EFGB也为正方形,则△AFC的面积S为_____.
11.C
解析:C
【解析】
【分析】
根据菱形的性质,四条边相等且对角线互相平分且互相垂直,由勾股定理得出BO的长,进而得其对角线BD的长,再根据菱形的面积等于对角线乘积的一半计算即可.
【详解】
解:如图:四边形ABCD是菱形,对角线AC与BD相交于点O,
∵菱形的周长为40,
∴AB=BC=CD=AD=10,
20.如图,若▱ABCD的周长为22cm,AC,BD相交于点O,△AOD的周长比△AOB的周长小3cm,则AB=________。
三、解答题
21.已知长方形的长 ,宽 .
(1)求长方形的周长;
(2)求与长方形等面积的正方形的周长,并比较其与长方形周长的大小关系.
22.如图,正方形网格中的每个小正方形边长都是l,每个小格的顶点叫做格点.以格点为顶点分别按下列要求画图:
∵一条对角线的长为12,当AC=12,
∴AO=CO=6,
在Rt△AOB中,根据勾股定理,得BO=8,
∴BD=2BO=16,
∴菱形的面积= AC•BD=96,
故选:C.
【点睛】
此题主要考查了菱形的性质、菱形的面积公式以及勾股定理等知识,根据题意得出BO的长是解题关键.
12.B
解析:B
【解析】
【分析】
根据被开方数大于等于0,分母不等于0列式计算即可得解.
解析:35+12
【解析】
【分析】
利用完全平方公式计算.
【详解】
原式=8+12 +27=35+12 .
故答案为:35+12 .
【点睛】
本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.
14.2【解析】【分析】【详解】解:如图连接FB∵四边形EFGB为正方形∴∠FBA=∠BAC=45°∴FB∥AC∴△ABC与△AFC是同底等高的三角形∴S=2故答案为:2
【解析】
【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题.
【详解】由图可得,
甲步行的速度为:240÷4=60米/分,故①正确,
乙走完全程用的时间为:2400÷(16×60÷12)=30(分钟),故②错误,