复变函数中的全纯函数与调和函数

合集下载

复变函数蜂考PDF

复变函数蜂考PDF

复变函数蜂考PDF《复变函数》是数学中的一个分支,它研究的是函数的多元复数域。

它被广泛应用于各个领域,包括物理学、工程学、统计学以及经济学等等。

复变函数有很多优点,其中最显著的就是解决很多其他工具无法解决的问题。

因此,了解复变函数是每个数学从业者的必备技能之一。

本文将介绍《复变函数》一书的主要内容,以及它对实际问题的应用。

我们将着重介绍书中的几个主要部分,包括复数的基本知识、初等函数、解析函数、全纯函数、调和函数以及各种定理和应用。

第一部分:复数的基本知识复数是一个有实部和虚部的数,它通常被表示为a + bi,其中a和b是实数,而i是虚数单位。

复数有很多重要的性质,其中最重要的一个是复共轭。

它是指如果一个复数的虚部是b,那么它的共轭是a - bi。

在本书中,你将学习到复共轭的重要性,以及它如何被用于解决实际问题。

第二部分:初等函数第二部分是关于初等函数的内容。

初等函数是指具有有限次加、减、乘、除、指数和对数运算的函数。

在这一部分中,你将学习到初等函数的基本概念,以及它们如何在复平面上表示。

你也将学习到初等函数的性质,例如保角变换和周期性。

第三部分是关于解析函数的内容。

解析函数是指在一个区域内可以展开成幂级数的函数。

在这一部分中,你将学习到解析函数和调和函数的关系,以及它的欧拉公式。

你也将学习到级数收敛的条件以及级数的性质,例如Cauchy-Riemann方程。

第四部分是关于全纯函数的内容。

全纯函数是解析函数的一种,它在整个复平面上都存在导数。

在本书中,你将学习到全纯函数的性质,例如Liouville定理和Rouche定理。

你还将学习到全纯函数在求解实际问题中的应用,例如在物理学和统计学中的应用。

第六部分:定理和应用最后一部分是关于复变函数定理和应用的内容。

在这一部分中,你将学习到复变函数的重要定理,例如最大模定理、Weierstrass定理和辐角原理。

你将了解这些定理如何在实际问题中发挥作用,例如在微观经济学和地球科学中的应用。

复变函数解析函数例子

复变函数解析函数例子

复变函数解析函数例子1. 什么是复变函数复变函数,即复数域上的函数,它将一个复数映射到另一个复数。

复变函数是数学中重要的概念,它在物理、工程等领域都有广泛的应用。

复变函数的解析函数是其中一个重要的概念,在本文中将详细介绍解析函数的例子及其应用。

2. 解析函数的定义解析函数,也称为全纯函数或可导函数,是指在某个区域内可导的复变函数。

具体而言,如果一个复变函数在某个区域内处处可导,则称该函数在该区域内是解析的。

解析函数具有一些重要的性质,主要包括:连续性、解析性、无奇点、全局可导等。

这些性质使得解析函数在许多领域都有广泛的应用。

3. 解析函数的例子3.1. 多项式函数多项式函数是最简单的解析函数之一。

对于一个具有形如f(z)=a n z n+a n−1z n−1+...+a1z+a0的多项式函数,它在整个复平面上都是解析的。

多项式函数的导数可以通过逐项求导得到,因此它是解析函数。

多项式函数的例子包括:f(z)=z2+2z+1、f(z)=z3−3iz2+z−i等。

这些函数在整个复平面上都是连续且解析的。

3.2. 指数函数指数函数是另一个常见的解析函数。

对于形如f(z)=e z的指数函数,它在整个复平面上都是解析的。

指数函数具有许多重要的性质,比如e z1+z2=e z1e z2和e iθ= cos(θ)+isin(θ)。

指数函数在数学、物理、工程等领域都有广泛的应用,比如在电路分析、量子力学等方面。

它可以表示增长速度、周期性等问题。

3.3. 三角函数三角函数也是常见的解析函数。

对于形如f(z)=sin(z)和f(z)=cos(z)的三角函数,它们在整个复平面上都是解析的。

三角函数具有许多重要的性质,比如sin(z)=12i (e iz−e−iz)和cos(z)=1 2(e iz+e−iz)。

它们在数学、物理、工程等领域中广泛应用,比如在波动、振动等问题中。

4. 解析函数的应用解析函数的应用非常广泛,下面列举其中一些常见的应用:4.1. 数学领域在数学领域中,解析函数被广泛应用于复分析、调和分析等方面。

复变函数第二章

复变函数第二章

第二章全纯函数§2.1习题1.研究下列函数的可微性: (i )();f z z = 解: 0z ≠时00000()()limlimz z z z z z f z f z z z z z →→--=--不存在 这是因为当0z x iy =+时,00000limlim y y y y →→=当0z x iy =+时,00000limlim x x x x →→==故0z ≠时,()f z 不可导.当0z =时,有()(0)i i z f z f r e z z reθθ-∆∆-∆===∆∆∆ 即知()f z z =在0z =也不可导. 从而()f z z =处处不可导. (ii) 2();f z z = 解:0z ≠时00220000()()lim lim z z z z z z f z f z z z z z →→--=--显然不存在. 这是因为当0z x iy =+时0022220000000000()()lim lim 2x x x x x y x y x x x x x x iy x iy x x →→+---+==+--- 当0z x iy =+时,0022220000000000()()2lim lim ()y y y y x y x y y y y y y x iy x iy y y i i→→+---+==+--- 0z =时可导,(0)0f '=.(iii )()Re ;f z z =00000()()Re Re limlimz z z z f z f z z z z z z z →→--=--显然不存在. 这是因为当0z x iy =+时,000lim1x x x x x iy x iy →-=+--.当0z x iy =+时,00000lim0y y x x x iy x iy →-=+--从而()Re f z z =处处不可导 (v) ()f z 为常数不妨设(),f z C =显然'()0f z = 故()f z C =在处处可导.2.设f 和g 都在0z 处可微,且'000()()0,()0f z g z g z ==≠证明:0'0'0()()lim ()()z z f z f z g z g z →=提示:0000()()()limlim ()()()z z z z f z f z f z g z g z g z →→-=- 0000000()()()lim()()()z z f z f z z z f z z z g z g z g z →'--=⋅='--4.设域G 和域D 关于实轴对称,证明:如果()f z 是D 上的全纯函数,那么()f z 是G 上的全纯函数. 提示:00()()()()limlim (),z z f z z f z f z z f z f z z G z z →→⎡⎤+-+-'==∈⎢⎥⎣⎦§2.2习题1.设D 是域,).(D H f ∈如果对每个,D z ∈都有'()0f z =,证明f 是一常数. 证明:因为'()0f z =,而'()f z =u vi x x∂∂+∂∂=0(定理2.2.4) 所以u x ∂∂=0, v x ∂∂=0,而u x ∂∂=v y ∂∂,u y ∂∂=v x ∂-∂.故u y ∂∂=0, vy∂∂=0. 因此f 是一个常数.3.设iy x z +=,证明xy z f =)(在z=0处满足Cauchy-Reimann 方程,但f 在z=0处不可微.提示: u =0v =.直接算偏导.8.设D 是域, ()f H D ∈,f 在D 中不取零值,证明: 对于任意p>0,有2222()p f z xy ⎛⎫∂∂+ ⎪∂∂⎝⎭=2p 2()p f z -2'()f z . 提示:∆=2222x y ∂∂+∂∂= 42z z∂∂∂,将()f z 写成12()()f z f z ⎡⎤⎣⎦, 利用f z ∂∂=0, f z ∂∂=0, fz ∂∂='f , f z∂∂='f ,计算.11.设D 是域,(]:D \ ,0f →-∞ 是非常数的全纯函数,则log ()f z 和Arg ()f z 是D 上的调和函数,而()f z 不是D 上的调和函数.提示: 2221log ()log ()2log|()|2f z f zf z z z∂∆=∆=∂∂21()()2|()|f z f z z f z z ⎛⎫∂∂= ⎪∂∂⎝⎭2()()2|()|f z f z z f z ⎛⎫'∂= ⎪∂⎝⎭()20()f z z f z ⎛⎫'∂== ⎪∂⎝⎭2a r g ()()()i f z f z e f z =对z 求偏导(a r g ())f z z ∂∂=12i '()()f z f z 2z z∂∂∂(a r g ())f z =042z z∂∂∂(())f z =12()'()f z f z - 如果()f z 调和,则'()f z ≡0,从而f 是常数,矛盾.12.设D,G 是域, :f D G →是全纯函数,证明:若u 是G 上的调和函数,则u f 是D 上的调和函数.证明: 因为u 是G 上的调和函数,局部存在全纯函数g ,s.t. Re u g =, 则g f 局部全纯,于是局部有Re()u f g f = ,从而u f 调和.15.举例说明:存在B(0,1)\{0}上的调和函数,它不是B(0,1)\{0}上全纯函数的实部. 解: ()log||u z z =是B(0,1)\{0}上的调和函数,它不是B(0,1)\{0}上全纯函数的实部. (反证) 假设存在B(0,1)\{0}上的全纯函数()f z ,使得Re ()log f z z =, 设()log ||()f z z iv z =+,()v z 是实值函数.则()()||f z iv z ez e =⋅,从而()()1,(0,1)\{0}f z iv z e e z B z==∀∈. 由题2.(iv) 可知()f z e z≡常数, 故存在θ∈ s.t. ()f z i e ze θ= 即()||iv z i z e ze θ⋅=()(arg )iv z i z e e θ+⇒=()2v z argz k θπ⇒=++.由()v z 的连续性可知k 是常数.于是()2argz v z k θπ=--在B(0,1)\{0}连续,不可能.16.设f u iv =+, 000z x iy =+.证明: (i) 如果极限000()()lim Rez z f z f z z z →--存在,那么()00,u x y x ∂∂和()00,vx y y ∂∂存在,并且相等.(ii) 如果极限000()()li m Imz z f z f z z z →--存在,那么()00,u x y y∂∂和()00,v x y x ∂∂存在,而且()00,ux y y∂∂=-()00,v x y x ∂∂. 证明:(i)()00,u x y x ∂∂=00000(,)(,)lim x x u x y u x y x x →-- ()0z x i y =+ ()()000,z x y ==00000(,)(,)lim Rex x f x y f x y x x →--=000()()lim Rez z f z f z z z →--()00,vx y y∂∂=00000(,)(,)limy y v x y v x y y y →-- =00000(,)(,)lim Imy y f x y f x y y y →-- ()0z x i y =+ =()000()()lim Imz z f z f z i z z →---=()00()()lim Im z z f z f z iz z →--=000()()lim Rez z f z f z z z →--(ii)利用[]Im ()Re ()f z if z =-,由(i)即得.1.求映射i z iz w +-=在11-=z 和i z =2处的转动角和伸缩率. 解:因为 z if z i-=+222()()f z i z i iz z i z i ∂+-+==∂++ 122'()(1)if z i =-+=1 1arg '()f z =arg(1)-=π 2221'()(2)22i i f z i ===- 2a r g '()2f z π=-2.设f 是域D 上的全纯函数,且'()f z 在D 上不取零值,试证:(i )对每一个00()u iv f D +∈,曲线0Re ()f z u =和曲线0Im ()f z v =正交; 证明:(i )0u u =和0v v =是uv 平面中的正交直线.因为()0f z '≠,故f 是保角的. 从而曲线0Re ()f z u =和曲线0Im ()f z v =的夹角等于直线0u u =和0v v =的夹角,等于2π1.验证z z e e =证明:令z x iy =+,则z x iy =-(cos sin )z x e e y i y =+(cos sin )z x e e y i y ⇒=- (cos sin )z x e e y i y =-所以z z e e =.3.证明:若1z e =,则必有2,0,1,.z k i k π==±… 证明:1z e =||1x z e e ⇔==,20z Arge y k π=+=0,2,x y k k π⇔==∈Z2z k i π⇔=,k ∈Z .4.设f 是整函数,()0 1.f =证明:(i)若'()(),();z f z f z z f z e =∈≡ 对每个成立则(ii) 若对每个,z ω∈ ,有()()()f z f z f ωω+=,且'(0)1f =,则()z f z e ≡. 证明:(i )''(())()()()()0.z z z z z f z e f z e f z e f z e f z e -----=-=-=()z f z e c -=,11,1c c ⨯==,故()z f z e ≡(ii) ()()()f z f z f ωω''+=,令0()()z f f ωω'=⇒=7.设f 在\(,0]-∞ 中全纯,(1)0.f =证明: (i )若(]'()(),\,0,()log f z f z ez f z z -=∈-∞≡ 则;(ii)若()()()f z f z f ωω=+,(]\,0z ∈-∞ ,()0,ω∈∞,且'(1)1f =,则()log f z z ≡. 证明:(i )令()()f z F z ez =-,则'()'()()10f z F z e f z =⋅-=()F z c ⇒=(常数)令z=1,则(1)0110f e c -=-==F(1)=e.故()()log (1)1f z e z f z z f ⎫=⇒=⎬=⎭(ii)提示()()f z f z ωω''=,令1z =得1()f ωω'=.8.证明:32)(2++=z z z f 在()1,0B 中单叶.证明: 取()12120,1,z z B z z ∀∈≠,12()()f z f z -=1212()(2)z z z z -++()12121212,0,1()()0()()z z z z B f z f z f z f z ≠∈⇒-≠⇒≠,故)(z f 在()0,1B 中单叶.12.设f 在(]\,0-∞ 上全纯,(1)1,0.f μ=>证明:)(i 若(]'()(),\,0f z f z z zμ=∈-∞C ,则arg ();i z f z z e μμ≡ )(ii 若()()()f z f z f ωω=,(]\,0z ∈-∞C ,()0,ω∈∞,且'(1),f μ=则arg ()i z f z z e μμ≡证明:(i) 要证arg ()i zf z z eμμ=,即证log ()z f z e μ=()log ()0zf z eμ'=,及(1)1f =log ()||z i Argz f z e z e μμμ⇒==⋅.(ii) ()()()zf z f z f ωω'=令1ω=得()()zf z f z μ= 即()()f z f z zμ'= 14.证明:)(i cos()cos cos sin sin ;z z z ωωω+=⋅-⋅ )(ii sin()sin cos cos sin ;z z z ωωω+=⋅+⋅证明:(i) cos()sin()z i z ωω+++()i z e ω+= ()c o s c o s s i n s i n s i n c o s c os s i n z z i z zωωωω=-++ (1 ) 在上式中以z -,ω-代入,得cos()sin()z i z ωω+-+()cos cos sin sin sin cos cos sin z z i z z ωωωω=--+ (2) (1)+(2)得 cos()cos cos sin sin z z z ωωω+=-(1)(2)得 sin()sin cos cos sin z z z ωωω+=+19.证明: sin z ω=将半条形域:Re ,Im 022z z z ππ⎧⎫∈-<<>⎨⎬⎩⎭一一地映为上半平面.证明: sin cos()cos()22z z z ππω==-=-令2u z π=-,则cos w u =是由指数,(Re 0,Im 0),iu z e u u π=-<<>与Rokovsky 函数{}11(),((0,1)\0,0),2zz z B argz ωπ=+∈-<<的复合.故sin w z =将半条形区域{:Re ,Im 0}22z z z ππ∈-<<> 一一映成上半平面.20.证明(0,1)B 是2()(1)zf z z =-的单叶性域,并求出((0,1))f B . 证明: []1212122121()()()(1)(1)z z f z f z z z z z --=--- 给出f 的单叶性0z ≠时, 112()z f z z=+-由Rokovsky 函数的性质易得1((0,1))\(,]4f B =-∞-21.当z 按逆时针方向沿圆周{:2}z z =}旋转一圈后,计算下列函数辐角的增量:(iii) 124(23);z z +- (iv) 1211z z -⎛⎫⎪+⎝⎭. 解:(iii) 124(23)z z +-14[(3)(1)]z z =+⋅- 3-在圆周||2z =外,1在圆周||z =内所以当z 按逆时针方向沿圆周旋转一圈后, 辐角的增量为2π(iv) 11122221(1)(1)1(1)(1)1|1||1|z z z z z z z z ⎡⎤⎡⎤--+⎛⎫==-+⎢⎥⎢⎥ ⎪+++⎝⎭⎣⎦⎣⎦1z =±均在圆周||2z =内,所以辐角的增量为0.22.设1(),0 1.(1)p p z f z p z -=<<-证明:f 能在域[]\0,1D = 上选出单值的全纯分支.证明: 11()(1)1pp i p i z z f z e z e z z ππ-⎛⎫== ⎪+-⎝⎭只需考虑()1pz g z z ⎛⎫= ⎪-⎝⎭设γ是D 中的简单闭曲线,则当z 沿γ逆时针绕行一周时, 若γ内部不含[0,1],则辐角增量为0, 若[0,1]位于γ内部,则辐角增量为22()0p p ππ+-=.故g 从而f 能在域[]\0,1D = 上选出单值的全纯分支.23.证明: 21()z f z Log z ⎛⎫-= ⎪⎝⎭能在域(][]()\,10,1D =-∞-⋃ 上选出单值的全纯分支.证明: 21z z-将(][]()\,10,1-∞-⋃ 映入(]\,0-∞ ,而对数函数在(]\,0-∞ 上能选出全纯分支.24.设单叶全纯映射f 将域D 一一地映为G ,证明:G 的面积为2'().f z dxdy ⎰⎰证明:令iy x z +=,),(),()(y x iv y x u z f +=变换行列式(,)(,)u u v x v x y x ∂∂∂=∂∂∂ uy v y ∂∂∂∂= u v v ux y x y∂∂∂∂⋅-⋅∂∂∂∂= 22()()u v x x ∂∂+∂∂= 2u vix x∂∂+∂∂ = 2'()f z∴ 2'(,)||()(,)G DDu v S dxdy f z dxdy x y ∂==∂⎰⎰⎰⎰.25.设f 是域D 上的单叶全纯映射,)(),(βαγ≤≤=t t z 是D 中的光滑曲线, 证明:(())f t ωγ=的长度为''(())()f t t dt βαγγ⎰证明:''(())()d f t t dtωγγ= 故(())w f t γ=的长度为''(())()f t t dt βαγγ⎰26.设D 是z 平面上去掉线段[][]1,,1,i i -和射线z it = ()1t ≤<∞后得到的域,证明函数2(1)Log z -能在D 上分出单值的全纯分支.设f 是满足0)0(=f 的那个分支,试计算)2(f 的值.解: 取D 中任一简单闭曲线γ,则1±都不在γ内部,从而z 沿γ逆时针绕行一周时,21(1)(1)z z z -=-+辐角的增量为0,故能选出全纯分支.设22()log |1|(1)2f z z iarg z k π=-+-+. 由(0)00f k =⇒=, 故(2)log3(3)log3f iarg i π=+-=+.§2.5习题1. 试求把上半平面映为上半平面的分式线性变换,使得∞,0,1分别映为0,1,∞.解: 1()1T z z ω-==-2. 证明: 分式线性变换az b cz dω+=+把上半平面映为上半平面的充要条件是d c b a ,,,都是 实数,而且0>-bc ad .证明: 必要性:因为线性变换把实轴映为实轴, 故az b cz dω+=+中d c b a ,,,都是实数; 因为2()()ac bd ad bc i i cω++-=属于上半平面,故0>-bc ad . 充分性:对0,1,,z =∞都有()z ω∈R ,从而ω将实轴映为实轴,又Im ()0i ad bc ω=->,故将上半平面映为上半平面.4.试求把单位圆盘的外部{}1:>z z 映为右半平面{}:Re 0ωω>的分式线性变换,使得 (i)1,-i,-1分别变为i,0,-i;(ii)-i,i,1分别变为i,0,-i.解:(i)()z i T z z i ω+==- (ii)()(2)21z i T z i z i ω-==-+- 10.设()az b T z cz d +=+是一个分式线性变换,如果记a c ⎛ ⎝ 1b d -⎫⎪⎭=αγ⎛ ⎝ βδ⎫⎪⎭,那么1()z T z z αβγδ-+=+. 证明:a c⎛ ⎝ 1b d -⎫⎪⎭=d c ⎛ -⎝ b a -⎫⎪⎭=αλ⎛ ⎝ βδ⎫⎪⎭ ()az b T z cz d +=+()()czT z dT z az b ⇒+=+ 1()b dz z T z cz a z αβγδ--+⇒==-+ 从而证得1()z T z z αβγδ-+=+.11.设11111)(d c b a z T ++=,=)(2z T 2222d c b a ++是两个分式线性变换,如果记11a c ⎛ ⎝ 11b d ⎫⎪⎭22a c ⎛ ⎝ 22b d ⎫⎪⎭=a c ⎛ ⎝ b d ⎫⎪⎭那么12()()az b T T z cz d +=+ . 证明: 12()()T T z =1212121212121212a a z ab bc z bd c a z c b d c z d d ++++++ 又 11a c ⎛ ⎝ 11b d ⎫⎪⎭22a c ⎛ ⎝ 22b d ⎫⎪⎭=a c ⎛ ⎝ b d ⎫⎪⎭∴121212121212a abc a a b bd c c b d d d +=⎧⎪+=⎨⎪+=⎩⇒1212121212121212a a z a b b c z b d az b c a z c b d c z d d cz d ++++=++++ 从而12()()az b T T z cz d +=+ .12.设Γ是过-1和1的圆周,z 和w 都不在圆周上.如果,1=zw 那么z 和w 必分别于Γ的内部或外部.证明:由圆的对称性知Γ的圆心必然在虚轴上,设圆周与虚轴交个交点为12z z ,. 又由平面几何知识知12||||1z z ⋅=,从而211z z =. 设z 在Γ内部,则z 位于走向1,1z ,-1的左边,因此分式线性变换1(x)T x =,将1()z T z =映为走向1(1)()(1)T T z T -,,,即1,2z ,-1的左边.注意()T Γ=Γ,走向1,2z ,-1的左边即Γ的外部,故1z 在Γ外部.15.求一单叶全纯映射,把除去线段[]i +1,0的第一象限映为上半平面.提示: 先作变换41z z =,再作412+=z z ,最后作变换23z z =可得.16. 求一单叶全纯映射,把半条形域:Re ,Im 022z z z ππ⎧⎫-<<>⎨⎬⎩⎭映为上半平面,且把2π,0,2π-分别映为1,-1,0. 提示: 先作变换1z iz = ,再作12z e z =,)1(21,33423z z z iz z +=-=.即11()2iz iz w ie ie=-+- 17.求一单叶全纯映射,把除去线段[]hi a a +,的条形域{}:0Im 1z z <<映为条形域{}:0Im 1w w <<,其中,a 是实数, 01h <<提示:先作变换1z z e π=,再作变换ππa a e z e z z +-=112便可得结论.19.求一单叶全纯映射,把除去线段[]2,1的单位圆盘的外部映为上半平面.提示:先作变换111z z z -=+,再作变换221324351,,,9z iz z z z z z ===+=即w =.。

复变函数科普知识

复变函数科普知识

复变函数科普知识1.简介复数的概念起源于求方程的根,在二次、三次代数方程的求根中就出现 了负数开平方的情况。

在复变函数 复变函数很长时间里,人们对这类数不能理解。

但随着数学的发展,这类数的重要性就日益显现出来。

复数的一般形式是:a+bi,其中i是虚数单位。

2.历史复变函数 复变函数复变函数论产生于十八世纪。

1774年,欧拉在他 的一篇论文中考虑了由复变函数的积分导出的两个方程。

而比他更早时,法国数学家达朗贝尔在他的关于流体力学的论文中,就已经得到了它们。

因此,后来人们提到这两个方程,把它们叫做“达朗贝尔-欧拉方程”。

到了十九世纪,上述两个方程在柯西和黎曼研究流体力学时,作了更详细的研究,所以这两个方程也被叫做“柯西-黎曼条件”。

复变函数论的全面发展是在十九世纪,就像微积分的直接扩展统治了十八世纪的数学那样,复变函数这个新的分支统治了十九世纪的数学。

当时的数学家公认复变函数论是最丰饶的数学分支,并且称为这个世纪的数学享受,也有人称赞它是抽象科学中最和谐的理论之一。

为复变函数论的创建做了最早期工作的是欧拉、达朗贝尔,法国的拉普拉斯也随后研究过复变函数的积分,他们都是创建这门学科的先驱。

后来为这门学科的发展作了大量奠基工作的要算是柯西、黎曼和德国数学家维尔斯特拉斯。

二十世纪初,复变函数论又有了很大的进展,维尔斯特拉斯的学生,瑞典数学家列夫勒、法国数学家彭加勒、阿达玛等都作了大量的研究工作,开拓了复变函数论更广阔的研究领域,为这门学科的发展做出了贡献。

复变函数论在应用方面,涉及的面很广,有很多复杂的计算都是用它来解决的。

比如物理学上有很多不同的稳定平面场,所谓场就是每点对应有物理量的一个区域,对它们的计算就是通过复变函数来解决的。

比如俄国的茹柯夫斯基在设计飞机的时候,就用复变函数论解决了飞机机翼的结构问题,他在运用复变函数论解决流体力学和航空力学方面的问题上也做出了贡献。

复变函数论不但在其他学科得到了广泛的应用,而且在数学领域的许多分支也都应用了它的理论。

复变函数复习提纲

复变函数复习提纲

复变函数复习提纲一、复数及复平面上的运算1.复数的定义和基本性质2.复数的表示形式:直角坐标形式和极坐标形式3.复数的加法和减法4.复数的乘法和除法5.复数的共轭、模和幅角二、复变函数的定义1.复变函数的定义和常见符号表示2.复变函数的实部和虚部3.复变函数的可导性和全纯性4.复变函数的解析函数和全纯函数5.复变函数与实变函数的区别三、复变函数的基本运算1.复变函数的和、差、积、商的性质2.复变函数的乘方和开方3.复变函数的复合函数和反函数4.复变函数的三角、指数和对数函数5.基本初等函数的推广四、复变函数的级数展开1.复变函数的幂级数展开2.零点的意义和展开中的唯一性3.幂级数的敛散性和收敛半径4.幂级数的和函数和导函数5.复变函数的泰勒级数展开和洛朗级数展开五、复变函数的积分1.复变函数的定积分和不定积分2.瑕积分和主值积分的定义3.复变函数的原函数和柯西-黎曼积分定理4.瑕积分和主值积分的计算方法5.狄利克雷定理和焦函数的应用六、解析函数的应用1.几何转化和连续映射2.物理应用:流体流动和电场问题3.工程应用:电阻网络和热传导问题4.统计应用:随机过程和随机变量5.数学应用:多复变数函数和复变函数的边界性质七、复变函数的解析延拓1.裂点和分岔点的概念和性质2.加点后的解析延拓和解析延拓的唯一性3.互补法和不动点法的应用4.点列内闭包性质和整函数性质的判别5.亚纯函数和亚纯函数的零点性质八、复变函数的几何应用1.复变函数的映射和对应关系2.线性变换和保持角度的特殊变换3.保形映射和自共轭函数的性质4.圆盘映射和单位圆盘函数5.黎曼映射和分式线性变换的应用九、复变函数的调和函数1.调和方程和调和函数的概念2.调和函数的基本性质和解析条件3.核函数和调和函数的唯一性4.调和函数的积分表示和傅里叶展开5.调和函数的应用:电势和温度分布以上是复变函数的复习提纲,包括了复数及复平面上的运算、复变函数的定义、复变函数的基本运算、复变函数的级数展开、复变函数的积分、解析函数的应用、复变函数的解析延拓、复变函数的几何应用和复变函数的调和函数等内容。

《复变函数映射》课件

《复变函数映射》课件

4

介绍Schwarz-Christoffel映射及其在 实际中的应用。
线性变换和仿射变换
探索线性变换和仿射变换对复变函数 的映射作用。
双全纯映射以及作用
双全纯映射在复变函数的映射中具有 重要作用。
复变函数的应用
线性分式变换及其应用
线性分式变换在复变函数的应用中发挥着重要 的作用。
上对数函数和多重连通域
探索上对数函数和多重连通域的关系。
球面上的全纯函数及其应用
应用于物理的调和函数
了解球面上的全纯函数以及它们在物理中的应用。 将调和函数应用于物理问题的解决。
复变函数的展望
微分形式和调和形式
深入研究微分形式和调和形式的关联及其在 复变函数中的应用。
复植根和三维建模
探索复植根的特性,并了解它在三维建模中 的应用。
复平面及其表示方法
复平面将帮助我们可视化复数,学习不同表 示方法对理解复变函数至关重要。
全纯函数和亚纯函数的定义
全纯函数和亚纯函数是我们研究复变函数映 射时的关键概念。
复变函数的映射
1
保角变换和相应的代数特征
2
保角变换是复变函数映射中的重要概
念,了解它们的代数特征。
3
Schwarz-Christoffel映射及其作
3 复变函数映射在未来的应用展望
展望复变函数映射在未来发展中的可能性和应用。
Bergman空间及其应用
了解Bergman空间的概念以及它在复变函数 领域的重要性。
计算机辅助设计中的应用
介绍复变函数映射在计算机辅助设计中的实 际应用。
ቤተ መጻሕፍቲ ባይዱ语
1 复变函数映射在数学和物理中的应用
总结复变函数映射在数学和物理领域中的实际应用。

数学中的调和映射

数学中的调和映射调和映射是一类在复平面上定义的函数,具有非常重要的数学性质和应用。

从数学角度来看,调和映射的概念涉及到复变函数论和调和函数论的交叉研究领域。

本文将介绍调和映射的定义、性质和应用,并探讨其在数学领域中的重要作用。

一、定义与性质调和映射是指一个定义在开集上的复变函数,它满足某些特殊的微分方程条件。

具体而言,设函数$F(z)=u(x,y)+iv(x,y)$是定义在开集内的全纯函数,其中$u$和$v$是它的实部和虚部。

如果$F$满足某一类特殊的Laplace方程,即$\Delta u=0$,则称$F$为调和映射。

调和映射具有一些重要的性质。

首先,它们是解析函数的实部或虚部,因此具有良好的解析性质。

其次,调和映射是保角的,意味着它们不改变曲线或区域上的角度。

此外,调和映射也是共形映射,保持局部的形状和大小不变。

二、调和映射的应用调和映射在数学和物理领域中具有广泛的应用。

其中一些应用包括:1. 电场与流体力学:调和映射可以用来描述电场的分布和流体的流动,例如河流、气候等。

通过研究调和映射,我们能够更好地理解电磁现象和流体运动。

2. 圆盘映射:调和映射在圆盘映射中有重要应用。

圆盘映射是指将一个单位圆盘映射到平面上的区域。

圆盘映射在几何学和复变函数论中都具有重要地位,而调和映射提供了一种有效的方式来构造圆盘映射。

3. 界面问题:调和映射在界面问题中扮演着关键角色。

界面问题是研究液滴、泡沫等界面上的物理现象。

通过调和映射,我们可以对界面上的曲线和曲面进行描述和分析。

4. 表面物理学:调和映射在表面物理学中也有广泛的应用。

表面物理学是研究材料表面的物理性质和表面现象的学科。

调和映射可以帮助我们理解材料的表面形态和表面张力等现象。

5. 三维建模与图像处理:调和映射在三维建模和图像处理中也有一定的应用。

利用调和映射,可以将一个复杂的三维形状映射为简单的几何形状,从而方便进行进一步的模型处理和分析。

总结:调和映射是数学中一个重要的概念,具有重要的性质和广泛的应用。

复变函数与解析函数

复变函数与解析函数复变函数是数学中一个非常重要的分支,也是其它自然科学中涉及到复数的问题所必须掌握的基础知识。

它的研究对象是由复变量组成的函数,在复平面上有非常丰富的性质和应用。

解析函数是复变函数中的一个重要概念,是指在某个区域内可导的复变函数,它在物理、工程、数学等领域中有着广泛的应用。

一、复变函数基础复数包含实数和虚数两个部分,即 $z=a+b i$,其中 $a$ 和$b$ 是实数,$i$ 是虚数单位,满足 $i^2=-1$。

复平面可使用一个点 $(a,b)$ 表示一个复数 $z=a+b i$,其中向上为正方向,向右为正方向。

我们可以将复平面分为实轴和虚轴两部分,实轴上的点是实数 $a$,虚轴上的点是复数 $b i$。

对于一个复变量 $z=x+y i$,可以分别表示为实部 $x$ 和虚部$y$,即 $x=Re(z), y=Im(z)$。

其中,共轭复数(conjugate complex)的实部不变、虚部相反,即 $z^* = x - yi$。

绝对值定义为模长(modulus)或者复数的模数(magnitude):$|z|=\sqrt{x^2+y^2}$。

表示复数 $z$ 在复平面上到原点的距离。

二、复变函数的概念在实数域上,函数是由一个或多个自变量构成的表达式或规则,对应一个或多个因变量。

像$y=f(x)$ 这样的表达式就是一个函数。

在复数域上,一个函数 $f(z)$ 由一个复变量 $z=x+y i$ 构成,可看作 $(x,y)$ 上的某种标量函数。

即对于 $x,y \in \mathbb{R}$,$z=x+y i \in \mathbb{C}$,$f(z)$ 可以表示为$f(x+yi)=u(x,y)+v(x,y)i$ 的形式,其中 $u(x,y)$ 和 $v(x,y)$ 是实函数。

我们可以把 $\mathbb{C}$ 中的点 $z$ 对应到复平面上,把点$z$ 对应的函数值 $f(z)$,对应到复平面上的另一个点 $w$。

复变函数总结

复变函数总结在数学领域中,复变函数是一种特殊的函数,其定义域和值域都是复数集。

它有许多独特的性质和应用,深受数学家和物理学家的喜爱和重视。

在本文中,我们将对复变函数的几个重要概念和应用进行总结和讨论。

第一部分:复数和复平面复变函数的基础是复数的概念。

复数可以表示为a+bi的形式,其中a和b分别是实数部分和虚数部分。

虚数单位i满足i^2=-1,使得复数集在数轴上获得了垂直的“第二个维度”。

复数还可以用极坐标形式r(cosθ+isinθ)表示,其中r是模长,θ是辐角。

复平面是将复数集映射到一个二维平面上的方法。

实部和虚部可以分别看作在坐标轴上的x轴和y轴坐标,使得复数的加减乘除运算可以在平面上直观地表示。

第二部分:复变函数的定义复数的加减乘除等运算都可以直接应用到复变函数中。

一般地,复变函数可以表示为f(z)=u(x,y)+iv(x,y),其中u和v是实函数,x 和y是复平面上的坐标。

如果f(z)满足柯西-黎曼方程u_x=v_y,u_y=-v_x,那么我们称这个函数为全纯函数。

全纯函数是复变函数的重要类别之一,有着许多重要的性质和应用。

第三部分:解析函数和调和函数解析函数是一个更严格的概念,它要求函数在其定义区域内处处可导。

而全纯函数只要求满足柯西-黎曼方程即可。

解析函数在数学和物理中有广泛的应用,如调和函数、特殊函数等。

调和函数是解析函数的一种特殊情况,它在某个区域内满足拉普拉斯方程△u=0。

调和函数在电势场、热传导等领域有着重要的物理意义。

第四部分:留数定理和复积分留数定理是复变函数理论中的一大亮点。

该定理通过计算函数在奇点处的留数,从而计算出复积分的值。

留数定理在数学分析和物理计算中有着重要的应用,如计算辐射场、傅里叶变换等。

复积分是沿着曲线路径对函数进行积分的一种方法,它在物理学和工程学中有着广泛的应用。

第五部分:解析延拓和边界值问题解析延拓是复变函数中的一个重要概念,它指的是将函数在某个已知区域的解析性质推广到更大区域的过程。

复变函数教学大纲

复变函数教学大纲一、引言复变函数是数学中重要的概念和工具之一,它在多个学科领域中具有广泛的应用。

本教学大纲旨在介绍复变函数的基本概念、性质和相关定理,培养学生的复变函数思维和解题能力。

二、基础知识1. 复数的基本概念1.1 复数的定义和表示1.2 复数的运算规则1.3 复数平面2. 复数函数的基本性质2.1 复数函数的定义2.2 复数函数的分类2.3 复数函数的连续性三、解析函数与调和函数1. 解析函数的概念1.1 解析函数的定义1.2 拟解析函数1.3 解析函数的运算性质2. 调和函数的概念与性质2.1 调和函数的定义2.2 调和函数的性质2.3 调和函数的应用案例四、复变函数的微积分1. 复变函数的导数与全纯函数1.1 复变函数的导数定义1.2 全纯函数的性质1.3 Cauchy-Riemann方程2. 积分和级数2.1 线积分的定义2.2 级数收敛性与收敛域2.3 保形映射与调和函数的全纯性五、留数理论与积分计算1. 留数的概念与计算1.1 留数的定义1.2 计算留数的方法1.3 应用案例:圆周积分计算2. 积分计算与柯西公式2.1 柯西公式的概念与应用2.2 柯西积分定理与柯西奇点定理2.3 辐角原理与Rouché定理六、解析函数的应用1. 解析函数在物理学中的应用1.1 电磁场中的解析函数1.2 流体力学中的解析函数1.3 其他物理学领域的应用2. 解析函数在工程学中的应用2.1 线性系统与解析函数2.2 信号处理与解析函数2.3 通信系统与解析函数七、实际案例与综合应用1. 热区变换与应用1.1 极坐标变换1.2 电场中的热区变换2. 综合案例分析2.1 基于复变函数的工程问题求解2.2 基于复变函数的物理问题求解八、教学评估与提升1. 教学评估方式1.1 课堂表现评估1.2 作业和实验评估1.3 考试评估2. 教学内容提升2.1 添加实例和案例分析2.2 引入计算机辅助教学2.3 拓展教材资料和参考书目九、总结通过本次复变函数教学,学生将掌握复数的基本概念和运算规则,理解解析函数和调和函数的性质,学会应用留数理论和积分计算复变函数,了解复变函数在不同学科和领域的应用,并通过综合应用案例提升解题能力和综合分析能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

复变函数中的全纯函数与调和函数全纯函数和调和函数是复变函数中两个重要的概念。

它们在数学和物理学等领域扮演着重要的角色。

本文将详细介绍全纯函数和调和函数的定义、性质以及它们之间的关系。

一、全纯函数的定义和性质
1. 全纯函数的定义
在复变函数理论中,全纯函数是指在其定义域上处处可导的复变函数。

具体而言,设$f(z)$是定义在区域$D$上的复变函数,如果$f'(z)$在$D$中的每一个点上存在,则称$f(z)$是$D$上的全纯函数。

2. 全纯函数的性质
全纯函数具有以下几个重要性质:
(1)全纯函数的实部和虚部满足柯西-黎曼方程,即实部和虚部的一阶偏导数满足一定的关系。

(2)全纯函数的导函数也是全纯函数。

(3)全纯函数在其定义域上无奇点,即没有极点和本性奇点。

(4)全纯函数在闭合曲线上的积分为0。

二、调和函数的定义和性质
1. 调和函数的定义
在复变函数理论中,调和函数是指在其定义域上满足拉普拉斯方程的函数。

具体而言,设$u(x,y)$是定义在区域$D$上的实函数,如果$u(x,y)$满足拉普拉斯方程$\Delta u=0$,则称$u(x,y)$是$D$上的调和函数。

2. 调和函数的性质
调和函数具有以下几个重要性质:
(1)调和函数的导函数是调和函数。

(2)调和函数的实部和虚部构成调和函数。

(3)调和函数在区域$D$的边界上的限制称为调和函数的边界值。

(4)如若调和函数在$D$的每一点处为0,则调和函数在$D$内为恒为0的常数函数。

三、全纯函数与调和函数的关系
在复变函数理论中,全纯函数和调和函数有着密切的联系:
(1)全纯函数的实部和虚部都是调和函数。

这是因为实部和虚部满足柯西-黎曼方程和拉普拉斯方程。

(2)设$f(z)$是定义在区域$D$上的全纯函数,则$f(z)$的实部和虚部都是$D$上的调和函数。

这是因为全纯函数的实部和虚部都满足拉普拉斯方程。

(3)函数$f(z)=u(x,y)+iv(x,y)$是全纯函数的充要条件是$u(x,y)$和$v(x,y)$满足柯西-黎曼方程和拉普拉斯方程。

其中,$u(x,y)$和
$v(x,y)$分别为$f(z)$的实部和虚部。

综上所述,全纯函数和调和函数在复变函数理论中具有重要的地位和应用。

它们的定义、性质以及它们之间的关系对于理解和研究复变函数具有重要意义。

相关文档
最新文档