推理与证明(综合法、分析法与反证法)

推理与证明(综合法、分析法与反证法)
推理与证明(综合法、分析法与反证法)

推理与证明

综合法与分析法分析法教学设计

综合法与分析法分析法教 学设计 Final approval draft on November 22, 2020

综合法与分析法——分析法 一、教材分析 1教材背景 生活中存在这样那样的推理,证明的过程离不开推理;而合情推理所得的结论是需要证明的,数学结论的正确性也必须通过逻辑推理的方式加以证明。本节的证明方法,蕴含着解决数学问题常用的思维方式,也是培养训练学生分析问题,解决问题能力的重要内容。 2地位与作用 《综合法与分析法》是直接证明的两类基本方法。是在学习了合情推理与演绎推理的基础上,学习证明数学结论的两种常见方法,它不是孤立存在的,这种证明的方法渗透到函数,三角函数,数列,立几,解析几何等等。可见,直接证明的方法在中学数学里占有重要地位的。 现在的高考中不会单独命制直接证明的试题,而是把它与函数、数列、解析几何等问题相结合命制成综合性考题,重在考察学生的逻辑思维能力,这类问题立意新颖,抽象程度高,更能体现高观点、低起点,深入浅出的高考命题特点。 二、学情分析 1.有利因素 学生在数学的学习中已经初步形成了一定的证明思想,例如初中阶段的几何证明;高一学习了一元二次不等式,初步证明了一些不等式的问题;在本节课前,学习了合情推理与演绎推理,都为本节课的学习打下了基础。 2.不利因素 学生对已学知识的应用意识不强;三角代换,代数式的变形没有目的性,随意性较大。特别是与其他章节知识的交汇存在很大障碍。 三、目标分析 根据《高中数学教学大纲》的要求和教学内容的结构特征,依据学生学习的心理规律和素质教育的要求,结合学生的实际水平,我制定本节课的教学目标如下: 1知识目标 了解直接证明的两种基本方法——分析法和综合法;了解分和综合法的思考过程、特点.能运用综合法,分析法证题。 2能力目标 通过分析法与综合法的学习,提升分析解决问题的能力。 3德育目标 通过分析法与综合法的学习,体会数学思维的严密性。 四、重点:了解分析法的思考过程、特点。 难点:分析法的思考过程、特点 五、学习方法:探析归纳,讲练结合 六、学习过程 (一)、复习:直接证明的方法:综合法。 (二)、引入新课 分析法和综合法是思维方向相反的两种思考方法。在数学解题中,分析法是从数学题的待证结论或需求问题出发,一步一步地探索下去,最后达到题设的已知条件。综合法则是从数学题的已知条件出发,经过逐步的逻辑推理,最后达到待证结论或需求问题。对于解答证明来说,分析法表现为执果索因,综合法表现为由因导果,它们

反证法证明题简单

反证法证明题简单 TPMK standardization office【 TPMK5AB- TPMK08- TPMK2C- TPMK18】

反证法证明题 例1.已知A ∠,B ∠,C ∠为ABC ?内角. 求证:A ∠,B ∠,C ∠中至少有一个不小于60o . 证明:假设ABC ?的三个内角A ∠,B ∠,C ∠都小于60o , 即A ∠<60o ,B ∠<60o ,C ∠<60o , 所以O 180A B C ∠+∠+∠<, 与三角形内角和等于180o 矛盾, 所以假设不成立,所求证结论成立. 例2.已知0a ≠,证明x 的方程ax b =有且只有一个根. 证明:由于0a ≠,因此方程ax b =至少有一个根b x a = . 假设方程ax b =至少存在两个根, 不妨设两根分别为12,x x 且12x x ≠, 则12,ax b ax b ==, 所以12ax ax =, 所以12()0a x x -=. 因为12x x ≠,所以120x x -≠, 所以0a =,与已知0a ≠矛盾, 所以假设不成立,所求证结论成立. 例3.已知332,a b +=求证2a b +≤. 证明:假设2a b +>,则有2a b >-, 所以33(2)a b >-即3238126a b b b >-+-,

所以323281266(1)2a b b b b >-+-=-+. 因为26(1)22b -+≥ 所以332a b +>,与已知332a b +=矛盾. 所以假设不成立,所求证结论成立. 例4.设{}n a 是公比为的等比数列,n S 为它的前n 项和. 求证:{}n S 不是等比数列. 证明:假设是{}n S 等比数列,则2213S S S =?, 即222111(1)(1)a q a a q q +=?++. 因为等比数列10a ≠, 所以22(1)1q q q +=++即0q =,与等比数列0q ≠矛盾, 所以假设不成立,所求证结论成立. 例5.是无理数. 是有理数,则存在互为质数的整数m ,n m n =. 所以m =即222m n =, 所以2m 为偶数,所以m 为偶数. 所以设*2()m k k N =∈, 从而有2242k n =即222n k =. 所以2n 也为偶数,所以n 为偶数. 与m ,n 互为质数矛盾. 是无理数成立. 例6.已知直线,a b 和平面,如果,a b αα??,且//a b ,求证//a α。

综合法与分析法(公开课教案)

肥东锦弘中学高中部公开课教案设计 2. 2 .1 综合法与分析法 授课时间:2013.4.16下午第一节 地点:高二(15)班 授课人:赵尚平 一.教材分析 《直接证明与间接证明》是在学习了推理方法的基础上学习的,研究的是如何正确利用演绎推理来证明问题.本节课是《直接证明与间接证明》的第一节,主要介绍了两种证明方法的定义和逻辑特点,并引导学生比较两种证明方法的优点,进而灵活选择证明方法,规范证明步骤.本节课的学习需要学生具有一定的认知基础,应尽量选择学生熟悉的例子. 二.教学目标 1.知识与技能目标 (1)了解直接证明的两种基本方法:综合法和分析法. (2)了解综合法和分析法的思维过程和特点. 2.过程与方法目标 (1)通过对实例的分析、归纳与总结,增强学生的理性思维能力. (2)通过实际演练,使学生体会证明的必要性,并增强他们分析问题、解决问题的能力. 3.情感、态度及价值观 通过本节课的学习,了解直接证明的两种基本方法,感受逻辑证明在数学及日常生 活中的作用,养成言之有理、论之有据的好习惯,提高学生的思维能力. 三.教学重难点 重点:综合法和分析法的思维过程及特点. 难点:综合法和分析法的应用. 四.教具准备:多媒体. 五.教法与学法:师生合作探究 六.教学过程: (一)创设情境 引入新课 证明对我们来说并不陌生,我们在上一节学习的合情推理,所得的结论的正确性就是要证明的,并且我们在以前的学习中,积累了较多的证明数学问题的经验,但这些经验是零散的、不系统的,这一节我们将通过熟悉的数学实例,对证明数学问题的方法形成较完整的认识. (二) 新 课 讲 授 合情推理分为归纳推理和类比推理,所得的结论的正确性是要证明的,数学中的两大基本证明方法——直接证明与间接证明. 思考:已知a ,b >0,求证2222 ()()4a b c b c a abc +++≥ 设计意图:引导学生应用不等式证明以上问题,引出综合法的定义. 证明:因为222,0b c bc a +≥>, 所以22()2a b c abc +≥, 因为222,0c a ac b +≥>, 所以22()2b c a abc +≥. 因此, 2222()()4a b c b c a abc +++≥.

数学高二综合法与分析法教学案 选修2-2

高中数学 2-2-1综合法与分析法同步检测选修2-2 课前预习学案 一、预习目标: 了解综合法与分析法的概念,并能简单应用。 二、预习内容: 证明方法可以分为直接证明和间接证明 1.直接证明分为和 2.直接证明是从命题的或出发,根据以知的定义, 公里,定理,推证结论的真实性。 3.综合法是从推导到的方法。而分析法是一种从 追溯到的思维方法,具体的说,综合法是从已知的条件出发,经过逐步的推理,最后达到待证结论,分析法则是从待证的结论出发,一步一步寻求结论成立的条件,最后达到题设的以知条件或以被证明的事实。综合法是由导,分析法是执索。 三、提出疑惑 疑惑点疑惑内容 课内探究学案 一、学习目标 让学生理解分析法与综合法的概念并能够应用 二、学习过程: 例1.已知a,b∈R+,求证: 例2.已知a,b∈R+,求证:

例3.已知a,b,c ∈R ,求证(I ) 课后练习与提高 1.(A 级)函数???≥<<-=-0 ,; 01,sin )(12x e x x x f x π,若,2)()1(=+a f f 则a 的所有可能值为 ( ) A .1 B .22 - C .21,2-或 D .21,2 或 2.(A 级)函数x x x y sin cos -=在下列哪个区间内是增函数 ( ) A .)2 3,2( π π B .)2,(ππ C .)2 5,23( π π D .)3,2(ππ

3.(A 级)设b a b a b a +=+∈则,62,,2 2R 的最小值是 ( ) A .22- B .335- C .-3 D .2 7 - 4.(A 级)下列函数中,在),0(+∞上为增函数的是 ( ) A .x y 2 sin = B .x xe y = C .x x y -=3 D .x x y -+=)1ln( 5.(A 级)设c b a ,,三数成等比数列,而y x ,分别为b a ,和c b ,的等差中项,则 =+y c x a ( ) A .1 B .2 C .3 D .不确定 6.(A 级)已知实数0≠a ,且函数)1 2()1()(2 a x x a x f + -+=有最小值1-,则a =__________。 7.(A 级)已知b a ,是不相等的正数,b a y b a x +=+= ,2 ,则y x ,的大小关系是 _________。 8.(B )若正整数m 满足m m 10210 5121 <<-,则)3010.02.(lg ______________≈=m 9.(B )设)(),0)(2sin()(x f x x f <<-+=?π?图像的一条对称轴是8 π =x . (1)求?的值; (2)求)(x f y =的增区间; (3)证明直线025=+-c y x 与函数)(x f y =的图象不相切。 10.(B )ABC ?的三个内角C B A ,,成等差数列,求证:c b a c b b a ++=+++3 11

综合法与分析法(二)

2.2.1 综合法与分析法(二) 一、基础过关 1.已知a≥0,b≥0,且a +b =2,则 ( ) A .a≤12 B .ab≥12 C .a 2+b 2≥2 D .a 2+b 2≤3 2.已知a 、b 、c 、d∈{正实数},且a b b>1,P =lg a·lg b,Q =12(lg a +lg b),R =lg(a +b 2 ),则 ( ) A .R0;②|α+β|>5;③|α|>22,|β|>2 2.以其中的两个论断 为条件,另一个论断为结论,你认为正确的命题是________. 10.如果a ,b 都是正数,且a≠b,求证: a b +b a >a + b. 11.已知a>0,求证: a 2+1a 2-2≥a+1a -2.

2-2-1综合法与分析法

选修1-2 2.2.1 一、选择题 1.分析法证明问题是从所证命题的结论出发,寻求使这个结论成立的( ) A .充分条件 B .必要条件 C .充要条件 D .既非充分条件又非必要条件 [答案] A [解析] 分析法证明是从所证命题的结论出发,寻求使结论成立的充分条件. 2.要证明3+7<25可选择的方法有以下几种,其中最合理的为( ) A .综合法 B .分析法 C .反证法 D .归纳法 [答案] B [解析] 要证明3+7<25最合理的方法是分析法. 3.a >0,b >0,则下列不等式中不成立的是( ) A .a +b +1ab ≥2 2 B .(a +b )????1a +1b ≥4 ≥a +b ≥ab [答案] D [解析] ∵a >0,b >0,∴2ab a +b ≤ab . 4.下面的四个不等式: ①a 2+b 2+c 2≥ab +bc +ca ;②a (1-a )≤14;③b a +a b ≥2;④(a 2+b 2)·(c 2+d 2)≥(ac +bd )2. 其中恒成立的有( ) A .1个 B .2个 C .3个 D .4个 [答案] C [解析] ∵a 2+b 2+c 2≥ab +bc +ac , a (1-a )-14=-a 2+a -14=-(a -12)2≤0,

(a 2+b 2)·(c 2+d 2)=a 2c 2+a 2d 2+b 2c 2+b 2d 2 ≥a 2c 2+2abcd +b 2d 2=(ac +bd )2, 只有当b a >0时,才有b a +a b ≥2,∴应选C. 5.若a ,b ∈R ,则1a 3>1b 3成立的一个充分不必要条件是( ) A .ab >0 B .b >a C .a 1b 3,但1a 3>1b 3?/ a 1b 3的一个充分不必要条件. 6.若x 、y ∈R ,且2x 2+y 2=6x ,则x 2+y 2+2x 的最大值为( ) A .14 B .15 C .16 D .17 [答案] B [解析] 由y 2=6x -2x 2≥0得0≤x ≤3,从而x 2+y 2+2x =-(x -4)2+16,∴当x =3时,最大值为15. 7.设a 与b 为正数,并且满足a +b =1,a 2+b 2≥k ,则k 的最大值为( ) D .1 [答案] C [解析] ∵a 2+b 2≥12(a +b )2=12(当且仅当a =b 时取等号),∴k max =12 . 8.已知函数f (x )=????12x ,a 、b ∈R +,A =f ????a +b 2,B =f (ab ),C =f ??? ?2ab a +b ,则A 、B 、C 的大小关系为( ) A .A ≤ B ≤C B .A ≤ C ≤B C .B ≤C ≤A D .C ≤B ≤A [答案] A [解析] ∵a +b 2≥ab ≥2ab a +b , 又函数f (x )=(12)x 在(-∞,+∞)上是单调减函数,∴f (a +b 2)≤f (ab )≤f (2ab a +b ).

反证法证明题(简单)(可编辑修改word版)

反证法证明题 例1. 已知∠A ,∠B ,∠C 为?ABC 内角. 求证:∠A ,∠B ,∠C 中至少有一个不小于60o. 证明:假设?ABC 的三个内角∠A ,∠B ,∠C 都小于60o,即∠A <60o,∠B <60o,∠C <60o, 所以∠A +∠B +∠C < 180O, 与三角形内角和等于180o矛盾, 所以假设不成立,所求证结论成立. 例2. 已知a ≠ 0 ,证明x 的方程ax =b 有且只有一个根. 证明:由于a ≠ 0 ,因此方程ax =b 至少有一个根x =b . a 假设方程ax = b 至少存在两个根, 不妨设两根分别为x1 , x2 且x1 ≠x2 , 则ax1=b, ax2=b , 所以ax1=ax2, 所以a(x1-x2 ) = 0 . 因为x1 ≠x2 ,所以x1 -x2 ≠ 0 , 所以a = 0 ,与已知a ≠ 0 矛盾, 所以假设不成立,所求证结论成立. 例3. 已知a3+b3= 2, 求证a +b ≤ 2 . 证明:假设a +b > 2 ,则有a > 2 -b , 所以a3> (2 -b)3即a3> 8 -12b + 6b2-b3, 所以a3> 8 -12b + 6b2-b3= 6(b -1)2+ 2 . 因为6(b -1)2+ 2 ≥ 2 所以a3+b3> 2 ,与已知a3+b3= 2 矛盾. 所以假设不成立,所求证结论成立. 例4. 设{a n}是公比为的等比数列,S n为它的前n 项和. 求证:{S n}不是等比数列. 证明:假设是{S }等比数列,则S 2=S ?S , n 2 1 3

2 2 2 2 1 1 1 即 a 2 (1+ q )2 = a ? a (1+ q + q 2 ) . 因为等比数列 a 1 ≠ 0 , 所以(1+ q )2 = 1+ q + q 2 即 q = 0 ,与等比数列 q ≠ 0 矛盾, 所以假设不成立,所求证结论成立. 例 5. 证明 是无理数. m 证明:假设 是有理数,则存在互为质数的整数 m ,n 使得 = . n 所以 m = 2n 即 m 2 = 2n 2 , 所以 m 2 为偶数,所以m 为偶数. 所以设 m = 2k (k ∈ N *) , 从而有4k 2 = 2n 2 即 n 2 = 2k 2 . 所以n 2 也为偶数,所以 n 为偶数. 与 m ,n 互为质数矛盾. 所以假设不成立,所求证 是无理数成立. 例 6. 已知直线 a , b 和平面,如果 a ? , b ?,且 a / /b ,求证a / /。 证明:因为 a / /b , 所以经过直线 a , b 确定一个平面。 因为 a ? ,而 a ? , 所以 与是两个不同的平面. 因为b ?,且b ? , 所以 = b . 下面用反证法证明直线 a 与平面没有公共点.假设 直线 a 与平面 有公共点 P ,则 P ∈ = b , 即点 P 是直线 a 与 b 的公共点, 这与 a / /b 矛盾.所以 a / /. 例 7.已知 0 < a , b , c < 2,求证:(2 - a )c , (2 - b )a ,(2 - c )b 不可能同时大于 1 证明:假设(2 - a )c , (2 - b )a ,(2 - c )b 都大于 1, 即 (2 - a )c>1, (2 - b )a>1, (2 - c )b>1,

高三数学 2.2.1综合法与分析法学案 人教A版选修2-2

2.2 直接证明与间接证明 2.2.1 综合法与分析法 1.了解直接证明的两种基本方法——综合法和分析法. 2.理解综合法和分析法的思考过程、特点,会用综合法和分析法证明数学问题. 基础梳理 1.分析法和综合法是直接证明中最基本的两种证明方法,也是解决数学问题时常用的思维方式. 2.综合法是从已知条件出发,经过逐步的推理,最后得到待证结论. 3.分析法是从待证结论出发,一步一步寻求结论成立的充分条件,最后达到题设的已知条件,或已被证明的事实. 想一想:(1)综合法的推理过程是合情推理还是演绎推理? (2)分析法就是从结论推向已知,这句话对吗? (3)已知x ∈R,a =x 2 +1,b =x ,则a ,b 的大小关系是________. (4)要证明A >B ,若用作差比较法,只要证明________. (1)解析:综合法的推理过程是演绎推理,它的每一步推理都是严密的逻辑推理,得到的结论是正确的. (2)解析:不对.分析法又叫逆推证法,但不是从结论推向已知,而是寻找使结论成立的充分条件的过程. (3)解析:因为a -b =x 2-x +1=? ????x -122 +34≥34>0,所以a >b . 答案:a >b (4)解析:要证A >B ,只要证A -B >0. 答案:A -B >0

自测自评 1.用分析法证明问题是从所证命题的结论出发,寻求使这个结论成立的(A) A.充分条件 B.必要条件 C.充要条件 D.既非充分条件又非必要条件 2.已知直线l,m,平面α,β,且l⊥α,m?β,给出下列四个命题:①若α∥β,则l⊥m;②若l⊥m,则α∥β;③若α⊥β,则l⊥m;④若l∥m,则α⊥β. 其中正确命题的个数是(B) A.1个 B.2个 C.3个 D.4个 解析:若l⊥α,m?β,α∥β,则l⊥β,所以l⊥m,①正确;若l⊥α,m?β,l ⊥m,α与β可能相交,②不正确;若l⊥α,m?β,α⊥β,l与m可能平行或异面,③不正确;若l⊥α,m?β,l∥m,则m⊥α,所以α⊥β,④正确. 3.要证3 a- 3 b< 3 a-b成立,a,b应满足的条件是(D) A.ab<0且a>b B.ab>0且a>b C.ab<0且a0且a>b或ab<0且a0且b-a<0或ab<0,b-a>0.

《综合法和分析法》参考教案

第一课时 2.2.1 综合法和分析法(一) 教学要求:结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点. 教学重点:会用综合法证明问题;了解综合法的思考过程. 教学难点:根据问题的特点,结合综合法的思考过程、特点,选择适当的证明方法. 教学过程: 一、准备: 1. 已知“若12a a +∈R , ,且121a a +=,则12 11 4a a +≥”,试请此结论推广猜想. (答案:若12n a a a +∈R , ,,,且121n a a a +++=,则 212 111 n n a a a +++ ≥) 2.已知a b c +∈R , ,,1a b c ++=,求证:1 119a b c ++≥. 先完成证明 → 讨论:证明过程有什么特点? 二、讲授新课: 1. 教学例题: ①出示例1:已知a b c ,,是不全相等的正数,求证: 222222()()()6a b c b c a c a b abc +++++>. 分析:运用什么知识来解决?(基本不等式) → 板演证明过程(注意等号的处理)→ 讨论:证明形式的特点 ② 提出综合法:利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立. 框图表示: 要点:顺推证法;由因导果. ③ 练习:已知a b c ,,是全不相等的正实数,求证3b c a a c b a b c a b c +-+-+-++>. ④ 例题讲解: P37例1:△ABC 在平面α外,AB ∩α=P ,BC ∩α=Q ,AC ∩α=R ,求证:PQR 三点共线.

反证法证明题

反证法证明题 例1. 已知A ∠,B ∠,C ∠为ABC ?内角. 求证:A ∠,B ∠,C ∠中至少有一个不小于60o . 证明:假设ABC ?的三个内角A ∠,B ∠,C ∠都小于60o , 即A ∠<60o ,B ∠<60o ,C ∠<60o , 所以O 180A B C ∠+∠+∠<, 与三角形内角和等于180o 矛盾, 所以假设不成立,所求证结论成立. 例2. 已知0a ≠,证明x 的方程ax b =有且只有一个根. 证明:由于0a ≠,因此方程ax b =至少有一个根b x a =. 假设方程ax b =至少存在两个根, 不妨设两根分别为12,x x 且12x x ≠, 则12,ax b ax b ==, 所以12ax ax =, 所以12()0a x x -=. 因为12x x ≠,所以120x x -≠, 所以0a =,与已知0a ≠矛盾, 所以假设不成立,所求证结论成立. 例3. 已知3 3 2,a b +=求证2a b +≤. 证明:假设2a b +>,则有2a b >-, 所以3 3 (2)a b >-即323 8126a b b b >-+-, 所以3 2 3 2 81266(1)2a b b b b >-+-=-+. 因为2 6(1)22b -+≥ 所以332a b +>,与已知33 2a b +=矛盾. 所以假设不成立,所求证结论成立. 例4. 设{}n a 是公比为的等比数列,n S 为它的前n 项和. 求证:{}n S 不是等比数列. 证明:假设是{}n S 等比数列,则2 213S S S =?,

即222 111(1)(1)a q a a q q +=?++. 因为等比数列10a ≠, 所以2 2 (1)1q q q +=++即0q =,与等比数列0q ≠矛盾, 所以假设不成立,所求证结论成立. 例5. 证明2是无理数. 证明:假设2是有理数,则存在互为质数的整数m ,n 使得2m n =. 所以2m n = 即222m n =, 所以2 m 为偶数,所以m 为偶数. 所以设* 2()m k k N =∈, 从而有2 2 42k n =即2 2 2n k =. 所以2 n 也为偶数,所以n 为偶数. 与m ,n 互为质数矛盾. 所以假设不成立,所求证2是无理数成立. 例6. 已知直线,a b 和平面,如果,a b αα??,且//a b ,求证//a α。 证明:因为//a b , 所以经过直线a , b 确定一个平面β。 因为a α?,而a β?, 所以 α与β是两个不同的平面. 因为b α?,且b β?, 所以b αβ=I . 下面用反证法证明直线a 与平面α没有公共点.假 设直线a 与平面α有公共点P ,则P b αβ∈=I , 即点P 是直线 a 与b 的公共点, 这与//a b 矛盾.所以 //a α. 例7.已知0 < a , b , c < 2,求证:(2 a )c , (2 b )a ,(2 c )b 不可能同时大于1 证明:假设(2 a )c , (2 b )a ,(2 c )b 都大于1,

2.2.1综合法与分析法 (5)

第二章第2节直接证明与间接证明 一、综合法与分析法 课前预习学案 一、预习目标: 了解综合法与分析法的概念,并能简单应用。 二、预习内容: 证明方法可以分为直接证明和间接证明 1.直接证明分为和 2.直接证明是从命题的或出发,根据以知的定义, 公里,定理,推证结论的真实性。 3.综合法是从推导到的方法。而分析法是一种从 追溯到的思维方法,具体的说,综合法是从已知的条件出发,经过逐步的推理,最后达到待证结论,分析法则是从待证的结论出发,一步一步寻求结论成立的条件,最后达到题设的以知条件或以被证明的事实。综合法是由导,分析法是执索。 三、提出疑惑 课内探究学案 一、学习目标 让学生理解分析法与综合法的概念并能够应用 二、学习过程: 例1.已知a,b∈R+,求证: 例2.已知a,b∈R+,求证: 例3.已知a,b,c∈R,求证(I) 课后练习与提高

1.(A 级)函数???≥<<-=-0 ,; 01,sin )(12x e x x x f x π,若,2)()1(=+a f f 则a 的所有可能值为 ( ) A .1 B .22 - C .1,或 D .1, 2.(A 级)函数x x x y sin cos -=在下列哪个区间内是增函数 ( ) A .)23,2(π π B .)2,(ππ C .)2 5,23(π π D .)3,2(ππ 3.(A 级)设b a b a b a +=+∈则,62,,22R 的最小值是 ( ) A .22- B .3 3 5- C .-3 D .27- 4.(A 级)下列函数中,在),0(+∞上为增函数的是 ( ) A .x y 2sin = B .x xe y = C .x x y -=3 D .x x y -+=)1ln( 5.(A 级)设c b a ,,三数成等比数列,而y x ,分别为b a ,和c b ,的等差中项,则 =+y c x a ( ) A .1 B .2 C .3 D .不确定 6.(A 级)已知实数0≠a ,且函数)1 2()1()(2a x x a x f +-+=有最小值1-,则 a =__________。 7.(A 级)已知b a ,是不相等的正数,b a y b a x +=+= ,2 ,则y x ,的大小关 系是_________。 8.(B )若正整数m 满足m m 102105121<<-,则)3010.02.(lg ______________ ≈=m 9.(B )设)(),0)(2sin()(x f x x f <<-+=?π?图像的一条对称轴是8 π =x . (1)求?的值;

分小学数学分析法 综合法

十、分析法和综合法 分析与综合都是思维的基本方法,无论是研究和解决一般问题,还是数学问题,分析和综合都是最基本的具有逻辑性的方法。分析与综合本是两种思想方法,但因二者具有十分密切的联系,因此把二者结合起来阐述。 1. 分析法和综合法的概念。 分析是把研究对象的整体分解为若干部分、方面和因素,分别加以考察,找出各自的本质属性及彼此之间的联系。综合是把研究对象的各个部分、方面和因素的认识结合起来,形成一个整体性认识的思维方法。分析是综合的基础,综合是分析的整合,综合是与分析相反的思维过程。在研究数学概念和性质时,往往先把研究对象分解成几个部分、方面和要素进行考察,再进行整合从整体上认识研究对象,形成理性认识。实际上教师和学生都在经常有意识和无意识地运用了分析和综合的思维方法。如认识等腰梯形时,可以从它的边和角等几个要素进行分析:它有几条边?几个角?四条边有什么关系?四个角有什么关系?再从整体上概括等腰梯形的性质。数学中的分析法一般被理解为:在证明和解决问题时,从结论出发,一步一步地追溯到产生这一结论的条件是已知的为止,是一种“执果索因”的分析法。综合法一般被理解为:在证明和解决问题时,从已知条件和某些定义、定理等出发,经过一系列的运算或推理,最终证明结论或解决问题,是一种“由因导果”的综合法。如小学数学中的问题解决,可以由问题出发逐步逆推到已知条件,这是分析法;从已知条件出发,逐步求出所需答案,这是综合法。再如分析法和综合法在中学数学作为直接证明的基本方法,应用比较普遍。因此,分析法和综合法是数学学习中应用较为普遍的相互依赖、相互渗透的思想方法。 2. 分析法和综合法的重要意义。 大纲时代的小学数学教育,比较重视逻辑思维能力的培养,在教学过程中重视培养学生的分析、综合、抽象、概括、判断和推理能力,其中培养学生分析和综合的能力、推理能力是很重要的方面,如在解答应用题时重视分析法和综合法的运用,也就是说可以先从应用题的问题出发,找出解决问题需要的条件中哪些是已知的、哪些是未知的,未知的条件又需要什么条件解决,这样一步一步倒推,直到利用最原始的已知条件解决。这样分析了数量关系和解题思路后,再利用综合法根据已知条件列式解答。再如在学习概率统计时对各种统计数据需要经过整理和描述,并进行分析和综合,做出合理的判断和预测。虽然新课标并没有明确提出逻辑思维能力的培养,但在推理能力方面仍然提出了“能清晰、有条理地表达自己的思考过程,做到言之有理、落笔有据;在与他人交流的过程中,能运用数学语言合乎逻辑地进行讨论与质疑。”这其中就包含了对学生逻辑思维、分析和综合能力的要求。分析能力不仅是逻辑思维能力的重要方面之一,也是其他一些思维能力的基础。分析法和综合法是培养学生分析问题、解决问题和推理等能力的重要的思想方法。因此,分析法和综合法在课标时代仍然是培养逻辑思维能力和解决问题能力的重要的思想方法。 3. 分析法和综合法的具体应用。 如上所述,分析法和综合法作为数学的思想方法,在小学数学的各个方面都有重要的应用。首先,在四大领域的内容中,无论是低年级的数和计算、图形的认识,还是中高年级的方程和比例、统计与概率,分析法和综合法都有较多应用。如数的计算法则的学习,就是一个先分析再综合概括的过程,先一步一步地学习法则的不同方面,再综合概括成一个完整的法则。其次,在贯穿整个数学学习过程中

用反证法证明几何问题

65yttrgoi 用反证法证明几何专题 对于一个几何命题,当用直接证法比较困难时,则可采用间接证法,反证法就是一种间接证法,它不是直接去证明命题的结论成立,而是去证明命题结论的反面不能成立。从而推出命题的结论必然成立,它给我们提供了一种可供选择的新的证题途径,掌握这种方法,对于提高推理论证的能力、探索新知识的能力都是非常必要的。下面我们对反证法作一个简单介绍。 一、反证法的概念: (又称归谬法、背理法)是一种论证方式,不直接从题设推出结论,而是从命题结论的反面出发,引出矛盾,从而证明命题成立,这样的证明方法叫做反证法。 二、反证法的基本思路: 首先假设所要证明的结论不成立,然后再在这个假定条件下进行一系列的正确逻辑推理,直至得出一个 矛盾的结论来,并据此否定原先的假设,从而确认所要证明的结论成立。这里所说的矛盾是指与题目中所给的已知条件矛盾,或是与数学中已知定理、公理和定义相矛盾,还可以是与日常生活中的事实相矛盾,甚至还可以是从两个不同角度进行推理所得出的结论之间相互矛盾(即自相矛盾)。 三、反证法的一般步骤: (1)假设命题的结论不成立; (2)从这个假设出发,经过推理论证得出矛盾; (3)由矛盾判定假设不正确,从而肯定命题的结论正确。 简而言之就是“反设-归谬-结论”三步曲。 在应用反证法证题时,一定要用到“反设”,否则就不是反证法。用反证法证题时,如果欲证明的命题的方面情况只有一种,那么只要将这种情况驳倒了就可以,这种反证法又叫“归谬法”;如果结论的方面情况有多种,那么必须将所有的反面情况一一驳倒,才能推断原结论成立,这种证法又叫“穷举法”。 四、适用范围 “反证法”宜用于证明否定性命题、唯一性命题、“至少”“至多”命题和某些逆命题等,一般地说“正难则反”凡是直接法很难证明的命题都可考虑用反证法。 五、反证法在平面几何中的应用 例1.已知:AB 、CD 是⊙O 内非直径的两弦(如图1),求证AB 与CD 不能互相平分。 (1) 证明:假设AB 与CD 互相平分于点M 、则由已知条件AB 、CD 均非⊙O 直径, 可判定M 不是圆心O ,连结OA 、OB 、OM 。 ∵OA =OB ,M 是AB 中点 ∴OM ⊥AB (等腰三角形底边上的中线垂直于底边) 同理可得:OM ⊥CD ,从而过点M 有两条直线AB 、CD 都垂直于OM 这与已知的定理相矛盾。故AB 与CD 不能互相平分。 归缪法 穷举法

2.2综合法与分析法 学案(含答案)

2.2综合法与分析法学案(含答案) 二二 综合法与分析法综合法与分析法学习目标 1.理解综合法.分析法证明不等式的原理和思维特点. 2.掌握 综合法.分析法证明不等式的方法和步骤.3.会用综合法.分析法证明一些不等式知识点综合法与分析法思考1在“推理与证明” 中,学习过分析法.综合法,请回顾分析法.综合法的基本特征答 案分析法是逆推证法或执果索因法,综合法是顺推证法或由因导 果法思考2综合法与分析法有什么区别和联系答案区别综合法, 由因导果,形式简洁,易于表达;分析法,执果索因,利于思 考,易于探索联系都属于直接证明,常用分析法分析,用综合法 表达梳理1综合法定义一般地,从已知条件出发,利用定义.公理.定理.性质等,经过一系列的推理.论证而得出命题成立,这种证 明方法叫做综合法,综合法又叫顺推证法或由因导果法特点由因 导果,即从“已知”看“可知”,逐步推向“未知”证明的框图 表示用P表示已知条件或已有定义.定理.公理等,用Q表示所要 证明的不等式,则综合法可用框图表示为PQ1Q1Q2Q2Q3QnQ2分析 法定义证明命题时,常常从要证的结论出发,逐步寻求使它成立 的充分条件,直至所需条件为已知条件或一个明显成立的事实定义.公理或已证明的定理.性质等,从而得出要证的命题成立,这 种证明方法叫做分析法这是一种“执果索因”的思考和证明方法

特点执果索因,即从“未知”看“需知”,逐步靠拢“已知”证明过程的框图表示用Q表示要证明的不等式,则分析法可用框图表示为QP1P1P2P2P3得到一个明显成立的条件类型一综合法证明不等式例1已知a,bR,且ab1,求证a1a2b1b2252.证明方法一a,bR,且ab1,abab221 4.a1a2b1b24a2b21a21b24ab22abab22aba2b2412ab12aba2b241 2141214142252.a1a2b1b2252.方法二 左边 a1a2b1b2a2b241a21b24a2b2ab2a2ab2b24a2b212bab2a2a2b22ab14a 2b222baabb2a2a2b24ab22222baab2baab412242252,a1a2b1b2252.反思与感悟综合法证明不等式,揭示出条件和结论之间的因果联系,为此要着力分析已知与求证之间,不等式的左右两端之间的差异与联系合理进行转换,恰当选择已知不等式,这是证明的关键跟踪训练1已知x0,y0,且xy1,求证11x11y 9.证明方法一x0,y0,1xy2xy.xy1 4.11x11y11x1y1xy1xyxy1xy12xy1 89.当且仅当xy12时等号成立方法二 xy1,x0,y0,11x11y1xyx1xyy2yx2xy52yxxy52 29.当且仅当xy12时,等号成立类型二 分析法证明不等式例2若a,b,c是不全相等的正数,求证lgab2lgcb2lgac2lgalgblgc.证明要证 lgab2lgcb2lgac2lgalgblgc,即证lgab2cb2ac2lgabc成立,只需

用反证法证明是无理数

据说最初发现 p q ,这里p和q是无公约数的正整数 传说毕达哥拉斯太珍惜这个发现,不打算公开这个结果。他的学生之一为了好奇,悄悄走进老师的家里偷文件,这方法才被公开出来。 我们下面介绍五个用反证法证明这结果,大家可以学习这种证明。 p q =,p,q是无公约数的整数。 (1)毕达哥拉斯方法: p q =两边平方得22 2 p q =,所以2p是偶数,因此p也须是偶数(因为奇数2k +1的平方后是4k2+4k+1=2(2k2+2k)+1仍旧是奇数)。所以我们可以设p是2a的样子,代入上式得(2a)2=2q2,即4a2=2q2两边同时消掉2可得2a2=q2,即q也是偶数。 由于p,q都是偶数,它们有一个公约数2,这和我们最初假设p, q (2)利用整数的个位数性质:我们知道任何整数平方其最后一位数是等于原数最后一位数的平方后的最后一位数。例如(12)2=144,最后一位数4=(2)2。而(17)2=289,(7)2=49,最后一位数是一样。 最后一位数可能出现0,1,2,3,4,5,6,7,8,9。 因此任何数的平方最后一位数只可能是0,1,4,5,6,9。 因此2q2的最后一位数只可能是0,2或8。 由于p2的最后一位数可能是0,1,4,5,6,9。而且由P2=2q2,故必须有2q2最后一位数是0,因此推到q2的最后一位数是0或5。 可是如果P2的最后一位数是0,而q2的最后一位数是0或5的话,则P的最后一位数是0,q的最后一位数是0或5,这样5就能整除p和q,这和p,q无公约数的假定矛盾。 (3)利用素因子的性质: p q =得22 2 p q =,这里q要大于1,如果是等于1 =p,这是个整数,明显是不合理的。现在我们可以得到2 2 p q p ?? =? ? ?? ,我们知道: (一)任何整数不是素数就是合数。

综合法与分析法

综合法与分析法 学习目标: 1. 理解综合法和分析法的概念及区别 2. 熟练的运用综合法分析法证题 学习重难点: 综合法和分析法的概念及区别 自主学习: 一:知识回顾 1. 合情推理:前提为真,结论可能为真的推理。它包括归纳推理与类比推理。 2. 演绎推理:根据一般性的真命题(或逻辑规则)导出特殊命题为真的推理叫演绎推理 二:课题探究 1. 直接证明: 从命题的条件或结论出发,根据已知的定义,公理,定理直接推证结论的真实性. 2. 综合法:从题设中的已知条件或已证的真实判断出发,经过一系列的中间推理,最后导出所 求证的命题.综合法是一种由因所果的证明方法. 3. 分析法: 一般地,从要证明的结论出发,追溯导致结论成立的条件,逐步上溯,直到使 结论成立的条件和已知条件或已知事实吻合为止,这种证明的方法叫做分析 法.分析法是一种执果索因的证明方法. 4.综合法的证明步骤用符号表示: 0P (已知) 1n P P ???L (结论) 5.分析法的证明“若A 成立,则B 成立”的思路与步骤; 要正(或为了证明)B 成立, 只需证明1A 成立(1A 是B 成立的充分条件). 要证1A 成立, 只需证明2A 成立(2A 是1A 成立的充分条件). … , 要证k A 成立, 只需证明A 成立(A 是k A 成立的充分条件).. Q A 成立, ∴B 成立. 三: 例题解析 例1: 已知a>0,b>0,求证a(b 2+c 2)+b(c 2+a 2)≥4abc 证明: 因为b 2+c 2 ≥2bc,a>0 所以a(b 2+c 2)≥2abc. 又因为c 2+b 2 ≥2bc,b>0 所以b(c 2+a 2)≥ 2abc.因此a(b 2+c 2)+b(c 2+a 2)≥4abc. 例2: 已知:a,b,c 三数成等比数列,且x,y 分别为a,b 和b,c 的等差中项.

综合法和分析法

《综合法和分析法(1)》导学案 编写人:马培文 审核人:杜运铎 编写时间:2016-02-24 【学习目标】 结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法。 【重点难点】 1. 结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法; 2. 会用综合法证明问题;了解综合法的思考过程。 3. 根据问题的特点,结合综合法的思考过程、特点,选择适当的证明方法。 【学法指导】 ① 课前阅读课文(预习教材P 85~P 89,找出疑惑之处)② 思考导学案中的探究 问题,并提出你的观点。 【知识链接】 复习1 两类基本的证明方法: 和 。 复习2 直接证明的两中方法: 和 。 知识点一 综合法的应用 问题 已知,0a b >, 求证 2222()()4a b c b c a abc +++≥。 新知 一般地,利用 ,经过一系列的推理论 证,最后导出所要证明的结论成立,这种证明方法叫综合法。 反思 框图表示 要点 顺推证法;由因导果。 【典型例题】 例1 已知,,a b c R +∈,1a b c ++=,求证:1119a b c ++≥ 变式 已知,,a b c R +∈,1a b c ++=,求证 111(1)(1)(1)8a b c ---≥。

小结 用综合法证明不等式时要注意应用重要不等式和不等式性质,要注意公式应 用的条件和等号成立的条件,这是一种由因索果的证明。 例2 在△ABC 中,三个内角A 、B 、C 的对边分别为a 、b 、c ,且A 、B 、C 成等 差数列,a 、b 、c 成等比数列. 求证:为△ABC 等边三角形。 变式 设在四面体P ABC -中,90,,ABC PA PB PC ∠=?==D 是AC 的中点. 求证 PD 垂直于ABC ?所在的平面。 小结 解决数学问题时,往往要先作语言的转换,如把文字语言转换成符号语言,或 把符号语言转换成图形语言等,还要通过细致的分析,把其中的隐含条件明 确表示出来。 【基础达标】 A1. 求证 对于任意角θ,44cos sin cos 2θθθ-=。 B2. ,A B 为锐角,且tan tan tan A B A B +=, 求证 60A B += . (提示:算tan()A B +)。