金丝球键合工艺
2第二章 互连技术WB

*微组装工艺*2引线键合技术WB 3载带自动焊接技术TAB 第二章芯片互连技术1概述4倒装焊技术FCB 5各种芯片互连方法的比较*微组装工艺*2.1概述芯片互连技术是将芯片直接与基板相连接的一种技术。
主要包括引线键合、载带自动焊接、倒装芯片技术。
半导体封装内部芯片和外部管脚以及芯片之间的连接起着确立芯片和外部的电气连接、确保芯片和外界之间的输入/ 输出畅通的重要作用,是整个后道封装过程中的关键。
半导体器件的失效约有1/4~1/3是由芯片互连引起的,芯片互连技术对器件长期使用的可靠性影响很大。
*微组装工艺*WB,TAB,FCB不单主要作为芯片—基板间的电气互连形式,而且还作为一种微电子封装形式,常称为“零级”封装。
从微电子封装今后的发展来看,将从有封装向少封装、无封装方向发展。
而无封装就是通常的裸芯片,若将这种无封装的裸芯片用WB,TAB,FCB的芯片互连方式直接安装到基板上,即称为板上芯片(COB)和板上TAB或板上FCB,这些统称为直接芯片安装(DCA)技术,它将在今后的微电子封装中发挥更重要的作用。
2.2 引线键合技术2.2.12.2.22.2.52.2.6*微组装工艺*一、引线键合技术引线键合技术是将半导体裸芯片(Die )焊区与微电子封装的I/O 引线或基板上的金属布线焊区(Pad )用金属细丝连接起来的工艺技术。
工作原理:提供能量破坏被焊表面的氧化层和污染物,使焊区金属产生塑性变形,使得引线与被焊面紧密接触,达到原子间引力范围并导致界面间原子扩散而形成焊合点。
焊区金属一般为AL 或Au 金属丝。
多数是1微米至数百微米直径的Au 丝、AL 丝和Si-AL 丝。
2.2.1 引线键合技术*微组装工艺*布线端子*微组装工艺*引线键合技术的特点:引线键合以工艺实现简单、成本低廉、适用多种封装形式而在连接方式中占主导地位。
引线键合技术适用于几乎所有的半导体集成电路元件,操作方便,封装密度高。
低成本、高可靠、高产量等特点使得WB成为芯片互连主要工艺方法,但引线长、压焊过重、测试性差等问题容易引起互连失效。
封装工艺流程(1)

焊区与微电子封装的I/O引线或基板上的金属
布线焊区(Pad)用金属细丝连接起来的工
艺技术。
WB技术作用机理
❖
提供能量破坏被焊表面的氧化层和污染物,
使焊区金属产生塑性变形,使得引线与被焊
面紧密接触,达到原子间引力范围并导致界
面间原子扩散而形成焊合点。引线键合键合
❖ 铜:近年来,大量用于集成电路互连。铜比
铝有较高的导电率;铜丝相对于金丝具有成
本低、强度和刚度高、适合于细间距键合的
优点。
❖
引线键合的关键工艺
❖
❖
关键工艺:温度控制、精确定位控制、工作
参数设定。
应用对象:低密度连线封装(<300个接点)
引线键合的技术缺陷
1.
2.
3.
多根引线并联产生邻近效应,导致电流分布
对芯片的影响,同时还可以屏蔽电磁干扰。
③各向异性导电聚合物:电流只能在一个方向流动。
❖ 导电胶功能:(形成化学结合、具有导电功能)
❖
2.3.4 玻璃胶粘贴法
与导电胶类似,玻璃胶也属于厚膜导体材料(后面
我们将介绍)。不过起粘接作用的是低温玻璃粉。它
是起导电作用的金属粉(Ag、Ag-Pd、Au、Cu等)
出现废品。
Chipping Die
崩边
2.3 芯片粘贴
芯片贴装:也称芯片粘贴,是将芯片固定
于封装基板或引脚架芯片的承载座上的工
艺过程。
贴装方式4种:
❖ 共晶粘贴法(Au-Si合金)
❖ 焊接粘贴法(Pb-Sn合金焊接)
❖ 环氧树脂粘结(重点)
❖ 玻璃胶粘贴法
引线框架
装
架
引线
几种键合引线的详细对比

几种键合引线的详细对比-键合金丝/键合铜线/铝键合线键合金丝, 作为应用最广泛的键合丝来说,在引线键合中存在以下几个方面的问题:1, Au2Al 金属学系统易产生有害的金属间化合物[ ,这些金属间化合物晶格常数不同,力学性能和热性能也不同,反应时会产生物质迁移,从而在交界层形成可见的柯肯德尔空洞( Kirkendall Void) ,使键合处产生空腔,电阻急剧增大,破坏了集成电路的欧姆联结,导电性严重破坏或产生裂缝,易在此引起器件焊点脱开而失效。
2, 金丝的耐热性差,金的再结晶温度较低(150 ℃) ,导致高温强度较低。
球焊时,焊球附近的金丝由于受热而形成再结晶组织,若金丝过硬会造成球颈部折曲;焊球加热时,金丝晶粒粗大化会造成球颈部断裂;3, 金丝还易造成塌丝现象和拖尾现象,严重影响了键合的质量;4, 金丝的价格昂贵,导致封装成本过高。
键合铝线, Al21 %Si 丝作为一种低成本的键合丝受到人们的广泛重视,国内外很多科研单位都在通过改变生产工艺来生产各种替代金丝的Al21 %Si 丝,但仍存在较多问题: 1, 普通Al21 %Si 在球焊时加热易氧化,生成一层硬的氧化膜,此膜阻碍球的形成,而球形的稳定性是Al21 %Si 键合强度的主要特性。
实验证明,金丝球焊在空气中焊点圆度高,Al21 %Si 球焊由于表面氧化的影响,空气中焊点圆度低;2, Al21 %Si 丝的拉伸强度和耐热性不如金丝,容易发生引线下垂和塌丝;3, 同轴Al21 %Si 的性能不稳定,特别是伸长率波动大,同批次产品的性能相差大,且产品的成材率低,表面清洁度差,并较易在键合处经常产生疲劳断裂。
键合铜丝, 早在10 年前,铜丝球焊工艺就作为一种降低成本的方法应用于晶片上的铝焊区金属化。
但在当时行业的标准封装形式为18~40 个引线的塑料双列直插式封装(塑料DIP) ,其焊区间距为150~200μm , 焊球尺为100~125μm ,丝焊的长度很难超过3 mm。
浅谈金线键合

浅谈金线键合胡立波;高敏【摘要】引线键合是用非常细小的线把芯片上焊盘和引线框架连接起来的过程.金线焊接工艺,是引线键合工艺的一种.它是利用金线将芯片上的信号引出到封装外壳的管脚上的工艺过程.本文主要探讨集成电路封装中金丝键合技术以及影响因素,介绍了键合机工作原理及设备的相关操作.【期刊名称】《电子制作》【年(卷),期】2015(000)017【总页数】1页(P97)【关键词】引线键合;芯片;键合机【作者】胡立波;高敏【作者单位】江苏商贸职业学院;江苏商贸职业学院【正文语种】中文做集成电路成品的几道工序分别是磨片,划片,装片,固化,烘箱,键合,MC,QC,塑封。
金线键合的步骤是拿料,上料,机器工作,下料,检验。
拿料时要根据这台焊线机所做的是哪种产品去拿料,一台机子上不同的产品是不能混用的,不然芯片就会报废,对焊线机也是很不利的。
上料也是很有讲究的,一个料盒里的每条料不一定是按一个顺序放的,有些头尾没有放一致就要把那条料抽出来反一下再慢慢放入料盒。
上料时一定要认真确认这盒料是否有做过,如果做过了就不能再做了,不然就会双丝。
更不能把料条前后颠倒,这样所有的焊线就都反了,那么芯片就又要报废了。
在确认以上两点后就把料盒的后出口堵上,防止在机器工作时抖动把料条抖出来。
最主要的就是机器工作了,焊线机包括金线机、铝线机、超声波焊线机,而我们所用的就是金线机。
焊线机主要应用于大功率器件比如:发光二极管、激光管、中小型功率三极管、集成电路和一些特殊半导体器件的内引线焊接。
机器用于实现不同介质的表面焊接,是一种物理变化过程,首先金丝的首端必须经过处理形成球形,并且对焊接的金属表面先进行预热处理,接着金丝球在时间和压力的共同作用下,在金属焊接表面产生朔性变形,使两种介质达到可靠的接触并通过超声波摩擦振动,两种金属原子之间在原子亲和力的作用下形成金属键实现了金丝引线的焊接。
1 键合工艺条件1.1 键合机台压力/功率超声功率使焊线和焊接面松软,产生热能,形成分子相互嵌合合金,改变球形尺寸。
SSB键合在COB封装中的应用研究

SSB键合在COB封装中的应用研究刘译蔓【摘要】针对常规的金丝球键合法用在COB封装时由于PCB板焊盘表面氧化、镀层缺陷及金层质量不佳等因素时常出现虚焊、脱焊等失效问题,采用SSB键合法作为常规金丝球键合的一种扩展,使其发挥出在PCB焊盘键合时常规金丝球键合方法所不具备的优势.以实际应用中某COB板级电路在PCB焊盘上不能有效键合的问题为实例,研究了SSB键合的工艺过程和键合强度表现.预先在PCB端植球以增加键合点与镀金PCB焊盘的接触面积,实现有效键合并确保了键合强度.该方法可被应用到其他COB的封装场合.【期刊名称】《微处理机》【年(卷),期】2019(040)003【总页数】3页(P11-13)【关键词】SSB键合;COB封装;键合不良;键合强度【作者】刘译蔓【作者单位】中国电子科技集团公司第四十七研究所,沈阳110032【正文语种】中文【中图分类】TN305.941 引言COB(Chip On Board,板上芯片)技术是将裸露的IC 芯片直接贴装在印刷电路板上,通过键合线与电路板键合,然后进行芯片的钝化和保护,其结构如图1所示[1]。
如果裸芯片直接暴露在空气中,易受污染或人为损坏,将难以实现芯片功能,因此须用胶把芯片和键合引线包封起来,这种封装形式也被称为软包封。
引线键合是裸芯片与电路板相连接的过程,为电源和信号的分配提供电路连接[2],键合工艺质量的好坏直接关系到整个封装器件的性能和可靠性,也直接影响到封装的总厚度。
在COB 封装中,由于将裸芯片直接贴装在印制电路板上,没有对其单独封装,所以能有效地降低成本[3]。
早期COB 技术一般只面向对信赖度无过高重视的低阶消费性电子产品,如玩具、计算器、小型显示器、钟表等日常生活用品。
例如早期台湾COB 工艺大多由出身IC 封装厂的员工靠家庭代工方式完成,常给人COB 的质量不够牢靠的印象。
然而随着时代进步,电子产品趋于轻薄短小,COB 反而有越来越广的用途,如手机、照相机等具有小型化要求的产品大多已导入COB 工艺。
铜丝在引线键合技术的发展及其合金的应用

铜丝在引线键合技术的发展及其合金的应用一、简介目前超过90%的集成电路的封装是采用引线键合技术,引线键合,又称线焊。
即用金属细丝将裸芯片电极焊区与电子封装外壳的输入,输出引线或基板上的金属布线焊区连接起来。
连接过程一般通过加热、加压、超声等能量,借助键合工具“劈刀”实现。
按外加能量形式的不同,引线键合可分为热压键合、超声键合和热超声键合。
按劈刀的不同,可分为楔形键合和球形键合。
引线键合工艺中所用导电丝主要有金丝、铜丝和铝丝,由于金丝价格昂贵、成本高,并且Au/Al金属学系统易产生有害的金属间化合物,使键合处产生空腔,电阻急剧增大,导电性破坏甚至产生裂缝,严重影响接头性能。
因此人们一直尝试使用其它金属替代金,由于铜丝价格便宜、成本低、具有较高的导电导热性,并且Cu/Al金属间化合物生长速于Au/Al,不易形成有害的金属间化合物。
近年来,铜丝引线键合日益引起人们的兴趣。
二、铜丝键合的工艺当今,全球的IC制造商普遍采用3种金属互连工艺,即:铜丝与晶片铝金属化层的键合工艺,金丝与晶片铜金属化层的键合工艺以及铜丝与晶片铜金属化层的键合工艺。
近年来第一种工艺用得最为广泛,后两者则是今后的发展方向。
1. 铜丝与晶片铝金属化层的键合工艺近年来,人们对铜丝焊、劈刀材料及新型的合金焊丝进行了一些新的工艺研究,克服了铜易氧化及难以焊接的缺陷。
采用铜丝键合不但使封装成本下降,更主要的是作为互连材料,铜的物理特性优于金。
特别是采用以下’3种新工艺,更能确保铜丝键合的稳定性。
(1)充惰性气体的EFO工艺:常规用于金丝球焊工艺中的EFO是在形成焊球过程中的一种电火花放电。
但对于铜丝球焊来说,在成球的瞬间,放电温度极高,由于剧烈膨胀,气氛瞬时呈真空状态,但这种气氛很快和周围的大气相混合,常造成焊球变形或氧化。
氧化的焊球比那些无氧化层的焊球明显坚硬,而且不易焊接。
新型EFO工艺是在成球过程中增加惰性气体保护功能,即在一个专利悬空管内充入氮气,确保在成球的一瞬间与周围的空气完全隔离,以防止焊球氧化,焊球质量极好,焊接工艺比较完善。
LD-TO产品及工艺基础

LD-TO工艺简介
三.LD-TO封帽工艺 ●封帽(终封)
采用电容储能式封帽机在密封的氮气操作箱内完成封焊
LD-TO工艺简介
三.LD-TO封帽工艺 ●压氦检漏
LD-TO在0.5Mpa的氦气容器内经过2小时压氦过程后,采用 氦质谱检漏仪测试其漏率,称为细检漏,另外还需要采用氟 油进行粗检漏
LD-TO工艺简介
LD-TO产品简介
三.LD-TO产品分类 ●按焦距不同分: 5.8mm、6.4mm、6.5mm、7.5mm、8.6mm、 10.1mm
焦距是由TO帽和LD芯片贴装位置决定的
LD-TO产品简介
四.LD-TO产品特性 ●阈值电流(Ith)
阈值电流是LD开始振荡(发光)的正向电流
●光输出功率(Po)
在阈值电流以上所加正向电流达到规定的调制电流时,从LD 输出的光功率定义为Po
LD-TO产品及工艺基础
LD-TO产品简介
一.LD-TO定义 ●LD(Laser Diode):激光二极管
●TO(Transistor Outline):晶体管外形
●LD-TO:晶体管外形封装的激光器,我们 公司一般简称为激光器或激光器TO
LD-TO产品简介
二.LD-TO工作原理 ●LD发光原理:
LD-TO产品简介
四.LD-TO产品特性
●P-I曲线(P-I)
LD的总发射光功率与注入电流的关系曲线称为P-I曲线
LD-TO产品简介
四.LD-TO产品特性 ●拐点(Kink)
P-I曲线上光功率出现非线性变化的点称为拐点(Kink) Kink一般采用一次微分法(dP/dI曲线法)测试
LD-TO产品简介
向半导体PN结注入电流,实现粒子数反转分布,产生受激辐 射,再利用谐振腔的正反馈,实现光放大而产生的激光振荡
引线键合工艺参数对封装质量的影响因素分析

引线键合工艺参数对封装质量的影响因素分析1 引言目前IC器件在各个领域的应用越来越广泛,对封装工艺的质量及检测技术提出了更高的要求,如何实现复杂封装的工艺稳定、质量保证和协同控制变得越来越重要。
目前国外对引线键合工艺涉及的大量参数和精密机构的控制问题已有较为深入的研究,并且已经在参数敏感度和重要性的排列方面有了共识。
我国IC封装研究起步较晚,其中的关键技术掌握不足,缺乏工艺的数据积累,加之国外的技术封锁,有必要深入研究各种封装工艺,掌握其间的关键技术,自主研发高水平封装装备。
本文将对引线键合工艺展开研究,分析影响封装质量的关键参数,力图为后续的质量影响规律和控制奠定基础。
2 引线键合工艺WB随着前端工艺的发展正朝着超精细键合趋势发展。
WB过程中,引线在热量、压力或超声能量的共同作用下,与焊盘金属发生原子间扩散达到键合的目的。
根据所使用的键合工具如劈刀或楔的不同,WB分为球键合和楔键合。
根据键合条件不同,球键合可分为热压焊、冷超声键合和热超声键合。
根据引线不同,又可分为金线、铜线、铝线键合等。
冷超声键合常为铝线楔(xiē)键合。
热超声键合常为金丝球键合,因同时使用热压和超声能量,能够在较低的温度下实现较好的键合质量,从而得到广泛使用。
2.1 键合质量的判定标准键合质量的好坏往往通过破坏性实验判定。
通常使用键合拉力测试(BPT)、键合剪切力测试(BST)。
影响BPT结果的因素除了工艺参数以外,还有引线参数(材质、直径、强度和刚度)、吊钩位置、弧线高度等。
因此除了确认BPT的拉力值外,还需确认引线断裂的位置。
主要有四个位置:⑴第一键合点的界面;⑵第一键合点的颈部;⑶第二键合点处;⑷引线轮廓中间。
BST是通过水平推键合点的引线,测得引线和焊盘分离的最小推力。
剪切力测试可能会因为测试环境不同或人为原因出现偏差,Liang等人 [1]介绍了一种简化判断球剪切力的方法,提出简化键合参数(RBP)的概念,即RBP=powerA ×forceB×timeC ,其中A,B,C为调整参数,一般取0.80, 0.40,0.20。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
金丝球键合工艺
1、课题背景
1. 随着集成电路的发展,先进封装技术不断改进变化以适应各种半导体新工艺和新材料的要求和挑战。
半导体封装内部芯片内部管脚以及芯片之间的连接起着确立芯片和外部的电气连接、确保芯片和外界之间的输入/输出畅通的重要作用,是整个后道封装过程中的关键。
引线键合以工艺实现简单、成本低廉、适用多种封装形式而在连接方式中占主导地位,目前所有封装管脚的90%以上采用引线键合连接。
引线键合是以非常细小的金属引线的两端分别与芯片和管脚键合而形成电气连接。
引线键合前,先从金属带材上截取引线框架材料(外引线),用热压法将高纯si或Ge的半导体元件压在引线框架上所选好的位置,并用导电树脂如银浆料在引线框架表面涂上一层或在其局部镀上一层金;然后借助特殊的键合工具用金属丝将半导体元件(电路)与引线框架键合起来,键合后的电路进行保护性树脂封装。
无论是封装行业多年的事实还是权威的预测都表明,引线键合在可预见的未来(目前到2020年)仍将是半导体封装尤其是低端封装内部连接的主流方式。
基于引线键合工艺的硅片凸点生成可以完成倒装芯片的关键步骤并且具有相对于常规工艺的诸多优势,是引线键合长久生命力和向新兴连接方式延伸的巨大潜力的有力例证。
2. 引线键合大约始源于1947年。
如今已成为复杂,成熟的电子制造工艺。
根据引线不同,又可分为金线、铜线、铝线键合等。
根据键合条件不同,球键合可分为热压焊、冷超声键合和热超声键合。
热压焊(TC)是引线在热压头的压力下,高温加热(>250℃)发生形变焊热压超声焊(TS)焊接工艺包括热压焊与超声焊两种形式的组合。
在焊接工具的压力下,加热温度较低(低于TC温度值,大约150℃),与楔焊工具的超声运动,发生形变焊接。
热超声键合常为金丝球键合,因同时使用热压和超声能量,能够在较低的温度下实现较好的键合质量,从而得到广泛使用。
3. 键合工具负责固定引线、传递压力和超声能量、拉弧等作用。
球形焊线所使用的工具我们称为毛细管劈刀(capillary),它是一种轴形对称的带有垂直方向孔的陶瓷工具。
劈刀的尺寸影响引线键合质量和生产的稳定性,因此劈刀的选择是非常重要的。
其形状对质量有重要影响,球键合使用的劈刀如图3所示。
图中,①为内孔,其直径由引线直径决定,引线直径由焊盘的直径决定。
内孔的直径越小,引线轮廓越接近理想形状,如果内孔直径过小则会增大引线与劈刀间的摩擦导致线弧形状的不稳定;②为壁厚,影响超声波的传导,过薄的壁厚会对振幅产生影响;③为外端面和外圆角,影响第二键合点的大小,从而影响第二键合点的强度和线弧形状;④为内斜面,影响第一键合点的中心对准、键合强度、键合点尺寸大小,还影响线弧形状。
为了增大第一键合点的键合强度,应适当减小内斜面的直径。
超
细键合所使用的劈刀无论在制作工艺和形状上都有重大改进。
4. 键合压力超声功率对键合质量和外观影响最大,因为它对键合球的变形起主导作用。
过小的功率会导致过窄、未成形的键合或尾丝翘起;过大的功率导致根部断裂、键合塌陷或焊盘破裂。
研究发现超声波的水平振动是导致焊盘破裂的最大原因。
超声功率和键合力是相互关联的参数。
增大超声功率通常需要增大键合力使超声能量通过键合工具更多的传递到键合点处,发现过大的键合力会阻碍键合工具的运动,抑制超声能量的传导,导致污染物和氧化物被推到了键合区域的中心,形成中心未键合区域。
2、课题研究内容与方法
1.研究内容
系统的了解和学习金丝球键合工艺的原理和工作流程,并学会使用Marc建模软件研究劈刀压力对焊盘的影响以及劈刀压力对焊接效果的影响。
键合时劈刀压力过大会对焊盘有所损伤,如果压力过小则焊接效果的可靠性会受到影响所以本小组力求用Marc软件模拟出出最适合的压力。
2实施方案
首先查阅一些相关的资料对本课题有一个初步的了解,接着以小组讨论学习的方法系统的了解并学习金丝球键合工艺的工作原理。
学习Marc软件,请教老师及学长,动手制作模拟图形。
查找材料数据,施加边界条件,计算模拟金丝球,劈刀,焊盘的受力结果,用直观的图像表达出整个键合时的受力过程,并找出最佳受力点以及最佳压强大小。
3.研究结果
我们通过MSC.marc软件进行仿真模拟. 同时施加超声,温度,以及各种材料参数等,采用工程模拟的方法,对金丝球焊接的劈刀,金丝球,焊盘在超声以及温度的作用下进行受力的有限元模拟分析。
将具体模拟数据制图后,分析出了想要达到最佳效果所需施加的应力,并最终得出了应力结果如下。
开始时金丝球,劈刀,以及焊盘在各方向的压强都为0。
如图所示
图1
之后施加压力,劈刀与金丝球上端的压力在0.01秒内最大压力点增加到2.003兆帕,而这时金丝球与焊盘的最大压强为 1.113兆帕。
图2
之后是劈刀的整体加压,使金丝球,焊盘之间的压力第一次剧增此时要注意的是不能给予劈刀过大的压力是金丝球与焊盘之间的压力过大进而造成焊盘断裂。
经过计算此时劈刀与金丝球之间的压力最大为1.805兆帕作用才能使金丝球与焊盘的连接点压力最大控制在1.003兆帕以内,不使焊盘断裂。
如图所示
图3
之后压力反复在短时间内增大减小使其连接牢固0.02004秒时压力变得集中,基本集中在接触点而不是整个焊盘都都受到应力。
在0.02004秒与0.02008秒之间又是一个类似的周期。
图4
之后每0.00004秒为一个类似周期,知道最后焊盘与金丝球之间的压力稳定在8.694万帕时结束。
在超声,温度都存在的条件下我组得出结论压力在8.694万帕时为最好。
4.创新点
1.小组成员制作了MSC.marc模型,使该模型能表达金丝球键合工艺的整个过程。
2.我们采用模拟的方法同时施加超声,温度,以及各种材料参数。
力求做到与实际相符
实现最小偏差。
通过MSC. Marc有限元分析软件建立2D模型对金丝球焊接的劈刀,金丝球,焊盘在超声以及温度的作用下进行受力的有限元模拟分析。
最终得出最佳应力。
5.结束语
在这一年的科创学习中,我们不仅了解了金丝球键合工艺的工作流程,同时我们也学会使用了marc软件,由于时间比较仓促,我们此次只建立了2D模型,但是科创的结束并不代表我们学习的脚步的结束,我们会继续我们的研究,建立起3D模型,来取得更详细的数据,使我们的研究能有更大的进步。
在这次科技创新中,我们学到了很多有关金丝球键合的知识,学会了创造性地解决问题,受益匪浅。
6.参考文献
[1]冯超,孙丹丹,陈红火. 全新Marc实例教程与常见问题解析中国水利水电出版社
[2]李军辉,谭建平,韩雷,钟掘.引线键合的界面特性。
中南大学学报
1672-7207(2005)01-0087-05
[3]刘欣,冉建桥,陈光炳,刘其中。
金丝球焊的工艺质量统计控制.信息产业部
1004-3365(2002)03-0198-04。