通信原理实验系统
基于systemview通信原理实验报告

基于systemview通信原理实验报告实验目的:通过SystemView工具,了解通信原理在嵌入式系统中的应用。
实验设备:Keil MDK-ARM软件、STM32F4开发板、SystemView软件实验原理:在嵌入式系统中,通信在数据的传输和处理中占有重要的地位。
为了使通信更加稳定、可靠,可以使用SystemView工具实时监测和分析通信过程,从而发现其中的问题,进行及时的调试。
实验过程:1. 环境配置安装好Keil MDK-ARM软件和SystemView软件,并将STM32F4开发板连接到电脑上。
在Keil软件中新建一个工程,并在项目属性中配置好板子的硬件和外设信息。
2. 编写程序编写程序实现与外部设备的通信。
根据实验需求,可以选择不同的通信方式和协议,如UART、SPI、I²C等。
在通信过程中可以选择对数据进行调试,并在程序中添加SystemView API函数,实现实时监测和分析。
3. 运行程序将程序烧录到STM32F4开发板中,并通过串口或其他方式与外部设备进行通信。
使用SystemView软件实时监测通信过程中的数据传输、处理情况,并记录下来。
4. 分析结果根据SystemView软件的监测结果,分析通信过程中出现的问题。
可以进行数据包捕获、分析等操作,找出问题所在,并进行调试处理。
实验总结:本次基于SystemView通信原理的实验,主要目的是了解通信在嵌入式系统中的应用。
通过实际的程序编写和运行,加深了对通信方式和协议的理解,掌握了SystemView工具的操作方法,从而实时监测和分析通信过程中的问题,进行及时的调试处理。
同时,在实验的过程中也发现了一些问题,如硬件配置、通信协议选择等,需要结合具体情况进行优化和调整。
通过本次实验,让我更好地了解了通信原理在嵌入式系统中的应用,并提高了我的实际操作技巧和问题解决能力。
在今后的嵌入式系统应用中,我将更加注重通信的稳定和可靠性,确保数据传输和处理的正确性和及时性。
通信原理实验指导书(8个实验)

实验一 CPLD 可编程数字信号发生器实训一、实验目的1、熟悉各种时钟信号的特点及波形;2、熟悉各种数字信号的特点及波形。
二、实验设备与器件1、通信原理实验箱一台;2、模拟示波器一台。
三、实验原理1、CPLD 可编程模块电路的功能及电路组成CPLD可编程模块(芯片位号:U101)用来产生实验系统所需要的各种时钟信号和数字信号。
它由 CPLD可编程器件 ALTERA公司的 EPM7128(或者是Xilinx 公司的 XC95108)、编程下载接口电路(J104)和一块晶振(OSC1)组成。
晶振用来产生系统内的16.384MHz 主时钟。
本实验要求参加实验者了解这些信号的产生方法、工作原理以及测量方法,才可通过CPLD可编程器件的二次开发生成这些信号,理论联系实践,提高实际操作能力,实验原理图如图1-1 所示。
2、各种信号的功用及波形CPLD 型号为 EPM7128 由计算机编好程序从 J104 下载写入芯片,OSC1 为晶体,频率为 16.384MHz,经 8 分频得到 2.048MHz 主时钟,面板测量点与EPM7128 各引脚信号对应关系如下:SP101 2048KHz 主时钟方波对应 U101EPM7128 11 脚SP102 1024KHz 方波对应 U101EPM7128 10 脚SP103 512KHz 方波对应 U101EPM7128 9 脚SP104 256KHz 方波对应 U101EPM7128 8 脚SP105 128KHz 方波对应 U101EPM7128 6 脚SP106 64KHz 方波对应 U101EPM7128 5 脚SP107 32KHz 方波对应 U101EPM7128 4 脚SP108 16KHz 方波对应 U101EPM7128 81 脚SP109 8KHz 方波对应 U101EPM7128 80脚SP110 4KHz 方波对应 U101EPM7128 79脚SP111 2KHz 方波对应 U101EPM7128 77脚SP112 1KHz 方波对应 U101EPM7128 76脚SP113 PN32KHz 32KHz伪随机码对应U101EPM7128 75脚SP114 PN2KHz 2KHz伪随机码对应U101EPM7128 74脚SP115 自编码自编码波形,波形由对应 U101EPM7128 73 脚J106 开关位置决定SP116 长 0 长 1 码码形为1、0 连“1”对应 U101EPM7128 70脚、0 连“0”码SP117 X 绝对码输入对应 U101EPM7128 69 脚SP118 Y 相对码输出对应 U101EPM7128 68 脚SP119 F80 8KHz0 时隙取样脉冲对应 U101EPM7128 12 脚此外,取样时钟、编码时钟、同步时钟、时序信号还将被接到需要的单元电路中。
通信原理实验

上海工程技术大学通信原理综合实验报告学院电子电气工程学院专业电子信息工程班级学号022211117学生沈文杰指导教师赵晓丽一.验证性实验1.模拟信号源实验一、实验目的1、熟悉各种模拟信号的产生方法及其用途2、观察分析各种模拟信号波形的特点。
二、实验内容1、测量并分析各测量点波形及数据。
2、熟悉几种模拟信号的产生方法、来源及去处,了解信号流程。
三、设计思想利用信号源模块和20M 双踪示波器进行模拟信号源实验。
主要测试点和可调器件说明如下:1、测试点2K同步正弦波:2K的正弦波信号输出端口,幅度由W1调节。
64K同步正弦波:64K的正弦波信号输出端口,幅度由W2调节。
128K同步正弦波:64K的正弦波信号输出端口,幅度由W3调节。
非同步信号源:输出频率范围100Hz~16KHz的正弦波、三角波、方波信号,通过JP2选择波形,可调电阻W4改变输出频率,W5改变输出幅度。
音乐输出:音乐片输出信号。
音频信号输入:音频功放输入点(调节W6改变功放输出信号幅度)。
2、可调器件K1:音频输出控制端。
K2:扬声器控制端。
W1:调节2K同步正弦波幅度。
W2:调节64K同步正弦波幅度。
W3:调节128K同步正弦波幅度。
W4:调节非同步正弦波频率。
W5:调节非同步正弦波幅度。
W6:调节扬声器音量大小。
四、实验方法1、用示波器测量“2K同步正弦波”、“64K同步正弦波”、“128K同步正弦波”各点输出的正弦波波形,对应的电位器W1,W2,W3可分别改变各正弦波的幅度。
参考波形如下:2、用示波器测量“非同步信号源”输出波形。
1)将跳线开关JP2选择为“正弦波”,改变W5,调节信号幅度(调节范围为0~4V),用示波器观察输出波形。
2)保持信号幅度为3V,改变W4,调节信号频率(调节范围为0~16KHz),用示波器观察输出波形。
3)将波形分别选择为三角波,方波,重复上面两个步骤。
3、将控制开关K1设为“ON”,令音乐片加上控制信号,产生音乐信号输出,用示波器在“音乐输出”端口观察音乐信号输出波形。
数字频带传输系统实验报告(通信原理)

电子信息与自动化学院《通信原理》实验报告学号: 姓名:实验五:数字频带传输系统实验 一、实验原理数字频带信号通常也称为数字调制信号,其信号频谱通常是带通型的,适合于在带通型信道中传输。
数字调制是将基带数字信号变换成适合带通型信道传输的一种信号处理方式,正如模拟通信一样,可以通过对基带信号的频谱搬移来适应信道特性,也可以采用频率调制、相位调制的方式来达到同样的目的。
1.调制过程 1)2ASK如果将二进制码元“0”对应信号0,“1”对应信号t f A c π2cos ,则2ASK :()()cos 2T n s c n s t a g t nT A f t π⎧⎫=-⎨⎬⎩⎭∑{}1,0∈n a ,()⎩⎨⎧≤≤=其他 0T t 0 1st g 。
可以看到,上式是数字基带信号()()∑-=nsnnT t g a t m 经过DSB 调制后形成的信号。
其调制框图如图1所示:图1 2ASK 信号调制框图2ASK 信号的功率谱密度为:()()()][42c m c m s f f P f f P A f P ++-=2)2FSK将二进制码元“0”对应载波t f A 12cos π,“1”对应载波t f A 22cos π,则形成2FSK 信号,可以写成如下表达式:()()()()()12cos 2cos 2T n s n n s n nns t a g t nT A f t a g t nT A f t πϕπθ=-++-+∑∑当0=n a 时,对应的传输信号频率为1f ;当1=n a 时,对应的传输信号频率为2f 。
上式中,n ϕ、n θ是两个频率波的初相。
2FSK 也可以写成另外的形式如下:()()cos 22T c n s n s t A f t h a g t nT ππ∞=-∞⎛⎫=+- ⎪⎝⎭∑其中,{}1,1-+∈n a ,()2/21f f f c +=,()⎩⎨⎧≤≤=其他0T t 0 1s t g ,12f f h -=为频偏。
光纤通信原理实验课件PPT光纤通信原理实验教学课件

实验二 电话光纤传输系统实验
1、若模拟电话光纤传 输时有噪声,可根据 模拟信号光纤传输步 骤进行调试。
2、若数字电话光纤传输时
! 有噪声,可根据数字光纤 传输步骤进行调试。
注意事项
38
实验二 电话光纤传输系统实验
思考题
1、能否用一根光纤传输两路模拟信号,如 果可以,如何实现?如果不行,说明理由。
实
验
2 连接导线:T504与T101连接。
准
备
3
将拨码开关BM1、BM2和BM3分别拨到 数字、1310nm和1310nm。
10
实验一 数字信号光纤传输实验
实验步骤
4
接上交流电源线,先开交流开关,再 开直流开关K01,K02。
实
验 准 备
5
接通数字信号源模块、光发模块(K10) 的直流电源。
6
用万用表监控R110两端电压,调节半导 体激光器驱动电流,使之小于25mA。
实验步骤
模拟电话光纤传输系统实验
1
用实验十一调试方法调节,使1310nm光纤 通信系统能够正常传输模拟信号。
实 验 准
2
连接导线:T401与T111连接,T412与T121 连接,T402与T411连接。并接上电话机。
备
3
用光纤跳线将1310nm光发端机与1310nm 光收端机连接起来。
26
实验二 电话光纤传输系统实验
18
实验二 电话光纤传输系统实验
了解电话及语音信号通过光纤传输的全
实
过程
验
目
的
握模拟电话、数字电话光纤传输的工作
原理
19
实验二 电话光纤传输系统实验
ZY12OFCom13BG3 光纤通信原理实验箱
通信原理_数字基带传输实验报告

基带传输系统实验报告一、 实验目的1、 提高独立学习的能力;2、 培养发现问题、解决问题和分析问题的能力;3、 学习matlab 的使用;4、 掌握基带数字传输系统的仿真方法;5、 熟悉基带传输系统的基本结构;6、 掌握带限信道的仿真以及性能分析;7、 通过观察眼图和星座图判断信号的传输质量。
二、 实验原理在数字通信中,有些场合可以不经载波调制和解调过程而直接传输基带信号,这种直接传输基带信号的系统称为基带传输系统。
基带传输系统方框图如下:基带脉冲输入噪声基带传输系统模型如下:信道信号 形成器信道接收滤波器抽样 判决器同步 提取基带脉冲各方框的功能如下:(1)信道信号形成器(发送滤波器):产生适合于信道传输的基带信号波形。
因为其输入一般是经过码型编码器产生的传输码,相应的基本波形通常是矩形脉冲,其频谱很宽,不利于传输。
发送滤波器用于压缩输入信号频带,把传输码变换成适宜于信道传输的基带信号波形。
(2)信道:是基带信号传输的媒介,通常为有限信道,如双绞线、同轴电缆等。
信道的传输特性一般不满足无失真传输条件,因此会引起传输波形的失真。
另外信道还会引入噪声n(t),一般认为它是均值为零的高斯白噪声。
(3)接收滤波器:接受信号,尽可能滤除信道噪声和其他干扰,对信道特性进行均衡,使输出的基带波形有利于抽样判决。
(4)抽样判决器:在传输特性不理想及噪声背景下,在规定时刻(由位定时脉冲控制)对接收滤波器的输出波形进行抽样判决,以恢复或再生基带信号。
(5)定时脉冲和同步提取:用来抽样的位定时脉冲依靠同步提取电路从接收信号中提取。
三、实验内容1采用窗函数法和频率抽样法设计线性相位的升余弦滚讲的基带系统(不调用滤波器设计函数,自己编写程序)设滤波器长度为N=31,时域抽样频率错误!未找到引用源。
o为4 /Ts,滚降系数分别取为0.1、0.5、1,(1)如果采用非匹配滤波器形式设计升余弦滚降的基带系统,计算并画出此发送滤波器的时域波形和频率特性,计算第一零点带宽和第一旁瓣衰减。
通信原理设计实验报告(3篇)
第1篇一、实验目的1. 理解通信原理的基本概念和原理。
2. 掌握通信系统中的信号传输、调制解调、信道编码和解码等基本技术。
3. 通过实验验证通信原理在实际系统中的应用,提高实际操作能力。
二、实验内容1. 信号传输实验(1)实验目的:验证信号传输过程中的基本特性,如幅度调制、频率调制、相位调制等。
(2)实验原理:通过改变输入信号的幅度、频率和相位,观察输出信号的相应变化,分析调制和解调过程。
(3)实验步骤:① 设计信号传输系统,包括调制器、传输信道和解调器;② 选择合适的调制方式,如AM、FM、PM等;③ 通过实验验证调制和解调过程,分析输出信号的特性;④ 分析实验结果,总结调制和解调过程中的关键因素。
2. 调制解调实验(1)实验目的:研究调制解调技术在通信系统中的应用,掌握调制解调的基本原理和方法。
(2)实验原理:通过实验验证调制解调过程,分析调制解调器的性能指标,如调制指数、解调误差等。
(3)实验步骤:① 设计调制解调系统,包括调制器、解调器和信道;② 选择合适的调制方式和解调方式,如AM、FM、PM、PSK、QAM等;③ 通过实验验证调制解调过程,分析调制解调器的性能指标;④ 分析实验结果,总结调制解调过程中的关键因素。
3. 信道编码和解码实验(1)实验目的:研究信道编码和解码技术在通信系统中的应用,掌握信道编码和解码的基本原理和方法。
(2)实验原理:通过实验验证信道编码和解码过程,分析编码和解码的性能指标,如误码率、信噪比等。
(3)实验步骤:① 设计信道编码和解码系统,包括编码器、信道和解码器;② 选择合适的信道编码方式,如BCH码、RS码等;③ 通过实验验证信道编码和解码过程,分析编码和解码的性能指标;④ 分析实验结果,总结信道编码和解码过程中的关键因素。
4. 通信系统综合实验(1)实验目的:综合运用通信原理中的各种技术,设计一个简单的通信系统,并验证其性能。
(2)实验原理:将上述实验中的技术综合应用于通信系统,验证系统的整体性能。
通信原理实验报告
通信原理实验报告实验一抽样定理实验二 CVSD编译码系统实验实验一抽样定理一、实验目的所谓抽样。
就是对时间连续的信号隔一定的时间间隔T 抽取一个瞬时幅度值(样值),即x(t)*s(t)=x(t)s(t)。
在一个频带限制在(0,f h)内的时间连续信号f(t),如果以小于等于1/(2 f h)的时间间隔对它进行抽样,那么根据这些抽样值就能完全恢复原信号。
抽样定理告诉我们:如果对某一带宽有限的时间连续信号(模拟信号)进行抽样,且抽样速率达到一定数值时,那么根据这些抽样值就能准确地还原信号。
这就是说,若要传输模拟信号,不一定要传输模拟信号本身,可以只传输按抽样定理得到的抽样值。
二、功能模块介绍1.DDS 信号源:位于实验箱的左侧(1)它可以提供正弦波、三角波等信号,通过连接P03 测试点至PAM 脉冲调幅模块的32P010 作为脉冲幅度调制器的调制信号x(t)。
抽样脉冲信号则是通过P09 测试点连至PAM 脉冲调幅模块。
(2)按下复合式按键旋钮SS01,可切换不同的信号输出状态,例如D04D03D02D01=0010对应的是输出正弦波,每种LED 状态对应一种信号输出,具体实验板上可见。
(3)旋转复合式按键旋钮SS01,可步进式调节输出信号的频率,顺时针旋转频率每步增加100Hz,逆时针减小100Hz。
(4)调节调幅旋钮W01,可改变P03 输出的各种信号幅度。
2.抽样脉冲形成电路模块它提供有限高度,不同宽度和频率的抽样脉冲序列,可通过P09 测试点连线送到PAM 脉冲调幅模块32P02,作为脉冲幅度调制器的抽样脉冲s(t)。
P09 测试点可用于抽样脉冲的连接和测量。
该模块提供的抽样脉冲频率可通过旋转SS01 进行调节,占空比为50%。
3.PAM 脉冲调幅模块它采用模拟开关CD4066 实现脉冲幅度调制。
抽样脉冲序列为高电平时,模拟开关导通,有调制信号输出;抽样脉冲序列为低电平,模拟开关断开,无信号输出。
通信系统综合实验报告
通信系统综合实验报告实验一无线多点组网一、实验步骤1、组建树型网络组建5个节点的树形网络,阐述组建的过程。
2、进行数据传输节点之间进行通信,并记录路由信息,最后,进行组播和广播,观察其特点。
二、实验过程1、组建树型网络(1).网络1A、首先在配置中寻找到其他4个节点的地址信息。
自身地址:00:37:16:00:A5:46B、查找设备C、建立连接组网假设参加组网的共有5个BT设备,称为a、b、c、d、e。
首先由一个设备(例如b)发起查询,如果找到多个设备,则任选其二(例如d、e)主动与其建链。
在这个阶段,b、d、e构成一个微微网,b为主设备(M),d、e为从设备(S)。
注意在微微网中对处于激活状态的从设备的个数限制为2;而某个设备一旦成为从设备(即d、e),它就不能再被其它设备发现,也不能查询其它设备或与其它设备建链。
再由另外一个设备(a)发起查询,查询到设备b和设备c,再主动链接。
(1).网络1组建的网络图(1)(2)网络2同理,首先,在配置中寻找到其他4个节点的地址信息。
然后查找设备,再建立连接。
由地址为00:37:16:00:A5:42的节点连接00:37:16:00:A5:46和00:37:16:00:A5:43,再由00:37:16:00:A5:47连接00:37:16:00:A5:42和00:37:16:00:A5:45,最后组成网络。
组建的网络图(2)2.进行数据传输(1)点对点发送信息例如,对于组建的网络2.图中显示的是:00:37:16:00:A5:4A对00:37:16:00:A5:43的路由,途中经过了00:37:16:00:A5:47,00:37:16:00:A5:42由此可见,简单拓扑结构,路由具有唯一性。
(2)组播与广播1. 广播:由任何一个节点设备向网络内的所有其他节点发送同一消息,观察其发送的目标地址以及数据交换过程。
在这种情况下的路由过程与两个节点间数据单播的过程有何不同。
红外通信原理实验报告
一、实验目的通过本次实验,掌握红外通信的基本原理,了解红外通信系统的工作流程,学会使用红外发射和接收模块进行数据传输,并能够分析红外通信的优缺点。
二、实验原理红外通信是利用红外线传输信息的通信方式,其原理是将要传输的信息(如数字信号、模拟信号等)调制到一定频率的红外载波上,通过红外发射管发射出去,接收端接收红外信号,解调出原始信息。
1. 红外发射原理红外发射器主要由红外发射管、驱动电路、调制电路等组成。
驱动电路将信号放大后驱动红外发射管,调制电路将信号调制到一定频率的红外载波上。
2. 红外接收原理红外接收器主要由红外接收管、放大电路、检波电路、解调电路等组成。
放大电路将接收到的微弱信号放大,检波电路将调制信号中的原始信息提取出来,解调电路将提取出的信息解调为原始信号。
3. 红外通信系统红外通信系统由红外发射器和红外接收器组成,两者之间通过红外线进行信息传输。
系统工作流程如下:(1)信息编码:将原始信息编码为二进制信号。
(2)调制:将编码后的二进制信号调制到一定频率的红外载波上。
(3)发射:通过红外发射管将调制后的信号发射出去。
(4)接收:通过红外接收管接收发射的信号。
(5)解调:将接收到的信号解调为原始信息。
(6)信息处理:对解调后的信息进行处理,如显示、存储等。
三、实验器材1. 红外发射模块2. 红外接收模块3. 51单片机4. 信号源5. 电源6. 接线板7. 实验台四、实验步骤1. 连接红外发射模块和51单片机,将信号源输出信号连接到单片机的输入端。
2. 编写程序,实现信号编码、调制、发射等功能。
3. 连接红外接收模块,将接收到的信号输入到单片机的输入端。
4. 编写程序,实现信号接收、解调、信息处理等功能。
5. 检查实验结果,观察红外通信系统的性能。
五、实验结果与分析1. 通过实验,成功实现了红外通信系统的基本功能。
2. 红外通信具有以下优点:(1)传输速度快,抗干扰能力强。
(2)成本低,易于实现。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
通信原理实验系统第一篇通信原理实验系统实验一各类模拟信号源实验实验内容1.测试各类模拟信号的波形。
2.测量信号音信号的波形。
一.实验目的:1.熟悉各类模拟信号的产生方法及其用途2.观察分析各类模拟信号波形的特点。
二、电路工作原理模拟信号源电路用来产生实验所需的各类音频信号:同步正弦波信号、非同步正弦波信号、话音信号、音乐信号等。
(一)同步信号源(同步正弦波发生器)1.功用同步信号源用来产生与编码数字信号同步的2KHz或者1KHz正弦波信号,作为增量调制编码、PCM编码实验的输入音频信号。
在没有数字存贮示波器的条件下,用它作为编码实验的输入信号,可在普通示波器上观察到稳固的编码数字信号波形。
2.电路原理图1-1为同步正弦信号发生器的电路图。
它由2KHz(或者1KHz)方波信号产生器(图中省略了)、高通滤波器、低通滤波器与输出电路四部分构成。
2KHz(或者1KHz)方波信号由CPLD可编程器件U101内的逻辑电路通过编程产生。
TP104为其测量点。
U107C及周边的阻容网络构成一个截止频率为ωL的二阶高通滤波器,用以滤除各次谐波。
U107D及周边的阻容网络构成一个截止频率为ωH的二阶低通滤波器,用以滤除基波下列的杂波。
两者组合成一个2KHz(或者1KHz)正弦波的带通滤波器只输出一个2KHz(或者1KHz)正弦波,TP107为其测量点。
输出电路由BG102与周边阻容元件构成射极跟随器,起阻抗匹配、隔离与提高驱动能力的作用。
W104用来改变高通滤波器反馈量的大小,使其工作在稳固的状态,W105用来改变输出正弦波的幅度。
(二)非同步信号源(非同步正弦波发生器)1.功用非同步信号源是一个简易正弦波信号发生器,它可产生频率为0.3~10KHz(使用范围0.3~3.4KHz)的正弦波信号,输出幅度为0~2V。
可利用它定性地观察通信话路的频率特性,同时用作增量调制、脉冲编码调制实验的音频信号源。
2.工作原理非同步信号源的电路图如图1-2所示。
它由一个正弦波振荡器与一级输出电路构成。
正弦波振荡器由U107A、U107B与R、C元件构成。
R103、C101为反馈元件。
调节W101、W102可改变其振荡频率在0.3~3.4KHz间变化。
调整W103可使输出(TP108处测)在0~2V 间变化。
输出电路由BG101及RC元件构成,它是一级射极跟随器,起隔离、阻抗匹配与提高驱动能力的作用。
(三)话筒输入电路(麦克风电路)1.功用:话筒电路用来给驻极体话筒提供直流工作电压。
2.原理:话筒电路如图1-3所示,V CC经分压器向话筒提供约2.5V工作电压,讲话时话筒与R101上的电压发生变化,其电压变化分量即为话音信号,经E101耦合输出,送往模拟信号输入选择电子开关。
(四)音乐信号产生电路1.功用音乐信号产生电路用来产生音乐信号送往音频终端电路,以检查话音信道的开通情况及通话质量。
2.工作原理音乐信号产生电路见图1-4。
音乐信号由U109音乐片厚膜集成电路产生。
该片的1脚为电源端,2脚为操纵端,3脚为输出端,4脚为公共地端。
V CC经R117、D101向U109的1脚提供3.3V电源电压,当2脚通过K105输入操纵电压+3.3V时,音乐片即有音乐信号从第3脚输出,经E105送往模拟信号输入选择电子开关。
(五)外加模拟信号输入电路在一些特殊情况下,简易正弦波信号发生器不能满足实验要求,就要用外加信号源提供所需信号。
比如要定量地测试通信话路的频率特性时需要使用频率与电平、输出阻抗都很稳固的频率范围很宽的音频测试信号,这就需要外接音频信号产生器或者函数信号发生器。
外加模拟信号输入电路为它们提供了连接到实验的接口电路。
(六) 模拟电话输入电路:图1-5是用PBL38710/1电话集成电路构成的电话输入电路,J103是手柄的送话器接口。
讲话时话音信号从TIPX与RINGX引脚输入,经U112内部话音信号传输处理后从VTX与RSN引脚输出。
输出信号分两路,一路经K103的1-2送往PCM(一)编码器或者经K103的2-3送往PCM(二)编码器;另一路经K104的1-2或者2-3送往话路终端接收滤波电路的J105,选择后从音信号输出电路的喇叭输出话音。
图1-2 非同步正弦波信号发生器电路图图1-3 话筒电路图图1-4 音乐信号产生电路图图1-5 电话输入电原理图三、实验内容1.用示波器在相应测试点上测量各点波形:同步信号源、非同步信号源、电话输入电路、话音输入电路、外加模拟信号输入电路。
2.熟悉上述各类信号的产生方法、来源及去处,熟悉信号流程。
四、实验仪器①通信原理实验箱②100MHZ数字示波器③频率计五、实验步骤1.用示波器测量TP106、TP107、TP108、TP109、TP110、TP112、TP113、TP114等各点波形。
2.测量音乐信号时用K105接通+3.3V,令音乐片加上操纵信号,产生音乐信号输出。
六、各测量点波形TP106:由CPLD(EPM7128SLC-15)分频产生的2 KHz方波。
TP107:与工作时钟同步输出的2KHz或者1KHz正弦波信号。
TP108:0.3~3.4KHz的正弦波。
TP109:话路终端接收模拟信号输入。
TP110:音频功放输入信号。
TP111:音频输出信号。
TP112:话路终端发送模拟信号输出。
TP113:电话电路送往PCM编码器的话音信号。
TP114:电话电路送往话音终端接收滤波电路的话音信号。
七、实验报告要求1. 分析实验电路的工作原理,叙述其工作过程。
2. 根据实验测试记录,在坐标纸上画出各测试点的波形图,并分析实验现象。
实验二CPLD可编程数字信号发生器实验实验内容1. 熟悉CPLD可编程信号发生器各测量点波形2.测量并分析各测量点波形及数据3.学习CPLD可编程器件的编程操作一、实验目的1.熟悉各类时钟信号的特点及波形2.熟悉各类数字信号的特点及波形二、实验电路的工作原理(一)、CPLD可编程模块二电路的功能及电路构成图2-1是CPLD可编程模块的电路图。
CPLD可编程模块用来产生实验系统所需要的各类时钟信号与各类数字信号。
它由CPLD 可编程器件Xilinx公司的XC95108(或者者是ALTERA公司的EPM7128)、下载接口电路与一块晶振构成。
晶振JZ101用来产生系统内的4.096MHz主时钟。
本实验要求参加实验者熟悉这些信号的产生方法、工作原理与测量方法,才可通过CPLD可编程器件的二次开发生成这些信号,理论联系实验,提高实际操作能力。
(二)、各类信号的功用及波形1.83脚输入4.096MHz时钟,方波。
由JZ101产生的4.096MHz时钟,经R118,从83脚送入U101进行整形,然后进行分频输出。
2.58脚,输出2.048MHz时钟,方波。
3.56脚,输出1.024MHz时钟,方波。
4.28脚,输出64KHz时钟,方波。
5.29脚,输出32KHz时钟,方波。
6.15脚,输出16KHz时钟,方波。
7.31脚,输出2KHz时钟,方波。
8.16脚,输出1KHz时钟,方波。
9.57脚,输出8 KHz的窄脉冲同步信号(ZM80),供PCM(一)用。
10.36脚,输出第一时序8 KHz的窄脉冲同步信号(ZM81),供PCM(二)用。
11.35脚,输出第二时序8 KHz的窄脉冲同步信号(ZM82),供PCM(二)用。
12.34脚,输出第三时序8 KHz的窄脉冲同步信号(ZM83),供PCM(二)用。
13.33脚,输出第四时序8 KHz的窄脉冲同步信号(ZM84),供PCM(二)用。
ZM81、ZM82、ZM83、ZM84的时间间隔为125μs,可通过编程来改变它们的时序及时间间隔,它们同时接到J102,通过跳接器选择,供PCM(二)使用(见图2-1)。
图2-1 CPLD可编程模块电路图三、实验内容1.熟悉通信原理实验系统电路构成。
2.熟悉信号发生器各测量点信号波形。
3.测量并分析各测量点波形及数据。
四、实验仪器①通信原理实验箱②100MHZ数字示波器③频率计五、实验步骤1.打开电源开关K01、K02,使系统工作。
2.用示波器测出各测量点波形,并对每一测量点的波形加以分析。
GND为接地点,测量各点波形时示波器探头的地线应接地良好。
各测量点波形如图2-2所示,具体说明如下:TP101:2048KHz的时钟信号。
TP102:128KHz的时钟信号(方波)。
TP103:8KHz的方波信号。
TP104:伪随机序列码,码元速率为2KHz,码型为000011101100101。
TP105:伪随机序列码,码元速率为32KHz,码型为000011101100101。
图2-2 CPLD产生要紧测量点波形六、实验报告要求1. 分析实验电路的工作原理,叙述其工作过程。
2. 根据实验测试记录,在坐标纸上画出各测试点的波形图,并分析实验现象。
实验三话路终端发送与接收滤波实验实验内容1.通信话路终端发送实验2.通信话路终端接收滤波器实验一、实验目的1.熟悉语音信号在通信话路终端的传输过程2.掌握滤波器电路在通信话路终端接收电路中的作用3.熟悉通信话路终端滤波器的带宽与幅频特性曲线二、实验电路工作原理话路终端语音传输电路方框图如图3-1所示。
从图中可知:1.模拟输入选择开关J1062.话路终端发送电路3.PAM脉冲幅度调制电路4.PCM(一)脉冲编码与译码电路5.PCM(二)时分多路复用电路6.增量调制编码电路与译码电路7.模拟输出选择开关J1048.接收信号选择开关J1059.话路终端接收电路九部分构成一个发送通道与接收通道。
原理框图如图3-2所示,其中PAM、PCM(一)、PCM(二)、△M四部分电路在后面实验中分别介绍。
本次实验要紧介绍:话路终端发送与接收电路。
由图3-2可知,话路终端发送电路由发送放大电路构成;接收电路由输出选择开关、低通滤波、音频功率放大电路构成。
图3-4 话路终端接收滤波电路图图3-5 输出音频功放电路图(1)话路终端发送电路话路终端发送电路如图3-3所示。
在发送端,音频信号的输入由开关J106选择,通过发送放大器放大后,信号幅度可由W108进行调节。
J104用来选择模拟信号送往哪一个调制器。
(2)话路终端接收电路话路终端接收电路如图3-4所示。
在接收端,各类译码器输出的信号通过接收选择开关J105后,进入通信话路终端接收滤波器滤波与放大,如图3-4所示。
信号幅度可由W107进行调节,最后由扬声器输出原模拟音频信号。
见图3-5所示。
三、实验内容1.通信话路终端发送放大器实验2.通信话路终端接收滤波器实验四、实验仪器①通信原理实验箱②100MHZ数字示波器③频率计五、实验步骤及注意事项(以PCM(一)为例)1.按下开关:K01,K02,K500。