初中竞赛重要数学公式归纳总结

合集下载

2021年初中数学竞赛公式及定理精简版

2021年初中数学竞赛公式及定理精简版

普通定理及公式1、多边形内角和定理 n边形内角和等于(n-2)×180°2、推论任意多边外角和等于360°3、等腰梯形性质定理等腰梯形在同一底上两个角相等4、等腰梯形两条对角线相等5、等腰梯形鉴定定理在同一底上两个角相等梯形是等腰梯形6、梯形中位线定理梯形中位线平行于两底,并且等于两底和一半 L=(a+b)÷2 S=L×h7、比例基本性质如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d8、合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d9、等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a10、任意锐角正弦值等于它余角余弦值,任意锐角余弦值等于它余角正弦值11、任意锐角正切值等于它余角余切值,任意锐角余切值等于它余角正切值12、相交弦定理圆内两条相交弦,被交点提成两条线段长积相等13、如果弦与直径垂直相交,那么弦一半是它分直径所成两条线段比例中项14、切割线定理:从圆外一点引圆切线和割线,切线长是这点到割线与圆交点两条线段长比例中项15、从圆外一点引圆两条割线,这一点到每条割线与圆交点两条线段长积相等16、如果两个圆相切,那么切点一定在连心线上17、①两圆外离 d>R+r ②两圆外切 d=R+r ③两圆相交 R-r<d<R+r(R>r)④两圆内切 d=R-r(R>r) ⑤两圆内含d<R-r(R>r)18、相交两圆连心线垂直平分两圆公共弦19、定理正n边形半径和边心距把正n边形提成2n个全等直角三角形20、正三角形面积√3a/4 ,a表达边长21、弧长计算公式:L=nπR/18022、扇形面积公式:S扇形=nπR2/360=LR/223、内公切线长= d-(R-r) 外公切线长= d-(R+r)三角函数定理及公式两角和公式sin(A+B)=sin A·cos B+cos A·sin B sin(A-B)=sin A·cos B-sin B·cos A cos(A+B)=cos A·cos B-sin A·sin B cos(A-B)=cos A·cos B+sin A·sin B tan(A+B)=(tan A+tan B)/(1-tanAtanB) tan(A-B)=(tan A-tan B)/(1+tan A·tan B)cot(A+B)=(cot A·cotB-1)/(cot B+cot A) cot(A-B)=(cot A·cot B+1)/(cot B-cot A)倍角公式tan 2A=2·tan A/(1-tan 2A) cot 2A=(cot 2A-1)/2·cotAcos 2a=cos 2a-sin 2a=2·cos 2a-1=1-2·sin 2a半角公式sin(A/2)=√((1-cos A)/2) sin(A/2)=-√((1-cos A)/2)cos(A/2)=√((1+cos A)/2) cos(A/2)=-√((1+cos A)/2) tan(A/2)=√(((1-cos A)/(1+cos A)) tan(A/2)=-√((1-cos A)/(1+cos A))cot(A/2)=√((1+cos A)/((1-cos A)) cot(A/2)=-√((1+cos A)/((1-cos A))和差化积2sin A·cos B=sin(A+B)+sin(A-B) 2cos A·sin B=sin(A+B)-sin(A-B)2cos A·cos B=cos(A+B)-sin(A-B) -2sin A·sin B=cos(A+B)-cos(A-B)sin A+sin B=2sin((A+B)/2)cos((A-B)/2 cos A+cos B=2cos((A+B)/2)·sin((A-B)/2) tan A+tan B=sin(A+B)/cos A·cos B tan A-tan B=sin(A-B)/cos A·cos B cot A+cot B·sin(A+B)/sin A·sin B -cot A+cot B·sin(A+B)/sin A·sin B某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3某些平面几何知名定理1、勾股定理(毕达哥拉斯定理)2、射影定理(欧几里得定理)3、三角形三条中线交于一点,并且,各中线被这个点提成2:1两某些4、四边形两边中心连线两条对角线中心连线交于一点5、间隔连接六边形边中心所作出两个三角形重心是重叠。

初中数学公式总结

初中数学公式总结

初中数学公式总结数学作为一门学科,离不开公式的运用。

在初中阶段,学生们需要掌握各种不同的数学公式,并能够灵活运用它们来解决各种数学问题。

下面是一些初中数学常用公式的总结。

1. 等式变形公式1.1 相等式变形公式- 同加同减律:若 a = b,则 a ± c = b ± c;- 同除律:若 a = b,则 a/c = b/c(c ≠ 0);- 同乘同除律:若 a = b,则 ac = bc。

1.2 方程变形公式- 加减法原则:对方程两边加减同一个数,仍得一个真等式;- 平方根法:设 a² = c(a > 0),则a = ±√c;- 当等式两边都是完全平方时,可以使用因式分解法。

2. 定义公式2.1 同底数幂相乘法则:aⁿ * aᵐ= aⁿ⁺ᵐ2.2 同底数幂相除法则:aⁿ / aᵐ= aⁿ⁻ᵐ2.3 幂的乘方法则:(aⁿ)ᵐ= aⁿᵐ3. 平面几何公式3.1 长方形面积公式: S = 长 ×宽3.2 正方形面积公式: S = 边长²3.3 三角形面积公式:- 一般三角形面积公式: S = 1/2 ×底 ×高- 海伦公式:S = √[ p(p-a)(p-b)(p-c) ],其中 p = (a + b + c)/2- 直角三角形面积公式:S = 1/2 ×底 ×高3.4 平行四边形面积公式: S = 底 ×高3.5 梯形面积公式: S = (上底 + 下底) ×高 / 24. 数列与函数公式4.1 等差数列通项公式:aₙ = a₁ + (n-1)d4.2 等差数列前 n 项和公式:Sₙ = n/2 × [2a₁ + (n-1)d]4.3 等比数列通项公式:aₙ = a₁ × r^(n-1)4.4 等比数列前 n 项和公式:Sₙ = a₁ × (1 - rⁿ) / (1 - r)4.5 一次函数方程:y = kx + b,其中 k 为斜率,b 为截距。

初中数学竞赛定理大全

初中数学竞赛定理大全

欧拉(Euler)线:同一三角形的垂心、重心、外心三点共线,这条直线称为三角形的欧拉线;且外心与重心的距离等于垂心与重心距离的一半。

九点圆:任意三角形三边的中点,三高的垂足及三顶点与垂心间线段的中点,共九个点共圆,这个圆称为三角形的九点圆;其圆心为三角形外心与垂心所连线段的中点,其半径等于三角形外接圆半径的一半。

费尔马点:已知P为锐角△ABC内一点,当∠APB=∠BPC=∠CPA=120°时,PA +PB+PC的值最小,这个点P称为△ABC的费尔马点。

海伦(Heron)公式:塞瓦(Ceva)定理:在△ABC中,过△ABC的顶点作相交于一点P的直线,分别交边BC、CA、AB与点D、E、F,则(BD/DC)·(CE/EA)·(AF/FB)=1;其逆亦真。

密格尔(Miquel)点:若AE、AF、ED、FB四条直线相交于A、B、C、D、E、F六点,构成四个三角形,它们是△ABF、△AED、△BCE、△DCF,则这四个三角形的外接圆共点,这个点称为密格尔点。

葛尔刚(Gergonne)点:△ABC的内切圆分别切边AB、BC、CA于点D、E、F,则AE、BF、CD三线共点,这个点称为葛尔刚点。

西摩松(Simson)线:已知P为△ABC外接圆周上任意一点,PD⊥BC,PE⊥ACPF⊥AB,D、E、F为垂足,则D、E、F三点共线,这条直线叫做西摩松线。

黄金分割:把一条线段(AB)分成两条线段,使其中较大的线段(AC)是原线段(AB) 与较小线段(BC)的比例中项,这样的分割称为黄金分割。

帕普斯(Pappus)定理:已知点A1、A2、A3在直线l1上,已知点B1、B2、B3在直线l2上,且A1 B2与A2 B1交于点X,A1B3与A3 B1交于点Y,A2 B3于A3 B2交于点Z,则X、Y、Z三点共线。

笛沙格(Desargues)定理:已知在△ ABC与△A'B'C'中,AA'、BB'、CC'三线相交于点O,BC与B'C'、CA与C'A'、AB与A'B'分别相交于点X、Y、Z,则X、Y、Z三点共线;其逆亦真摩莱(Morley)三角形:在已知△ABC三内角的三等分线中,分别与BC、CA、AB相邻的每两线相交于点D、E、F,则△DEF是正三角形,这个正三角形称为摩莱三角形。

初中数学竞赛中常用重要定理

初中数学竞赛中常用重要定理

初中数学竞赛中常用重要定理1、 梅涅劳斯定理:假如在△ABC 的三边BC 、CA 、AB 或其延长线上有点D 、 E 、F 且D 、E 、F 三点共线,则FB AF EA CE DC BD ••=12、 梅涅劳斯定理的逆定理:假如在△ABC 的三边BC 、CA 、AB 或其延长线上 有点D 、E 、F ,且满足FB AF EA CE DC BD ••=1,则D 、E 、F 三点共线。

3、 塞瓦定理:设O 是△ABC 内任意一点,AO 、BO 、CO 分别交对边于N 、P 、 M ,则1=••PACP NC BN MB AM4、 塞瓦定理的逆定理:设M 、N 、P 分别在△ABC 的边AB 、BC 、CA 上,且满足1=••PA CP NC BN MB AM ,则AN 、BP 、CM 相交于一点。

5、 广勾股定理的两个推论:推论1:平行四边形对角线的平方和等于四边平方和。

推论2:设△ABC 三边长分别为a 、b 、c ,对应边上中线长分别为m a 、m b 、m c则:m a =2222221a c b -+;m b =2222221b c a -+;m c =2222221c b a -+ 6、 三角形内、外角平分线定理:内角平分线定理:如图:假如∠1=∠2,则有AC AB DC BD =外角平分线定理:如图,AD 是△ABC 中∠A 的外角平分线交BC 的延长线与D , 则有ACAB DC BD =7、 托勒密定理:四边形ABCD 是圆内接四边形,则有AB ·CD+AD ·BC=AC ·BD8、 三角形位似心定理:如图,若△ABC 与△DEF 位似,则通过对应点的三直线AD 、BE 、CF 共点于P9、 正弦定理、在△ABC 中有R C c B b A a 2sin sin sin ===(R 为△ABC 外接圆半径) 余弦定理:a 、b 、c 为△ABC 的边,则有:a 2=b 2+c 2-2bc ·cosA; b 2=a 2+c 2-2ac ·cosB; c 2=a 2+b 2-2ab ·cosC;10、西姆松定理:点P 是△ABC 外接圆周上任意一点,PD ⊥BC ,PE ⊥AC , PF ⊥AB ,D 、E 、F 为垂足,则D 、E 、F 三点共线,此直线称为西姆松线。

(完整版)初中数学竞赛——勾股定理及其应用

(完整版)初中数学竞赛——勾股定理及其应用

(完整版)初中数学竞赛——勾股定理及其应用初中数学竞赛勾股定理与应用勾股定理直角三角形两直角边a,b的平方和等于斜边c的平方,即a2+b2=c2.勾股定理逆定理如果三角形三边长a,b,c有下面关系:a2+b2=c2那么这个三角形是直角三角形.早在3000年前,我国已有“勾广三,股修四,径阳五”的说法.关于勾股定理,有很多证法,在我国它们都是用拼图形面积方法来证明的.下面的证法1是欧几里得证法.证法1 如图2—16所示.在Rt△ABC的外侧,以各边为边长分别作正方形ABDE,BCHK,ACFG,它们的面积分别是c2,a2,b2.下面证明,大正方形的面积等于两个小正方形的面积之和.过C引CM∥BD,交AB于L,连接BG,CE.因为AB=AE,AC=AG,∠CAE=∠BAG,所以△ACE≌△AGB(SAS).而所以 S AEML=b2.①同理可证 S BLMD=a2.②①+②得S ABDE=S AEML+S BLMD=b2+a2,即 c2=a2+b2.证法2 如图2—17所示.将Rt△ABC的两条直角边CA,CB 分别延长到D,F,使AD=a,BF=b.完成正方形CDEF(它的边长为a+b),又在DE上截取DG=b,在EF上截取EH=b,连接AG,GH,HB.由作图易知△ADG≌△GEH≌△HFB≌△ABC,所以AG=GH=HB=AB=c,∠BAG=∠AGH=∠GHB=∠HBA=90°,因此,AGHB为边长是c的正方形.显然,正方形CDEF 的面积等于正方形AGHB的面积与四个全等的直角三角形(△ABC,△ADG,△GEH,△HFB)的面积和,即化简得 a2+b2=c2.证法3 如图2—18.在直角三角形ABC的斜边AB上向外作正方形ABDE,延长CB,自E作EG⊥CB延长线于G,自D 作DK⊥CB延长线于K,又作AF, DH分别垂直EG于F,H.由作图不难证明,下述各直角三角形均与Rt△ABC全等:△AFE≌△EHD≌△BKD≌△ACB.设五边形ACKDE的面积为S,一方面S=S ABDE+2S△ABC,①另一方面S=S ACGF+S HGKD+2S△ABC.②由①,②所以 c2=a2+b2.关于勾股定理,在我国古代还有很多类似上述拼图求积的证明方法,我们将在习题中展示其中一小部分,它们都以中国古代数学家的名字命名.利用勾股定理,在一般三角形中,可以得到一个更一般的结论.定理在三角形中,锐角(或钝角)所对的边的平方等于另外两边的平方和,减去(或加上)这两边中的一边与另一边在这边(或其延长线)上的射影的乘积的2倍.(完整版)初中数学竞赛——勾股定理及其应用因此,我们常又称此定理为广勾股定理(意思是勾股定理在一般三角形中的推广).由广勾股定理我们可以自然地推导出三角形三边关系对于角的影响.在△ABC中,(1)若c2=a2+b2,则∠C=90°;(2)若c2<a2+b2,则∠C<90°;(3)若c2>a2+b2,则∠C>90°.勾股定理及广勾股定理深刻地揭示了三角形内部的边角关系,因此在解决三角形(及多边形)的问题中有着广泛的应用.例1 如图2-21所示.已知:在正方形ABCD中,∠BAC 的平分线交BC于E,作EF⊥AC于F,作FG⊥AB于G.求证:AB2=2FG2.分析注意到正方形的特性∠CAB=45°,所以△AGF是等腰直角三角形,从而有AF2=2FG2,因而应有AF=AB,这启发我们去证明△ABE≌△AFE.说明事实上,在审题中,条件“AE平分∠BAC”及“EF ⊥AC于F”应使我们意识到两个直角三角形△AFE与△ABE全等,从而将AB“过渡"到AF,使AF(即AB)与FG处于同一个直角三角形中,可以利用勾股定理进行证明了.例2 如图2-22所示.AM是△ABC的BC边上的中线,求证:AB2+AC2=2(AM2+BM2).推论△ABC的中线长公式:说明三角形的中线将三角形分为两个三角形,其中一个是锐角三角形,另一个是钝角三角形(除等腰三角形外).利用广勾股定理恰好消去相反项,获得中线公式.①′,②′,③′中的m a,m b,m c分别表示a,b,c边上的中线长.例3 如图2-23所示.求证:任意四边形四条边的平方和等于对角线的平方和加对角线中点连线平方的4倍.分析如图2-23所示.对角线中点连线PQ,可看作△BDQ 的中线,利用例2的结论,不难证明本题.说明本题是例2的应用.善于将要解决的问题转化为已解决的问题,是人们解决问题的一种基本方法,即化未知为已知的方法.下面,我们再看两个例题,说明这种转化方法的应用.例4 如图2-24所示.已知△ABC中,∠C=90°,D,E分别是BC,AC上的任意一点.求证:AD2+BE2=AB2+DE2.分析求证中所述的4条线段分别是4个直角三角形的斜边,因此考虑从勾股定理入手.(完整版)初中数学竞赛——勾股定理及其应用例5 如图2-25所示.设直角三角形ABC中,∠C=90°,AM,BN分别是BC,AC边上的中线.求证:4(AM2+BN2)=5AB2.分析由于AM,BN,AB均可看作某个直角三角形的斜边,因此,仿例4的方法可从勾股定理入手,但如果我们能将本题看成例4的特殊情况——即M,N分别是所在边的中点,那么可直接利用例4的结论,使证明过程十分简洁.练习十一1.用下面各图验证勾股定理(虚线代表辅助线):(1)赵君卿图(图2-27);(2)项名达图(2—28);(3)杨作枚图(图2-29).2.已知矩形ABCD,P为矩形所在平面内的任意一点,求证:PA2+PC2=PB2+PD2.(提示:应分三种情形加以讨论,P在矩形内、P在矩形上、P在矩形外,均有这个结论.)3.由△ABC内任意一点O向三边BC,CA,AB分别作垂线,垂足分别是D,E,F.求证:AF2+BD2+CE2=FB2+DC2+EA2.4.如图2-30所示.在四边形ADBC中,对角线AB⊥CD.求证:AC2+BD2=AD2+BC2.它的逆定理是否成立?证明你的结论.5.如图2—31所示.从锐角三角形ABC的顶点B,C分别向对边作垂线BE,CF.求证:BC2=AB·BF+AC·CE.。

初中竞赛数学公式定理

初中竞赛数学公式定理

初中竞赛数学公式定理好嘞,以下是为您生成的文章:在咱们初中的竞赛数学世界里呀,那公式定理就像是一把把神奇的钥匙,能帮咱们打开一道道难题的大门。

先来说说勾股定理吧。

这可是个超级经典的定理!直角三角形两直角边的平方和等于斜边的平方。

记得有一次,我在课堂上给学生们讲这个定理,有个调皮的小家伙居然说:“老师,这勾股定理不就是告诉咱们直角三角形的三条边在玩‘比大小’的游戏嘛!”大家哄堂大笑,不过这倒也让大家一下就记住了勾股定理的本质。

还有完全平方公式,(a+b)² = a² + 2ab + b²,(a - b)² = a² - 2ab + b²。

这俩公式在解题的时候可太有用啦!有一回,一道竞赛题要求计算一个复杂式子的值,好多同学都抓耳挠腮的。

我就提醒他们:“你们想想完全平方公式呀!”结果呢,有个聪明的同学马上反应过来,巧妙地变形,一下子就把答案给算出来了,那叫一个得意!再说说韦达定理。

在一元二次方程 ax² + bx + c = 0 中,两根 x₁,x₂有 x₁ + x₂ = -b/a ,x₁x₂ = c/a 。

我曾经遇到过一个学生,他总是记不住韦达定理。

我就给他举了个例子,说假如你有两个口袋,一个口袋里有 x₁个糖果,另一个口袋里有 x₂个糖果,那么把两个口袋里的糖果加起来就相当于 -b/a ,两个口袋里糖果相乘就相当于 c/a 。

嘿,这招还真管用,他后来再也没忘过。

还有三角函数的那些定理,像正弦定理、余弦定理。

正弦定理a/sinA = b/sinB = c/sinC ,余弦定理 a² = b² + c² - 2bc cosA 。

有一次在做一道几何题的时候,怎么都找不到解题的突破口,后来我灵机一动,想到了余弦定理,一下子就把角度和边长的关系给搞清楚了,那感觉就像是在黑暗中突然找到了明灯。

平方差公式 (a + b)(a - b) = a² - b²,也是个不能忽视的好宝贝。

初中数学竞赛公式及定理精简版

一般定理及公式1、多边形内角和定理、多边形内角和定理 n n 边形的内角的和等于(边形的内角的和等于(n-2n-2n-2)³180° )³180°2、推论、推论 任意多边的外角和等于360° 360° 提供以交流互动的形式学习数学相3、等腰梯形性质定理、等腰梯形性质定理 等腰梯形在同一底上的两个角相等等腰梯形在同一底上的两个角相等4、等腰梯形的两条对角线相等、等腰梯形的两条对角线相等5、等腰梯形判定定理、等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形在同一底上的两个角相等的梯形是等腰梯形6、梯形中位线定理、梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半并且等于两底和的一半 L= L=(a+b a+b))÷2 S=L³h 7、比例的基本性质、比例的基本性质 如果a:b=c:d,a:b=c:d,那么那么ad=bc ad=bc 数如果ad=bc,ad=bc,那么那么a:b=c:d8、合比性质、合比性质 如果a /b=c b=c//d,d,那么(a±b)/b=(c±d)/那么(a±b)/b=(c±d)/那么(a±b)/b=(c±d)/d d9、等比性质、等比性质 如果a /b=c b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a /d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a /d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a1010、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值1111、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值1212、相交弦定理、相交弦定理、相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积相等圆内的两条相交弦,被交点分成的两条线段长的积相等1313、如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项、如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项、如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项1414、切割线定理:、切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项长的比例中项1515、从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等、从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等、从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等1616、如果两个圆相切,那么切点一定在连心线上、如果两个圆相切,那么切点一定在连心线上、如果两个圆相切,那么切点一定在连心线上1717、①两圆外离、①两圆外离、①两圆外离 d d d>>R+r R+r ②两圆外切②两圆外切②两圆外切 d=R+r d=R+r d=R+r 数③两圆相交③两圆相交 R-r R-r R-r<<d <R+r(R R+r(R>>r) ④两圆内切④两圆内切④两圆内切 d=R-r(R d=R-r(R d=R-r(R>>r) r) ⑤两圆内含⑤两圆内含d <R-r(R R-r(R>>r)1818、相交两圆的连心线垂直平分两圆的公共弦、相交两圆的连心线垂直平分两圆的公共弦、相交两圆的连心线垂直平分两圆的公共弦1919、定理、定理、定理 正n 边形的半径和边心距把正n 边形分成2n 个全等的直角三角形个全等的直角三角形2020、正三角形面积√3a/、正三角形面积√3a/、正三角形面积√3a/4 4 4 ,,a 表示边长表示边长2121、弧长计算公式:、弧长计算公式:、弧长计算公式:L=n L=n πR /180 180 4 a3 ~0 @/ M/ q. B4 p7 O2222、扇形面积公式:、扇形面积公式:、扇形面积公式:S S 扇形扇形=n =n πR 2/360=LR 360=LR//2 2 数学论坛2323、内公切线长、内公切线长、内公切线长= d-(R-r) = d-(R-r) = d-(R-r) 外公切线长外公切线长外公切线长= d-(R+r) = d-(R+r)三角函数定理及公式两角和公式sin(A+B)=sin A sin(A+B)=sin A²²cos B+cos A cos B+cos A²²sin B sin(A-B)=sin A sin B sin(A-B)=sin A²²cos B-sin B cos B-sin B²²cos A cos(A+B)=cos A cos(A+B)=cos A²²cos B-sin A cos B-sin A²²sin B cos(A-B)=cos A sin B cos(A-B)=cos A²²cos B+sin A cos B+sin A²²sin B tan(A+B)=(tan A+tan B)/(1-tanAtanB) tan(A-B)=(tan A-tan B)/(1+tan A ²tan B) cot(A+B)=(cot A cot(A+B)=(cot A²²cotB-1)/(cot B+cot A) cot(A-B)=(cot A cotB-1)/(cot B+cot A) cot(A-B)=(cot A²²cot B+1)/(cot B-cot A)倍角公式倍角公式tan 2A=2tan 2A=2²²tan A/(1-tan 2A) cot 2A=(cot 2A-1)/2tan A/(1-tan 2A) cot 2A=(cot 2A-1)/2²²cotAcos 2a=cos 2a-sin 2a=2cos 2a=cos 2a-sin 2a=2²²cos 2a-1=1-2cos 2a-1=1-2²²sin 2a半角公式半角公式sin(A/2)=√((1sin(A/2)=√((1-cos A)/2) sin(A/2)=--cos A)/2) sin(A/2)=--cos A)/2) sin(A/2)=-√((1√((1√((1-cos A)/2) -cos A)/2)cos(A/2)=√((1+cos(A/2)=√((1+cos A)/2) cos(A/2)=-cos A)/2) cos(A/2)=-cos A)/2) cos(A/2)=-√((1+√((1+√((1+cos A)/2) cos A)/2)tan(A/2)=√(((1tan(A/2)=√(((1-cos A)/(1+cos A)) tan(A/2)=--cos A)/(1+cos A)) tan(A/2)=--cos A)/(1+cos A)) tan(A/2)=-√((1√((1√((1-cos A)/(1+cos A)) -cos A)/(1+cos A)) cot cot(A/2)=√((1+cos (A/2)=√((1+cos (A/2)=√((1+cos A)/((1-cos A)/((1-cos A)) cot(A/2)=-A)) cot(A/2)=-A)) cot(A/2)=-√((1+cos √((1+cos √((1+cos A)/((1-cos A))和差化积和差化积2sin A 2sin A²²cos B=sin(A+B)+sin(A-B) 2cos A cos B=sin(A+B)+sin(A-B) 2cos A²²sin B=sin(A+B)-sin(A-B)2cos A 2cos A²²cos B=cos(A+B)-sin(A-B) -2sin A cos B=cos(A+B)-sin(A-B) -2sin A²²sin B=cos(A+B)-cos(A-B)sin A+sin B=2sin((A+B)/2)cos((A-B)/2 cos A+cos B=2cos((A+B)/2)sin A+sin B=2sin((A+B)/2)cos((A-B)/2 cos A+cos B=2cos((A+B)/2)²²sin((A-B)/2)tan A+tan B=sin(A+B)/cos A tan A+tan B=sin(A+B)/cos A²²cos B tan A-tan B=sin(A-B)/cos A cos B tan A-tan B=sin(A-B)/cos A²²cos Bcot A+cot B cot A+cot B²²sin(A+B)/sin A sin(A+B)/sin A²²sin B -cot A+cot B sin B -cot A+cot B²²sin(A+B)/sin A sin(A+B)/sin A²²sin B某些数列前n 项和项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n 1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2 -1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n313+23+33+43+53+63+…n3=n2(n+1)2/4 =n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3一些平面几何的著名定理1、勾股定理(毕达哥拉斯定理)、勾股定理(毕达哥拉斯定理)2、射影定理(欧几里得定理)、射影定理(欧几里得定理)3、三角形的三条中线交于一点,并且,各中线被这个点分成2:1的两部分的两部分4、四边形两边中心的连线的两条对角线中心的连线交于一点、四边形两边中心的连线的两条对角线中心的连线交于一点5、间隔的连接六边形的边的中心所作出的两个三角形的重心是重合的。

初中数学竞赛中常用重要定理(优选.)

最新文件---------------- 仅供参考--------------------已改成-----------word文本 --------------------- 方便更改3、三角形的三条中线交于一点,并且,各中线被这个点分成2:1的两部分4、四边形两边中心的连线的两条对角线中心的连线交于一点5、间隔的连接六边形的边的中心所作出的两个三角形的重心是重合的。

6、三角形各边的垂直一平分线交于一点。

7、从三角形的各顶点向其对边所作的三条垂线交于一点8、设三角形ABC的外心为O,垂心为H,从O向BC边引垂线,设垂足不L,则AH=2OL9、三角形的外心,垂心,重心在同一条直线上。

10、(九点圆或欧拉圆或费尔巴赫圆)三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,11、欧拉定理:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上12、库立奇*大上定理:(圆内接四边形的九点圆) 圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆。

13、(内心)三角形的三条内角平分线交于一点,内切圆的半径公式:r=(s-a)(s-b)(s-c)ss为三角形周长的一半14、(旁心)三角形的一个内角平分线和另外两个顶点处的外角平分线交于一点15、中线定理:(巴布斯定理)设三角形ABC的边BC的中点为P,则有AB2+AC2=2(AP2+BP2)16、斯图尔特定理:P将三角形ABC的边BC内分成m:n,则有n×AB2+m×AC2=(m+n)AP2+mnm+nBC217、波罗摩及多定理:圆内接四边形ABCD的对角线互相垂直时,连接AB中点M和对角线交点E的直线垂直于CD18、阿波罗尼斯定理:到两定点A、B的距离之比为定比m:n(值不为1)的点P,位于将线段AB分成m:n的内分点C和外分点D为直径两端点的定圆周上19、托勒密定理:设四边形ABCD内接于圆,则有AB×CD+AD×BC=AC20、以任意三角形ABC的边BC、CA、AB为底边,分别向外作底角都是30度的等腰△BDC、△CEA、△AFB,则△DEF是正三角形,21、爱尔可斯定理1:若△ABC和三角形△都是正三角形,则由线段AD、BE、CF的重心构成的三角形也是正三角形。

初中数学竞赛有哪些

初中数学竞赛有哪些篇一:初中数学竞赛定理大全欧拉(Euler)线:同一三角形的垂心、重心、外心三点共线,这条直线称为三角形的欧拉线;且外心与重心的距离等于垂心与重心距离的一半。

九点圆:任意三角形三边的中点,三高的垂足及三顶点与垂心间线段的中点,共九个点共圆,这个圆称为三角形的九点圆;其圆心为三角形外心与垂心所连线段的中点,其半径等于三角形外接圆半径的一半。

费尔马点:已知P为锐角△ABC内一点,当∠APB=∠BPC=∠CPA=120°时,PA+PB+PC的值最小,这个点P称为△ABC的海伦(Heron)公式:塞瓦(Ceva)定理:在△ABC中,过△ABC的顶点作相交于一点P的直线,分别交边BC、CA、AB与点D、E、F,则(BD/DC)·(CE/EA)·(AF/FB)=1;其逆亦真。

密格尔(Miquel)点:若AE、AF、ED、FB四条直线相交于A、B、C、D、E、F六点,构成四个三角形,它们是△ABF、△AED、△BCE、△DCF,则这四个三角形的外接圆共点,这个点称为密格尔点。

葛尔刚(Gergonne)点:△ABC的内切圆分别切边AB、BC、CA于点D、E、F,则AE、BF、CD三线共点,这个点称为葛尔刚点。

西摩松(Simson)线:已知P为△ABC外接圆周上任意一点,PD⊥BC,PE⊥ACPF⊥AB,D、E、F为垂足,则D、E、F三点共线,这条直线叫做西摩松线。

黄金分割:把一条线段(AB)分成两条线段,使其中较大的线段(AC)是原线段(AB) 与较小线段(BC)的比例中项,这样的分割称为黄金分割。

帕普斯(Pappus)定理:已知点A1、A2、A3在直线l1上,已知点B1、B2、B3在直线l2上,且A1 B2与A2 B1交于点X,A1B3与A3 B1交于点Y,A2 B3于A3 B2交于点Z,则X、Y、Z三点共线。

篇二:上海市初中数学竞赛大盘点上海市初中数学竞赛大盘点:phyc 发布时间:2012-6-7 16:22:03 点击数:5911)“新知杯”上海市初中数学竞赛参赛对象:初三学生为主、个别初二、初一、预初学生报名原则:学生自愿、学校推荐、区(县)组织竞赛特色:获奖者在初升高时被各大名校看中。

初中数学竞赛公式及定理精简版

一般定理与公式1、多边形内角和定理 n边形的内角的和等于(n-2)×180°2、推论任意多边的外角和等于360°3、等腰梯形性质定理等腰梯形在同一底上的两个角相等4、等腰梯形的两条对角线相等5、等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形6、梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半 L=(a+b)÷2 S=L×h7、比例的基本性质如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d8、合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d9、等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a10、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值11、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值12、相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等13、如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项14、切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项15、从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等16、如果两个圆相切,那么切点一定在连心线上17、①两圆外离 d>R+r ②两圆外切d=R+r③两圆相交 R-r<d<R+r(R>r)④两圆内切 d=R-r(R>r) ⑤两圆内含d<R-r(R>r)18、相交两圆的连心线垂直平分两圆的公共弦19、定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形20、正三角形面积√3a/4 ,a表示边长21、弧长计算公式:L=nπR/18022、扇形面积公式:S扇形=nπR2/360=LR/223、内公切线长= d-(R-r) 外公切线长= d-(R+r)三角函数定理与公式两角和公式sin(A+B)=sin A·cos B+cos A·sin Bsin(A-B)=sin A·cos B-sin B·cos Acos(A+B)=cos A·cos B-sin A·sin Bcos(A-B)=cos A·cos B+sin A·sin Btan(A+B)=(tan A+tanB)/(1-tanAtanB) tan(A-B)=(tan A-tan B)/(1+tan A·tan B) cot(A+B)=(cotA·cotB-1)/(cot B+cot A) cot(A-B)=(cot A·cot B+1)/(cot B-cot A)倍角公式tan2A=2·tanA/(1-tan2A)cot 2A=(cot 2A-1)/2·cotAcos2a=cos2a-sin2a=2·cos2a-1=1-2·sin2a半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cos A)/2) cos(A/2)=-√((1+cos A)/2)tan(A/2)=√(((1-cosA)/(1+cos A)) tan(A/2)=-√((1-cosA)/(1+cosA)) cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+co sA)/((1-cosA))和差化积2sinA·cosB=sin(A+B)+sin(A-B) 2cosA·sinB=sin(A+B)-sin(A-B)2cosA·cosB=cos(A+B)-sin(A-B) -2sinA·sinB=cos(A+B)-cos(A-B) sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)·sin((A-B)/2) tanA+tanB=sin(A+B)/cosA·cosB tanA-tanB=sin(A-B)/cosA·cosB cot A+cot B·sin(A+B)/sinA·sinB -cot A+cot B·sin(A+B)/sinA·sinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3一些平面几何的著名定理1、勾股定理(毕达哥拉斯定理)2、射影定理(欧几里得定理)3、三角形的三条中线交于一点,并且,各中线被这个点分成2:1的两部分4、四边形两边中心的连线的两条对角线中心的连线交于一点5、间隔的连接六边形的边的中心所作出的两个三角形的重心是重合的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中竞赛重要数学公式归纳总结初中数学竞赛圆的方程公式1、圆的标准方程:在平面直角坐标系中,以点O(a,b)为圆心,以r为半径的圆的标准方程是(x-a)^2+(y-b)^2=r^2。

2、圆的一般方程:方程x^2+y^2+Dx+Ey+F=0可变形为(x+D/2)^2+(y+E/2)^2=(D^2+E^2-4F)/4.故有:(1)、当D^2+E^2-4F 0时,方程表示以(-D/2,-E/2)为圆心,以(√D^2+E^2-4F)/2为半径的圆;(2)、当D^2+E^2-4F=0时,方程表示一个点(-D/2,-E/2);(3)、当D^2+E^2-4F 0时,方程不表示任何图形。

3、圆的参数方程:以点O(a,b)为圆心,以r为半径的圆的参数方程是x=a+r_cosθ, y=b+r_sinθ, (其中θ为参数)圆的端点式:若已知两点A(a1,b1),B(a2,b2),则以线段AB为直径的圆的方程为 (x-a1)(x-a2)+(y-b1)(y-b2)=0圆的离心率e=0,在圆上任意一点的曲率半径都是r。

经过圆 x^2+y^2=r^2上一点M(a0,b0)的切线方程为 a0_x+b0_y=r^2在圆(x^2+y^2=r^2)外一点M(a0,b0)引该圆的两条切线,且两切点为A,B,则A,B两点所在直线的方程也为 a0_x+b0_y=r^2初中数学竞赛重要定理公式代数篇【乘法公式】完全平方公式:(a±b)2=a2±2ab+b2,平方差公式:(a+b)(a-b)=a2-b2,立方和(差)公式:(a±b)(a2 ab+b2)=a3±b3多项式平方公式:(a+b+c+d)2=a2+b2+c2+d2+2ab+2ac+2ad+2bc+2bd+2cd二项式定理:(a±b)3=a3±3a2b+3ab2±b3(a±b)4=a4±4a3b+6a2b2±4ab3+b4)(a±b)5=a5±5a4b+10a3b2±10a2b3+5ab4±b5)…………在正整数指数的条件下,可归纳如下:设n为正整数(a+b)(a2n-1- a2n-2b+a2n-3b2- …+ab2n-2- b2n-1)=a2n-b2n(a+b)(a2n-a2n-1b+a2n-2b2n-…-ab2n-1+b2n)=a2n+1+b2n+1类似地:(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)=a n-b n公式的变形及其逆运算由(a+b)2=a2+2ab+b2得a2+b2=(a+b)2-2ab由(a+b)3=a3+3a2b+3ab2+b3=a3+b3+3ab(a+b) 得a3+b3=(a+b)3-3ab(a+b) 由公式的推广③可知:当n为正整数时a n-b n能被a-b 整除,a2n+1+b2n+1能被a+b整除,a2n-b2n能被a+b 及a-b 整除。

重要公式(欧拉公式)(a+b+c)(a2+b2+c2+ab+ac+bc)=a3+b3+c3-3abc【综合除法】一个一元多项式除以另一个一元多项式,并不是总能整除。

当被除式f(x)除以除式g(x),(g(x)≠0) 得商式q(x)及余式r(x)时,就有下列等式:f(x)=g(x)q(x)-r(x)其中r(x)的次数小于g(x)的次数,或者r(x)=0。

当r(x)=0时,就是f(x)能被g(x)整除。

【余式定理】多项式f(x)除以x-a所得的余数等于f(a)。

【因式分解方法】拆项、添项、配方、待定系数法、求根法、对称式和轮换对称式等。

【部分分式】把一个分式写成几个简单分式的代数和,称为将分式化为部分分式,它是分式运算的常用技巧。

分式运算的技巧还有:换元法、整体法、逐项求和、拆项求和等。

【素数和合数】2是最小的素数,也是唯一的一个既是偶数又是素数的数. 小于100的素数有如下25个:2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97.性质1 一个大于1的正整数n,它的大于1的最小因数一定是质数.性质2 如果n是合数,那么n的最小质因数一定满足a2≤n.性质 3 质数有无穷多个.性质4(算术基本定理)每一个大于 1 的自然数n,必能写成以下形式:这里的P1,P2,…,P r是质数,a1,a2,…,a r是自然数.如果不考虑P1,P2,…,P r的次序,那么这种形式是唯一的.性质 5 任何大于3的素数都可以表示为6k±1【不定方程】定理1.二元一次不定方程a x+by=c,,(1)若其中(a,b)c,则原方程无整数解;;(2)若(a,b)=1,则原方程有整数解;;(3)若(a,b)|c,则可以在方程两边同时除以(a,b)从而使原方程的一次项系数互质,从而转化为(2)的情形.定理2:利用分解法求不定方程ax+by=cxy(abc≠0)整数解的基本思路:将ax+by=cxy转化为(x-a)(cy-b)=ab可分解.【高斯函数】设x∈R,用[x]或int(x)表示不超过x的最大整数,并用{χ}表示x的非负纯小数,则y=[x]称为高斯(Guass)函数,也叫取整函数。

任意一个实数都能写成整数与非负纯小数之和,即:x=[x]+{χ}(0≤{x} 1) 性质1:[x]≤x [x]+1,x-1 [x] ≤x[n+x]=n+[x],n为整数2:厄尔米特恒等式:对任x大于0,恒有[x]+[x+1/n]+[x+2/n]+… …+[x+(n-1)/n]=[nx]。

【同余】定义 1 给定正整数m,若用m去除两个正整数a和b所得的余数相同,则称a与b对于模m同余,或称a与b同余,模m,记为a≡b(mod m),此时也称b是a对模m的同余。

否则称a与b对于模m不同余,或称a与b不同余,模m,记为ab (mod m)。

【完全平方数整除性】(1)平方数的个位数字只可能是0,1,4,5,6,9;(2)偶数的平方数是4的倍数,奇数的平方数被8除余1,即任何平方数被4除的余数只有可能是0或1;(3)奇数平方的十位数字是偶数;(4)十位数字是奇数的平方数的个位数一定是6;r a raa pppn=2121(5)不能被3整除的数的平方被3除余1,能被3整除的数的平方能被3整除。

因而,平方数被9也合乎的余数为0,1,4,7,且此平方数的各位数字的和被9除的余数也只能是0,1,4,7;(6)平方数的约数的个数为奇数;(7)任何四个连续整数的乘积加1,必定是一个平方数。

(8)设正整数a,b之积是一个正整数的k次方幂(k≥2),若(a,b)=1,则a,b都是整数的k次方幂。

一般地,设正整数a,b,c……之积是一个正整数的k次方幂(k≥2),若a,b,c……两两互素,则a,b,c……都是正整数的k次方幂。

【数的整除性】(1)1与0的特性:1是任何整数的约数,即对于任何整数a,总有1|a.0是任何非零整数的倍数,a≠0,a为整数,则a|0.(2)若一个整数的末位是0、2、4、6 或 8,则这个数能被2 整除。

(3)若一个整数的数字和能被3 整除,则这个整数能被3 整除。

(4)若一个整数的末尾两位数能被 4 整除,则这个数能被 4 整除。

(5)若一个整数的末位是0 或 5,则这个数能被5 整除。

(6)若一个整数能被2 和 3 整除,则这个数能被6 整除。

(7)若一个整数的个位数字截去,再从余下的数中,减去个位数的2 倍,如果差是7 的倍数,则原数能被7 整除。

如果差太大或心算不易看出是否7 的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。

例如,判断133 是否 7 的倍数的过程如下:13-3×2=7 ,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595,59-5×2=49,所以6139是7的倍数,余类推。

(8)若一个整数的未尾三位数能被8 整除,则这个数能被8 整除。

(9)若一个整数的数字和能被9 整除,则这个整数能被9 整除。

(10)若一个整数的末位是0,则这个数能被10 整除。

(11)若一个整数的奇位数字之和与偶位数字之和的差能被11 整除,则这个数能被 11 整除。

初中数学竞赛公式的整理乘法与因式分解a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b = -b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a根与系数的关系 X1+X2=-b/a X1_X2=c/a 注:韦达定理判别式b2-4ac=0 注:方程有两个相等的实根b2-4ac 0 注:方程有两个不等的实根b2-4ac 0 注:方程没有实根,有共轭复数根三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA) 倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA)) ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB - ctgA+ctgBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2 2+4+6+8+10+12+14+…+(2n)=n(n+1) 13+23+33+43+53+63+…n3=n2(n+1)2/4 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/61_2+2_3+3_4+4_5+5_6+6_7+…+n(n+1)=n(n+1)(n+2)/3正弦定理 a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圆半径余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角圆的标准方程 (x-a)2+(y-b)2=r2 注: (a,b)是圆心坐标圆的一般方程 x2+y2+Dx+Ey+F=0 注: D2+E2-4F 0抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积 S=c_h斜棱柱侧面积 S=c _h正棱锥侧面积 S=1/2c_h正棱台侧面积 S=1/2(c+c )h圆台侧面积 S=1/2(c+c )l=pi(R+r)l球的表面积 S=4pi_r2圆柱侧面积 S=c_h=2pi_h圆锥侧面积 S=1/2_c_l=pi_r_l弧长公式 l=a_r a是圆心角的弧度数r 0扇形公式 s=1/2_l_r锥体体积公式 V=1/3_S_H圆锥体体积公式 V=1/3_pi_r2h斜棱柱体积 V=S L 注:其中,S 是直截面面积, L是侧棱长柱体体积公式 V=s_h圆柱体 V=pi_r2h初中竞赛重要数学公式归纳。

相关文档
最新文档