九年级二次函数同步训练及解析

九年级二次函数同步训练及解析
九年级二次函数同步训练及解析

九年级二次函数同步训练及解析

一、单选题

1.如图,函数和(是常数,且)在同一平面直角坐标系的图象可能是()

A.B.C.

D.

【答案】B

【解析】分析:可先根据一次函数的图象判断a的符号,再判断二次函数图象与实际是否相符,判断正误即可.

详解:A.由一次函数y=ax﹣a的图象可得:a<0,此时二次函数y=ax2﹣2x+1的图象应该开口向下.故选项错误;

B.由一次函数y=ax﹣a的图象可得:a>0,此时二次函数y=ax2﹣2x+1的图象应该开口向上,对称轴x=﹣>0.故选项正确;

C.由一次函数y=ax﹣a的图象可得:a>0,此时二次函数y=ax2﹣2x+1的图象应该开口向上,对称轴x=﹣>0,和x轴的正半轴相交.故选项错误;

D.由一次函数y=ax﹣a的图象可得:a>0,此时二次函数y=ax2﹣2x+1的图象应该开口向上.故选项错误.

故选B.

点睛:本题考查了二次函数以及一次函数的图象,解题的关键是熟记一次函数y=ax﹣a 在不同情况下所在的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等.

2.若二次函数(,为常数)的图象如图,则的值为()

A.1B.C.D.-2

【答案】C

【解析】

【分析】

根据图象开口向下可知a<0,又二次函数图象经过坐标原点,把原点坐标代入函数解析式解关于a的一元二次方程即可.

【详解】

由图可知,函数图象开口向下,

∴a<0,

又∵函数图象经过坐标原点(0,0),

∴a2-2=0,

解得a1=(舍去),a2=-

故选C.

【点睛】

本题考查了二次函数图象上点的坐标特征,观察图象判断出a是负数且经过坐标原点是解题的关键.

3.(已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②2a+b >0;③b2﹣4ac>0;④a﹣b+c>0,其中正确的个数是()

A.1 B.2 C.3 D.4

【答案】D

【解析】

【分析】

由抛物线的对称轴的位置判断ab的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.

【详解】

①∵抛物线对称轴是y轴的右侧,

∴ab<0,

∵与y轴交于负半轴,

∴c<0,

∴abc>0,

故①正确;

②∵a>0,x=﹣<1,

∴﹣b<2a,

∴2a+b>0,

故②正确;

③∵抛物线与x轴有两个交点,

∴b2﹣4ac>0,

故③正确;

④当x=﹣1时,y>0,

∴a﹣b+c>0,

故④正确.

故选:D.

【点睛】

本题主要考查了图象与二次函数系数之间的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴和抛物线与y轴的交点、抛物线与x轴交点的个数确定.

4.抛物线y=(x﹣2)2﹣1可以由抛物线y=x2平移而得到,下列平移正确的是()A.先向左平移2个单位长度,然后向上平移1个单位长度

B.先向左平移2个单位长度,然后向下平移1个单位长度

C.先向右平移2个单位长度,然后向上平移1个单位长度

D.先向右平移2个单位长度,然后向下平移1个单位长度

【答案】D

【解析】分析:抛物线平移问题可以以平移前后两个解析式的顶点坐标为基准研究.详解:抛物线y=x2顶点为(0,0),抛物线y=(x﹣2)2﹣1的顶点为(2,﹣1),则抛物线y=x2向右平移2个单位,向下平移1个单位得到抛物线y=(x﹣2)2﹣1的图象.故选:D.

点睛:本题考查二次函数图象平移问题,解答时最简单方法是确定平移前后的抛物线顶点,从而确定平移方向.

5.抛物线y=ax2+bx+c的对称轴为直线x=﹣1,部分图象如图所示,下列判断中:

①abc>0;

②b2﹣4ac>0;

③9a﹣3b+c=0;

④若点(﹣0.5,y1),(﹣2,y2)均在抛物线上,则y1>y2;

⑤5a﹣2b+c<0.

其中正确的个数有()

A.2B.3C.4D.5

【答案】B

【解析】分析:根据二次函数的性质一一判断即可.

详解:∵抛物线对称轴x=-1,经过(1,0),

∴-=-1,a+b+c=0,

∴b=2a,c=-3a,

∵a>0,

∴b>0,c<0,

∴abc<0,故①错误,

∵抛物线与x轴有交点,

∴b2-4ac>0,故②正确,

∵抛物线与x轴交于(-3,0),

∴9a-3b+c=0,故③正确,

∵点(-0.5,y1),(-2,y2)均在抛物线上,

-1.5>-2,

则y1<y2;故④错误,

∵5a-2b+c=5a-4a-3a=-2a<0,故⑤正确,

故选:B.

点睛:本题考查二次函数与系数的关系,二次函数图象上上的点的特征,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.

6.将抛物线y=﹣5x2+1向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线为()

A.y=﹣5(x+1)2﹣1B.y=﹣5(x﹣1)2﹣1C.y=﹣5(x+1)2+3 D.y=﹣5(x﹣1)2+3

【答案】A

【解析】分析:直接利用二次函数图象与几何变换的性质分别平移得出答案.

详解:将抛物线y=-5x2+1向左平移1个单位长度,得到y=-5(x+1)2+1,再向下平移2个单位长度,

所得到的抛物线为:y=-5(x+1)2-1.

故选:A.

点睛:此题主要考查了二次函数图象与几何变换,正确记忆平移规律是解题关键.7.将抛物线y=x2向左平移2个单位,再向下平移5个单位,平移后所得新抛物线的表达式为()

A.y=(x+2)2﹣5 B.y=(x+2)2+5 C.y=(x﹣2)2﹣5 D.y=(x﹣2)2+5

【答案】A

【解析】

【分析】

直接根据“上加下减,左加右减”的原则进行解答即可.

【详解】

抛物线y=x2的顶点坐标为(0,0),

先向左平移2个单位再向下平移5个单位后的抛物线的顶点坐标为(﹣2,﹣5),

所以,平移后的抛物线的解析式为y=(x+2)2﹣5.

故选:A.

【点睛】

本题考查了二次函数的图象与几何变换,熟知函数图象平移的法则是解答本题的关键.8.如图,抛物线y=ax2+bx+c交x轴于点(﹣1,0)和(4,0),那么下列说法正确的是()

A.ac>0B.b2﹣4ac<0

C.对称轴是直线x=2.5D.b>0

【答案】D

【解析】分析:直接利用二次函数图象与系数的关系进而分析得出答案.

详解:A、∵抛物线开口向下,

∴a<0,

∵抛物线与y轴交在正半轴上,

∴c>0,

∴ac<0,故此选项错误;

B、∵抛物线与x轴有2个交点,

∴b2-4ac>0,故此选项错误;

C、∵抛物线y=ax2+bx+c交x轴于点(-1,0)和(4,0),

∴对称轴是直线x=1.5,故此选项错误;

D、∵a<0,抛物线对称轴在y轴右侧,

∴a,b异号,

∴b>0,故此选项正确.

故选:D.

点睛:此题主要考查了二次函数图象与系数的关系,正确掌握各项符号判断方法是解题关键.

9.关于二次函数,下列说法正确的是()

A.图像与轴的交点坐标为B.图像的对称轴在轴的右侧

C.当时,的值随值的增大而减小D.的最小值为-3

【答案】D

【解析】分析:根据题目中的函数解析式可以判断各个选项中的结论是否成立,从而可以解答本题.

详解:∵y=2x2+4x-1=2(x+1)2-3,

∴当x=0时,y=-1,故选项A错误,

该函数的对称轴是直线x=-1,故选项B错误,

当x<-1时,y随x的增大而减小,故选项C错误,

当x=-1时,y取得最小值,此时y=-3,故选项D正确,

故选D.

点睛:本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.

10.函数y=ax2+2ax+m(a<0)的图象过点(2,0),则使函数值y<0成立的x的取值范围是()

A.x<﹣4或x>2B.﹣4<x<2C.x<0或x>2D.0<x<2

【答案】A

【解析】

【分析】

先求出抛物线的对称轴方程,再利用抛物线的对称性得到抛物线与x轴的另一个交点坐标为(-4,0),然后利用函数图象写出抛物线在x轴下方所对应的自变量的范围即可.【详解】

抛物线y=ax2+2ax+m的对称轴为直线x=-=-1,

而抛物线与x轴的一个交点坐标为(2,0),

∴抛物线与x轴的另一个交点坐标为(-4,0),

∵a<0,

∴抛物线开口向下,

∴当x<-4或x>2时,y<0.

故选A.

【点睛】

本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.11.将抛物线y=x2﹣6x+21向左平移2个单位后,得到新抛物线的解析式为()A.y=(x﹣8)2+5B.y=(x﹣4)2+5C.y=(x﹣8)2+3 D.y=(x﹣4)2+3

【答案】D

【解析】【分析】直接利用配方法将原式变形,进而利用平移规律得出答案.

【详解】y=x2﹣6x+21

=(x2﹣12x)+21

=[(x﹣6)2﹣36]+21

=(x﹣6)2+3,

故y=(x﹣6)2+3,向左平移2个单位后,

得到新抛物线的解析式为:y=(x﹣4)2+3.

故选D.

【点睛】本题考查了二次函数图象与几何变换,熟记函数图象平移的规律并正确配方将原式变形是解题关键.

12.(题文)如图,已知二次函数的图象如图所示,有下列5个结论;;;;

的实数其中正确结论的有

A.B.C.D.

【答案】B

【解析】

【分析】

由抛物线对称轴的位置判断ab的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所给结论进行判断即可.

【详解】

对称轴在y轴的右侧,

由图象可知:,

,故不正确;

当时,,

,故正确;

由对称知,当时,函数值大于0,即,故正确;

,故不正确;

当时,y的值最大此时,,

而当时,,

所以,

故,即,故正确,

故正确,

故选B.

【点睛】

本题考查了图象与二次函数系数之间的关系,二次函数系数符号由抛物线开口方向、对称轴和抛物线与y轴的交点、抛物线与x轴交点的个数确定,熟练掌握二次函数的性质是关键.

13.用配方法将二次函数y=x2﹣8x﹣9化为y=a(x﹣h)2+k的形式为()

A.y=(x﹣4)2+7B.y=(x﹣4)2﹣25C.y=(x+4)2+7 D.y=(x+4)2﹣25

【答案】B

【解析】

【分析】

直接利用配方法进而将原式变形得出答案.

【详解】

y=x2-8x-9

=x2-8x+16-25

=(x-4)2-25.

故选B.

【点睛】

此题主要考查了二次函数的三种形式,正确配方是解题关键.

14.已知二次函数的图象如图所示,则下列说法正确的是()

A.<0B.<0C.<0D.<0

【答案】B

【解析】

【分析】

根据抛物线的开口方向确定a,根据抛物线与y轴的交点确定c,根据对称轴确定b,根据抛物线与x轴的交点确定b2-4ac,根据x=1时,y>0,确定a+b+c的符号.

【详解】

∵抛物线开口向上,

∴a>0,

∵抛物线交于y轴的正半轴,

∴c>0,

∴ac>0,A错误;

∵->0,a>0,

∴b<0,∴B正确;

∵抛物线与x轴有两个交点,

∴b2-4ac>0,C错误;

当x=1时,y>0,

∴a+b+c>0,D错误;

故选B.

【点睛】

本题考查的是二次函数图象与系数的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.

15.已知二次函数y=x2﹣x+m﹣1的图象与x轴有交点,则m的取值范围是()A.m≤5B.m≥2C.m<5D.m>2

【答案】A

【解析】【分析】由题意可知△=(-1) 2-4×1×(m-1)≥0,解不等式即可求得m的取值范围.【详解】∵二次函数y=x2﹣x+m﹣1的图象与x轴有交点,

∴△=(-1) 2-4×1×(m-1)≥0,

解得:m≤5,

故选A.

【点睛】本题考查了抛物线与x轴的交点,能根据题意得出关于m的不等式是解此题的关键.

二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点个数与△=b2-4ac的关系,

△>0抛物线y=ax2+bx+c(a≠0)的图象与x轴有2个交点;

△=0抛物线y=ax2+bx+c(a≠0)的图象与x轴有1个交点;

△<0抛物线y=ax2+bx+c(a≠0)的图象与x轴没有交点.

16.已知抛物线y=x2+2x+k+1与x轴有两个不同的交点,则一次函数y=kx﹣k与反比例函数y=在同一坐标系内的大致图象是()

A.B.C.D.

【答案】D

【解析】【分析】依据抛物线y=x2+2x+k+1与x轴有两个不同的交点,即可得到k<0,进而得出一次函数y=kx﹣k的图象经过第一二四象限,反比例函数y=的图象在第二四象限,据此即可作出判断.

【详解】∵抛物线y=x2+2x+k+1与x轴有两个不同的交点,

∴△=4﹣4(k+1)>0,

解得k<0,

∴一次函数y=kx﹣k的图象经过第一二四象限,

反比例函数y=的图象在第二四象限,

故选D.

【点睛】本题考查了二次函数的图象与x轴的交点问题、反比例函数图象、一次函数图象等,根据抛物线与x轴的交点情况确定出k的取值范围是解本题的关键.

17.下列对二次函数y=x2﹣x的图象的描述,正确的是()

A.开口向下B.对称轴是y轴

C.经过原点D.在对称轴右侧部分是下降的

【答案】C

【解析】【分析】根据抛物线的开口方向、对称轴公式以及二次函数性质逐项进行判断即可得答案.

【详解】A、∵a=1>0,∴抛物线开口向上,选项A不正确;

B、∵﹣,∴抛物线的对称轴为直线x=,选项B不正确;

C、当x=0时,y=x2﹣x=0,∴抛物线经过原点,选项C正确;

D、∵a>0,抛物线的对称轴为直线x=,

∴当x>时,y随x值的增大而增大,选项D不正确,

故选C.

【点睛】本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0),对称轴直线x=-,当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,c=0时抛物线经过原点,熟练掌握相关知识是解题的关键.

18.小明从如图所示的二次函数y = ax2+bx+c(a≠0)的图象中,观察得出了下面五条信息:①ab>0 ②a+b+c<0 ③b+2c>0 ④a-2b+4c>0 ⑤.你认为其中正确信息的个数有()

A.2个B.3个C.4个D.5个

【答案】D

【解析】

试题分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.①如图,∵抛物线开口方向向下,∴a<0.

∵对称轴x=﹣=﹣,∴b=a<0,

∴ab>0.故①正确;

②如图,当x=1时,y<0,即a+b+c<0.

故②正确;

③如图,当x=﹣1时,y=a﹣b+c>0,

∴2a﹣2b+2c>0,即3b﹣2b+2c>0,

∴b+2c>0.

故③正确;

④如图,当x=﹣1时,y>0,即a﹣b+c>0.

抛物线与y轴交于正半轴,则c>0.

∵b<0,

∴c﹣b>0,

∴(a﹣b+c)+(c﹣b)+2c>0,即a﹣2b+4c>0.

故④正确;

⑤如图,对称轴x=﹣=﹣,则.故⑤正确.

综上所述,正确的结论是①②③④⑤,共5个.

故选D.

考点:二次函数图象与系数的关系.

19.对于的图象下列叙述错误的是

A.顶点坐标为(﹣3,2)B.对称轴为x=﹣3

C.当x<﹣3时y随x增大而减小D.函数有最大值为2

【答案】D

【解析】分析:根据二次函数的性质对照四个选项利用排除法即可得出结论.

详解:根据二次函数的性质可知的顶点坐标为(﹣3,2),故A正确;对称轴为x=﹣3,故B正确;开口向上,在对称轴右侧y随x增大而减小且函数有最小值2,故C正确D错误.

点睛:本题考查了二次函数的性质,在解题时可结合函数大致图象来判断.正确理解二次函数的基本性质是解题的关键.

20.如图,已知二次函数y=(x+1)2﹣4,当﹣2≤x≤2时,则函数y的最小值和最大值()

A.﹣3和5B.﹣4和5C.﹣4和﹣3D.﹣1和5

【答案】B

【解析】

【分析】

先求出二次函数的对称轴为直线x=-1,然后根据二次函数开口向上确定其增减性,并结合图象解答即可.

【详解】

∵二次函数y=(x+1)2-4,

对称轴是:x=-1

∵a=-1>0,

∴x>-1时,y随x的增大而增大,x<-1时,y随x的增大而减小,

由图象可知:在-2≤x≤2内,x=2时,y有最大值,y=(2+1)2-4=5,

x=-1时y有最小值,是-4,

故选B.

【点睛】

本题考查了二次函数的最值问题,二次函数的增减性,结合图象可得函数的最值是解题的关键.

21.如图,二次函数的图象开口向下,且经过第三象限的点若点P的横坐标为,则一次函数的图象大致是

A.B.C.

D.

【答案】D

【解析】【分析】根据二次函数的图象可以判断a、b、的正负情况,从而可以得到一次函数经过哪几个象限,观察各选项即可得答案.

【详解】由二次函数的图象可知,

,,

当时,,

的图象经过二、三、四象限,

观察可得D选项的图象符合,

故选D.

【点睛】本题考查二次函数的图象与性质、一次函数的图象与性质,认真识图,会用函数的思想、数形结合思想解答问题是关键.

22.(2017山东日照)已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论:

①抛物线过原点;

②4a+b+c=0;

③a﹣b+c<0;

④抛物线的顶点坐标为(2,b);

⑤当x<2时,y随x增大而增大.

其中结论正确的是()

A.①②③B.③④⑤C.①②④D.①④⑤

【答案】C

【解析】

①∵抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标为(4,0),∴抛物线与x轴的另一交点坐标为(0,0),结论①正确;

②∵抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,且抛物线过原点,∴﹣=2,c=0,∴b=﹣4a,c=0,∴4a+b+c=0,结论②正确;

③∵当x=﹣1和x=5时,y值相同,且均为正,∴a﹣b+c>0,结论③错误;

④当x=2时,y=ax2+bx+c=4a+2b+c=(4a+b+c)+b=b,∴抛物线的顶点坐标为(2,b),结论④正确;

⑤观察函数图象可知:当x<2时,yy随x增大而减小,结论⑤错误.

综上所述,正确的结论有:①②④.故选C.

23.已知二次函数有最大值0,则a,b的大小关系为()

A.<B.C.>D.大小不能确定

【答案】A

【解析】【分析】根据二次函数有最大值可判断a<0,再根据最大值为0可判断b=0,据此即可进行比较a、b的大小.

【详解】∵二次函数y=a(x+1)2-b(a≠0)有最大值,

∴抛物线开口方向向下,即a<0,

又最大值为0,∴b=0,

∴a

故选A.

【点睛】本题考查了二次函数的顶点式以及二次函数的性质,熟练掌握二次函数的性质是解题的关键.

24.已知二次函数y=ax2+bx+c的图象如图所示,OA=OC,则由抛物线的特征写出如下含有a、b、c三个字母的等式或不等式:①=﹣1;②ac+b+1=0;③abc>0;④a﹣b+c>0.其中正确的个数是()

A.4个B.3个C.2个D.1个

【答案】A

【解析】【分析】此题可根据二次函数的性质,结合其图象可知:a>0,﹣1<c<0,b<0,再对各结论进行判断即可得答案.

【详解】①由图象知抛物线顶点纵坐标为﹣1,即=﹣1,故①正确;

②设C(0,c),则OC=|c|,

∵OA=OC=|c|,∴A(c,0)代入抛物线得ac2+bc+c=0,又c≠0,

∴ac+b+1=0,故②正确;

③从图象中易知a>0,b<0,c<0,则abc>0,故③正确;

④当x=﹣1时y=a ﹣b+c ,由图象知(﹣1,a ﹣b+c )在第二象限,

∴a ﹣b+c >0,故④正确,

故选A .

【点睛】本题考查了二次函数图象与系数的关系,读懂图象、掌握二次根式的顶点坐标公式、二次根式图象上一些特特殊点的坐标特征是解题的关键.

25.已知抛物线()20y ax

a =>过()12,A y -, ()21,B y 两点,则下列关系式一定正

确的( )

A . 120y y >>

B . 210y y >>

C . 120y y >>

D . 210y y >>

【答案】C

【解析】解:∵抛物线y =ax 2(a >0),∴A (﹣2,y 1)关于y 轴对称点的坐标为(2,y 1).又∵a >0,0<1<2,∴y 2<y 1.故选C .

26.已知二次函数y=ax 2+bx 的图象如图所示,则一次函数y=ax+b 的图象是( )

A .

B .

C .

D .

【答案】A

【解析】

【分析】 直接利用二次函数图象得出a ,b 的符号,进而利用一次函数的图象性质得出答案.

【详解】

抛物线开口向下,则a <0,对称轴在y 轴右侧,则a ,b 互为相反数,则b >0,故一次函数y =ax +b 的图象经过第一、二、四象限.

故选A .

【点睛】

本题主要考查了二次函数以及一次函数的图象,正确得出a ,b 的符号是解题的关键.

27.若二次函数y =(a -1)x 2+3x +a 2-1的图象经过原点,则a 的值必为( )

A . 1或-1

B . 1

C . -1

D . 0

【答案】C

【解析】

【分析】

将(0,0)代入求出a的值,因为二次函数二次项系数不能为0,排除一个a的值即可.【详解】

将(0,0)代入y=(a-1)x2+3x+a2-1,得a=±1,∵a≠1,∴a=-1.

【点睛】

本题考查二次函数求常数项,解题的关键是将已知二次函数过的点代入,注意二次函数二次项系数不能为0.

28.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①2a+b<0;②abc>0;③4a?2b+c>0;④a+c>0,其中正确结论的个数为( )

A.1个B.2个C.3个D.4个

【答案】B

【解析】

【分析】

根据抛物线的开口方向和对称轴判断①;根据抛物线与y轴的交点和对称轴判断②;根据x=-2时,y<0判断③;根据x=±1时,y>0判断④.

【详解】

①∵抛物线开口向下,

∴a<0,

∵?<1,

∴2a+b<0,①正确;

②抛物线与y轴交于正半轴,

∴c>0,

∵?>0,a<0,

∴b>0,

∴abc<0,②错误;

③当x=?2时,y<0,

∴4a?2b+c<0,③错误;

x=±1时,y>0,

∴a?b+c>0,a+b+c>0,

∴a+c>0,④正确,

故选:B

【点睛】

本题考核知识点:二次函数图象与系数的关系.解题关键点:理解二次函数图象与系数的关系.

29.一位篮球运动员在距离篮圈中心水平距离4m处起跳投篮,球沿一条抛物线运动,当球运动的水平距离为2.5m时,达到最大高度3.5m,然后准确落入篮框内.已知篮圈中心距离地面高度为3.05m,在如图所示的平面直角坐标系中,下列说法正确的是()

A.此抛物线的解析式是y=﹣x2+3.5

B.篮圈中心的坐标是(4,3.05)

C.此抛物线的顶点坐标是(3.5,0)

D.篮球出手时离地面的高度是2m

【答案】A

【解析】

【分析】

A、设抛物线的表达式为y=ax2+3.5,依题意可知图象经过的坐标,由此可得a的值;

B、根据函数图象判断;

C、根据函数图象判断;

D、设这次跳投时,球出手处离地面hm,因为(1)中求得y=﹣0.2x2+3.5,当x=﹣2,5时,即可求得结论.

【详解】

解:A、∵抛物线的顶点坐标为(0,3.5),

∴可设抛物线的函数关系式为y=ax2+3.5.

∵篮圈中心(1.5,3.05)在抛物线上,将它的坐标代入上式,得 3.05=a×1.52+3.5,

∴a=﹣,

∴y=﹣x2+3.5.

故本选项正确;

B、由图示知,篮圈中心的坐标是(1.5,3.05),

故本选项错误;

C、由图示知,此抛物线的顶点坐标是(0,3.5),

故本选项错误;

D、设这次跳投时,球出手处离地面hm,

因为(1)中求得y=﹣0.2x2+3.5,

∴当x=﹣2.5时,

h=﹣0.2×(﹣2.5)2+3.5=2.25m.

∴这次跳投时,球出手处离地面2.25m.

故本选项错误.

故选:A.

【点睛】

本题考查了二次函数的应用,解题的关键是从实际问题中抽象出二次函数模型,体现了数学建模的数学思想,难度不大,能够结合题意利用二次函数不同的表达形式求得解析式是解答本题的关键.

30.对于二次函数的图像,给出下列结论:①开口向上;②对称轴是直线;③顶

点坐标是;④与轴有两个交点.其中正确的结论是( )

A.①②B.③④C.②③D.①④

【答案】D

【解析】分析:根据二次函数的顶点式,可知对称轴为x=h,顶点为(h,k),然后由系数a和k判断开口方向和与x轴的交点.

详解:∵a=1>0

∴开口向上,①正确;

∵x-3=0

∴对称轴为x=3,②错误;

∴顶点坐标为:(3,-4),故③错误;

∴在第四象限,

所以与x轴有两个交点.故④正确.

故选:D.

人教版九年级上册数学 22.1.1 二次函数 同步练习

22.1.1 二次函数 A 组 ◆基础练习 1、分别说出下列函数的名称: (1) y= 21x-1, (2)y=-3x 2, (3)y= x 2 (4)y=3x-x 2 (5)y=x 2、分别说出下列二次函数的二次项系数、一次项系数和常数项: (1)d= 21n 2-2 3n , (2)y=1-x 2 , (3)y=-x(x-3) 3、 二次函数y=ax 2 +c 中,当x=3时,y=26 ;当x=2时,y=11 ;则当x=5时, y= . 4、已知一个直角三角形的两条直角边的和为10cm 。 (1)求这个直角三角形的面积S 与其中一条直角边长x 之间的函数关系式和自变量x 的取值范围; (2)求当x=5cm 时直角三角形的面积。 5、函数y=ax 2 +bx+c (a 、b 、c 是常数),问当a 、b 、c 满足什么条件时, (1)它是二次函数? (2)它是一次函数? (3)它是正比例函数? ◆能力拓展 6、若() m m x m m y -+=2 2是二次函数,求m 的值。 7、一个小球由静止开始在一个斜坡上向下滚动,通过仪器观察得到小球滚动的距离s (米)与时间t (秒)的数据如下表: 时间t (秒) 1 2 3 4 … 距离s (米) 2 8 18 32 … 写出用t 表示s 的函数关系式。 8、 富根老伯想利用一边长为a 米的旧墙及可以围成24米长的旧木料,建造猪舍三间,如 图,它们的平面图是一排大小相等的长方形。 (1) 如果设猪舍的宽AB 为x 米,则猪舍的总面积S (米2 )与x 有怎样的函数关系? (2) 请你帮富根老伯计算一下,如果猪舍的总面积为32米2 ,应该如何安排猪舍的长B C 和宽AB 的长度?旧墙的长度是否会对猪舍的长度有影响?怎样影响?

中考数学复习专题二次函数知识点归纳

二次函数知识点归纳 一、二次函数概念 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质: o o 结论:a 的绝对值越大,抛物线的开口越小。 总结: 2. 2y ax c =+的性质: 结论:上加下减。 a 的符号 开口方向 顶点坐标 对称轴 性质 0a > 向上 ()00, y 轴 0x >时,y 随x 的增大而增大;0x <时,y 随x 的增大而减小;0x =时,y 有最小值0. 0a < 向下 ()00, y 轴 0x >时,y 随x 的增大而减小;0x <时,y 随x 的增大而增大;0x =时,y 有最大值0.

总结: 3. ()2 y a x h =-的性质: 结论:左加右减。 总结: 4. ()2 y a x h k =-+的性质: 总结: a 的符号 开口方向 顶点坐标 对称轴 性质 0a > 向上 ()0c , y 轴 0x >时,y 随x 的增大而增大;0x <时,y 随x 的增大而减小;0x =时,y 有最小值c . 0a < 向下 ()0c , y 轴 0x >时,y 随x 的增大而减小;0x <时,y 随x 的增大而增大;0x =时,y 有最大值c . a 的符号 开口方向 顶点坐标 对称轴 性质 0a > 向上 ()0h , X=h x h >时,y 随x 的增大而增大;x h <时,y 随x 的增大而减小;x h =时,y 有最小值0. 0a < 向下 ()0h , X=h x h >时,y 随x 的增大而减小;x h <时,y 随x 的增大而增大;x h =时,y 有最大值0. a 的符号 开口方向 顶点坐标 对称轴 性质

二次函数知识点梳理

二次函数得基础 一、考点、热点回顾 二次函数知识点 一、二次函数概念: 1.二次函数得概念:一般地,形如(就是常数,)得函数,叫做二次函数。这里需要强调:与一元二次 方程类似,二次项系数,而可以为零.二次函数得定义域就是全体实数. 2、二次函数得结构特征: ⑴等号左边就是函数,右边就是关于自变量得二次式,得最高次数就是2. ⑵就是常数,就是二次项系数,就是一次项系数,就是常数项. 二、二次函数得基本形式 1、二次函数基本形式:得性质: a 得绝对值越大,抛物线得开口越小。 2、得性质:上加下减。 3、得性质:左加右减。 4、得性质:

三、二次函数图象得平移 在原有函数得基础上“值正右移,负左移;值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二: ⑴沿轴平移:向上(下)平移个单位,变成 (或) ⑵沿轴平移:向左(右)平移个单位,变成(或) 四、二次函数与得比较 从解析式上瞧,与就是两种不同得表达形式,后者通过配方可以得到前者,即,其中. 五、二次函数图象得画法 五点绘图法:利用配方法将二次函数化为顶点式,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图、一般我们选取得五点为:顶点、与轴得交点、以及关于对称轴对称得点、与轴得交点,(若与轴没有交点,则取两组关于对称轴对称得点)、 画草图时应抓住以下几点:开口方向,对称轴,顶点,与轴得交点,与轴得交点、 六、二次函数得性质 1、当时,抛物线开口向上,对称轴为,顶点坐标为. 当时,随得增大而减小;当时,随得增大而增大;当时,有最小值. 2、当时,抛物线开口向下,对称轴为,顶点坐标为.当时,随得增大而增大;当时,随得增大而减小;当时,有最大值. 七、二次函数解析式得表示方法 1、一般式:(,,为常数,); 2、顶点式:(,,为常数,); 3、两根式:(,,就是抛物线与轴两交点得横坐标)、 注意:任何二次函数得解析式都可以化成一般式或顶点式,但并非所有得二次函数都可以写成交点式,只有抛物线与轴有交点,即时,抛物线得解析式才可以用交点式表示.二次函数解析式得这三种形式可以互化、 八、二次函数得图象与各项系数之间得关系 1、二次项系数 二次函数中,作为二次项系数,显然. ⑴当时,抛物线开口向上,得值越大,开口越小,反之得值越小,开口越大; ⑵当时,抛物线开口向下,得值越小,开口越小,反之得值越大,开口越大. 总结起来,决定了抛物线开口得大小与方向,得正负决定开口方向,得大小决定开口得大小. 2、一次项系数 在二次项系数确定得前提下,决定了抛物线得对称轴. ⑴在得前提下, 当时,,即抛物线得对称轴在轴左侧; 当时,,即抛物线得对称轴就就是轴; 当时,,即抛物线对称轴在轴得右侧. ⑵在得前提下,结论刚好与上述相反,即 当时,,即抛物线得对称轴在轴右侧; 当时,,即抛物线得对称轴就就是轴; 当时,,即抛物线对称轴在轴得左侧. 总结起来,在确定得前提下,决定了抛物线对称轴得位置. 得符号得判定:对称轴在轴左边则,在轴得右侧则,概括得说就就是“左同右异” 总结: 3、常数项 ⑴当时,抛物线与轴得交点在轴上方,即抛物线与轴交点得纵坐标为正;

二次函数知识点总结及典型题目

二次函数知识点总结及典型题目 一.定义: 一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数. 二次函数的图象是抛物线,所以也叫抛物线y=ax2+bx+c ;抛物线关于对称轴对称且以对称轴为界,一半图象上坡,另一半图象下坡;其中c 叫二次函数在y 轴上的截距, 即二次函数图象必过(0,c )点. 二.二次函数2ax y =的性质 (1)抛物线2ax y =的顶点是坐标原点,对称轴是y 轴. (2)函数2ax y =的图像与a 的符号关系. ①当0>a 时?抛物线开口向上?顶点为其最低点; ②当0

二次函数知识点汇总(全)

二次函数知识点 一、二次函数概念: 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。 2. 2y ax c =+的性质: 上加下减。

3. ()2 y a x h =-的性质: 左加右减。 4. ()2 y a x h k =-+的性质: 三、二次函数图象的平移 1. 平移步骤: 方法一:⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k , 处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位

2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二: ⑴c bx ax y ++=2 沿 y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成 m c bx ax y +++=2(或m c bx ax y -++=2) ⑵c bx ax y ++=2 沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2 变成 c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 四、二次函数()2 y a x h k =-+与2y ax bx c =++的比较 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者, 即2 2424b ac b y a x a a -??=++ ??? ,其中2424b ac b h k a a -=-=,. 五、二次函数2y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c , 、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. 六、二次函数2y ax bx c =++的性质 1. 当0a >时,抛物线开口向上,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <- 时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2b x a =-时,y 有最小值2 44ac b a -.

二次函数课堂同步练习题

1、二次函数 1. 一个小球由静止开始在一个斜坡上向下滚动,通过仪器观察得到小球滚动的距离s (米)与时间t 时间t (秒) 1 2 3 4 … 距离s (米) 2 8 18 32 … 写出用t 表示s 的函数关系式。 2. 若() m m x m m y -+=2 2是二次函数,求m 的值。 3. 用100cm 长的铁丝围成一个扇形,试写出扇形面积S (cm 2)与半径R (cm )的函数关系式。 4. 已知二次函数),0(2 ≠+=a c ax y 当x=1时,y= -1;当x=2时,y=2,求该函数解析式。 5. 等边三角形的边长为4,若边长增加x ,则面积增加y ,求y 关于x 的函数关系式。 6. 富根老伯想利用一边长为a 米的旧墙及可以围成24米长的旧木料,建造猪舍三间,如图,它们的 平面图是一排大小相等的长方形。 (1) 如果设猪舍的宽AB 为x 米,则猪舍的总面积S (米2)与x 有怎样的函数关系? (2) 请你帮富根老伯计算一下,如果猪舍的总面积为32米2,应该如何安排猪舍的长BC 和宽AB 的长度?旧墙的长度是否会对猪舍的长度有影响?怎样影响?

2、函数2ax y =的图象与性质 1. 在同一坐标系内,画出下列函数的图象:(1)221x y = ;(2)2 2 1x y -=。 根据图象填空:(1)抛物线2 2 1x y = 的对称轴是 (或 ) ,顶点坐标是 ,抛物线上的点都在x 轴的 方,当x 时,y 随x 的增大而增大,当x 时,y 随x 的增大而减小,当x= 时,该函数有最 值是 ; (2)抛物线2 2 1x y - =的对称轴是 (或 ) ,顶点坐标是 ,抛物线上的点都在x 轴的 方,当x 时,y 随x 的增大而增大,当x 时,y 随x 的增大而减小,当x= 时,该函数有最 值是 ; 2. 已知函数()4 2 2-++=m m x m y 是关于x 的二次函数,求: (1) 满足条件的m 的值; (2) m 为何值时,抛物线有最底点?求出这个最底点,这时x 为何值时,y 随x 的增大而增大; (3) m 为何值时,抛物线有最大值?最大值是多少?当x 为何值时,y 随x 的增大而减小? 3. 对于函数2 2x y =下列说法:①当x 取任何实数时,y 的值总是正的;②x 的值增大,y 的值也增 大;③y 随x 的增大而减小;④图象关于y 轴对称。其中正确的是 。 4. 二次函数1 2 -=m mx y 在其图象对称轴的左则,y 随x 的增大而增大,求m 的值。 5. 二次函数2 2 3x y - =,当x 1>x 2>0时,求y 1与y 2的大小关系。 6. 函数2 ax y =与b ax y +-=的图象可能是( )

二次函数知识点汇总

二次函数知识点汇总 一、二次函数概念: 1 .二次函数的概念 : 一般地,形如 ( 是常数, )的函数,叫做二次函数。 这里需要 强调 :和一元二次方程类似,二次项系数 ,而 可以为零.二次函数的定义域是全体实数. 2. 二次函数 的结构特征: ⑴ 等号左边是函数,右边是关于自变量 的二次式, 的最高次数是 2 . ⑵ 是常数, 是二次项系数, 是一次项系数, 是常数项. 二、二次函数的基本形式 1. 二次函数基本形式: 的性质: a 的绝对值越大,抛物线的开口越小。 的符号 开口方向 顶点坐标 对称轴 性质 向上 轴 时, 随 的增大而增大; 时, 随 的增大而减小; 时, 有最小值 . 向下 轴 时, 随 的增大而减小; 时, 随 的增大而增大; 时, 有最大值 .

2. 的性质: (上加下减) 的符号 开口方向 顶点坐标 对称轴 性质 向上 轴 时, 随 的增大而增大; 时, 随 的增大而减小; 时, 有最小值 . 向下 轴 时, 随 的增大而减小; 时, 随 的增大而增大; 时, 有最大值 . 3. 的性质: (左加右减) 的符号 开口方向 顶点坐标 对称轴 性质 向上 X=h 时, 随 的增大而增大; 时, 随 的增大而减小; 时, 有最小值 .

向下 X=h 时, 随 的增大而减小; 时, 随 的增大而增大; 时, 有最大值 . 4. 的性质: 的符号 开口方向 顶点坐标 对称轴 性质 向上 X=h 时, 随 的增大而增大; 时, 随 的增大而减小; 时, 有最小值 . 向下 X=h 时, 随 的增大而减小; 时, 随 的增大而增大; 时, 有最大值 . 三、二次函数图象的平移 1. 平移步骤:

二次函数知识点梳理

二次函数de 基础 一、考点、热点回顾 二次函数知识点 一、二次函数概念: 1.二次函数de 概念:一般地,形如2 y ax bx c =++(a b c ,,是常数,0a ≠)de 函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数de 定义域是全体实数. 2. 二次函数2 y ax bx c =++de 结构特征: ⑴ 等号左边是函数,右边是关于自变量x de 二次式,x de 最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数de 基本形式 1. 二次函数基本形式:2 y ax =de 性质: a de 绝对值越大,抛物线de 开口越小。 2. 2 y ax c =+de 性质:上加下减。 3. ()2 y a x h =-de 性质:左加右减。

4. ()2 y a x h k =-+de 性质: 三、二次函数图象de 平移 在原有函数de 基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二: ⑴ c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成 m c bx ax y +++=2(或m c bx ax y -++=2) ⑵ c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成 c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 四、二次函数()2 y a x h k =-+与2 y ax bx c =++de 比较 从解析式上看,()2 y a x h k =-+与2 y ax bx c =++是两种不同de 表达形式,后者通过配方可以 得到前者,即2 2424b ac b y a x a a -??=++ ?? ?,其中2424b ac b h k a a -=-=,. 五、二次函数2 y ax bx c =++图象de 画法 五点绘图法:利用配方法将二次函数2 y ax bx c =++化为顶点式2 ()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取de 五点为:顶点、 与y 轴de 交点()0c , 、以及()0c ,关于对称轴对称de 点()2h c ,、与x 轴de 交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称de 点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴de 交点,与y 轴de 交点. 六、二次函数2 y ax bx c =++de 性质 1. 当0a >时,抛物线开口向上,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <- 时,y 随x de 增大而减小;当2b x a >-时,y 随x de 增大而增大;当2b x a =-时,y

(完整word版)初中二次函数知识点总结(全面)

二次函数知识点 二次函数概念: 1.二次函数的概念:一般地,形如y=ax 2+bx+c (a b c ,,是常数,a ≠0)的函数,叫做二次函数。这里需要强调:和一元二次方程类似,二次项系数a ≠0,而b c ,可以为零.二次函数的定义域是全体实数。<<>≤≥ 2. 二次函数y=ax 2+bx+c 的性质 1)当a >0时,抛物线开口向上,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <- 时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2b x a =-时,y 有最小值 2 44ac b a -. 2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,.当2b x a <- 时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2b x a =-时,y 有最大值2 44ac b a -. (三)、二次函数解析式的表示方法 1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠); 2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠); 3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可 以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化. 练习 1.下列关系式中,属于二次函数的是(x 为自变量)( ) A. B. C. D. 2. 函数y=x 2-2x+3的图象的顶点坐标是( ) A. (1,-4) B.(-1,2) C. (1,2) D.(0,3) 3. 抛物线y=2(x-3)2的顶点在( ) A. 第一象限 B. 第二象限 C. x 轴上 D. y 轴上

2.1二次函数的图像与性质同步练习3

2.2 二次函数的图像与性质同步练习 一、选择题: 1、抛物线 y = - x 2 + 4 x + 7 的顶点坐标为( ) A 、(-2,3) B 、(2,11) C 、(-2,7) D 、(2,-3) 2、若抛物线 y = x 2 - 2 x + c 与 y 轴交于点(0,-3),则下列说法不正确的是( ) A 、抛物线开口方向向上 B 、抛物线的对称轴是直线 x = 1 C 、当 x = 1时, y 的最大值为-4 D 、抛物线与 x 轴的交点为(-1,0),(3,0) 3、要得到二次函数 y = - x 2 + 2 x - 2 的图象,需将 y = - x 2 的图象( ) A 、向左平移 2 个单位,再向下平移 2 个单位 B 、向右平移 2 个单位,再向上平移 2 个单位 C 、向左平移 1 个单位,再向上平移 1 个单位 D 、向右平移 1 个单位,再向下平移 1 个单位 4、在平面直角坐标系中,若将抛物线 y = 2x 2 - 4x + 3 先向右平移 3 个单位长度,再向 上平移 2 个单位长度,则经过这两次平移后,所得到的抛物线的顶点坐标为( ) A 、(-2,3) B 、(-1,4) C 、(1,4) D 、(4,3) 5、抛物线 y = x 2 + bx + c 的图象向右平移 2 个单位,再向下平移 3 个单位,所得图象的 解析式为 y = x 2 - 2 x - 3 ,则 b 、 c 的值为( ) A 、 b = 2, c = 2 B 、 b = 2, c = 0 C 、 b = -2, c = -1 D 、 b = -3, c = 2 6、二次函数 y=ax 2+bx+1(a≠0)的图象的顶点在第一象限,且过点(-1,).设 t=a+b+1, 则 t 值的变化范围是( ) A .0<t <1 B .0<t <2 C .1<t <2 D .-1<t <1

二次函数知识点汇总及详细剖析

二次函数知识点汇总及详细剖析 函数中,有一种多项式函数形如y= ax2+bx+c(a,b,c是常数,a≠0),最高次数是2,这种函数,我们称之为二次函数。二次函数知识点颇多,初高中都会出现,在初中,刚刚出现在一次函数数形结合学习之后,因此,二次函知识点离不开数形结合思想。二次函数主要知识点: 一、定义与定义表达式: 一般地,自变量x和因变量y之间存在如下关系: y=ax2+bx+c(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)则称y为x的二次函数。 二次函数表达式的右边通常为二次三项式。 二、二次函数的三种表达式 一般式:y=ax2;+bx+c(a,b,c为常数,a≠0) 顶点式:y=a(x-h) 2;+k[抛物线的顶点P(h,k)] 交点式:y=a(x- x1)(x- x2)[仅限于与x轴有交点A(x1,0)和B(x2,0)的抛物线] 注:在3种形式的互相转化中,有如下关系: h=-b/2a k=(4ac- b2)/4a x1,x2=(-b±√b2-4ac)/2a 三、二次函数的图像 在平面直角坐标系中作出二次函数y=x2的图像, 可以看出,二次函数的图像是一条抛物线。 四、抛物线的性质 1.抛物线是轴对称图形。 对称轴为直线:x=-b/2a。 对称轴与抛物线唯一的交点为抛物线的顶点P。特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0) 2.抛物线有一个顶点P,坐标为P[-b/2a,(4ac-b2;)/4a]。 当-b/2a=0时,P在y轴上; 当Δ=b2-4ac=0时,P在x轴上。 3.二次项系数a决定抛物线的开口方向和大小。 当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。 |a|越大,则抛物线的开口越小。 4.一次项系数b和二次项系数a共同决定对称轴的位置。 当a与b同号时(即ab>0),对称轴在y轴左; 当a与b异号时(即ab<0),对称轴在y轴右。 5.常数项c决定抛物线与y轴交点。 抛物线与y轴交于(0,c)。 6.抛物线与x轴交点个数 Δ=b2-4ac>0时,抛物线与x轴有2个交点。 Δ=b2-4ac=0时,抛物线与x轴有1个交点。 Δ=b2-4ac<0时,抛物线与x轴没有交点。

中考数学二次函数知识点总结

中考数学二次函数知识点总结 I. 定义与定义表达式 一般地,自变量x和因变量y之间存有如下关系:y=ax^2+bx+c (a, b, c为常数,a z0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,lal还能够决定开口大小,lal越大开口就越小,IaI 越小开口就越大. )则称y 为x 的二次函数。 二次函数表达式的右边通常为二次三项式。 II. 二次函数的三种表达式 一般式:y=ax A2+bx+c (a, b, c 为常数,a z0) 顶点式:y=a(x-hF2+k[抛物线的顶点P (h, k)] 交点式:y=a(x-x)(x-x)[ 仅限于与x 轴有交点A(x, 0)和B( x, 0) 的抛物线] 注:在 3 种形式的互相转化中,有如下关系: h=-b/2a k=(4ac-bA2)/4a x,x=(- b±V bA2-4ac)/2a III. 二次函数的图像 在平面直角坐标系中作出二次函数y=xA2 的图像,能够看出,二次函数的图像是一条抛物线。 IV. 抛物线的性质 1. 抛物线是轴对称图形。对称轴为直线x=-b/2a 。 对称轴与抛物线的交点为抛物线的顶点P。特别地,当b=0时,抛物 线的对称轴是y 轴(即直线x=0)

2. 抛物线有一个顶点P,坐标为:P(-b/2a , (4ac-"2)/4a)当-b/2a=0 时,P在y轴上;当△二b^2-4ac=0时,P在x轴上。 3. 二次项系数a 决定抛物线的开口方向和大小。 当a>0时,抛物线向上开口;当a v0时,抛物线向下开口。|a|越大,则抛物线的开口越小。 4. 一次项系数b 和二次项系数a 共同决定对称轴的位置。 当a与b同号时(即ab> 0),对称轴在y轴左; 当a与b异号时(即ab v 0),对称轴在y轴右。 5. 常数项c 决定抛物线与y 轴交点。 抛物线与y 轴交于(0, c) 6. 抛物线与x 轴交点个数 △=b A2-4ac >0时,抛物线与x轴有2个交点。 △=bA2-4ac=0时,抛物线与x轴有1个交点。 △=bA2-4ac v 0时,抛物线与x轴没有交点。 X的取值是虚数(x=-b±V bA2 —4ac的值的相反数,乘上虚数i,整个式子除以2a) V. 二次函数与一元二次方程 特别地,二次函数(以下称函数)y=axA2+bx+c, 当y=0 时,二次函数为关于x 的一元二次方程(以下称方程),即 axA2+bx+c=0 此时,函数图像与x轴有无交点即方程有无实数根。函数与x轴交点的横坐标即为方程的根。

史上最全初三数学二次函数知识点归纳总结

史上最全初三数学二次函数知识点归纳总结 二次函数知识点归纳及相关典型题 第一部分基础知识 1.定义:一般地,如果y ax2bx c(a,b,c是常数,a0),那么y叫做x的二次函数. 2.二次函数y ax2的性质 (1)抛物线y ax2的顶点是坐标原点,对称轴是y轴. (2)函数y ax2的图像与a的符号关系. ①当a0时抛物线开口向上顶点为其最低点; ②当a0时抛物线开口向下顶点为其最高点. (3)顶点是坐标原点,对称轴是y轴的抛物线的解析式形式为y ax2(a0). 3.二次函数y ax2bx c的图像是对称轴平行于(包括重合)y轴的抛物线. b 2a4ac b4a 224.二次函数y ax bx c用配方法可化成:y a x h k的形式,其中h22,k. 25.二次函数由特殊到一般,可分为以下几种形式:①y ax2;②y ax2k;③y a x h; ④y a x h k; ⑤y ax2bx c. 6.抛物线的三要素:开口方向、对称轴、顶点. ①a的符号决定抛物线的开口方向:当a0时,开口向上;当a0时,开口向下; a相等,抛物线的开口大小、形状相同. ②平行于y轴(或重合)的直线记作x h.特别地,y轴记作直线x0. 7.顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同. 8.求抛物线的顶点、对称轴的方法 (1)公式法:y ax2b4ac b bx c a x2a4a22b4ac b(),对称轴是直线x,∴顶点是. 2a2a4a 2b2 (2)配方法:运用配方的方法,将抛物线的解析式化为y a x h k的形式,得到顶点为(h,k),对称轴是直线 x h. (3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对 - 1 - 称轴,对称轴与抛物线的交点是顶点. 用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失. 9.抛物线y ax2bx c中,a,b,c的作用 (1)a决定开口方向及开口大小,这与y ax2中的a完全一样. (2)b和a共同决定抛物线对称轴的位置.由于抛物线y ax2bx c的对称轴是直线 x b2a

最新二次函数课时同步练习题

二次函数的定义练习题 一、选择题 1、下列函数中,不是二次函数的是( ) x 2 B.y=2(x-1)2+4; C.y=1 2 (x-1)(x+4) D.y=(x-2)2-x 2 2、下列函数中,是二次函数的有 ( ) ①2 21x y -= ②2 1 x y = ③)1(x x y -= ④)21)(21(x x y +-= A 、1个 B 、2个 C 、3个 D 、4个 3、若二次函数32)1(2 2 --++=m m x m y 的图象经过原点,则m 的值必为( ) A 、-1或3 B 、-1 C 、3 D 、无法确定 4、在半径为4cm 的圆中, 挖去一个半径为xcm 的圆面, 剩下一个圆环的面积为ycm 2,则y 与x 的函数关系式为( ) A.y=πx 2-4 B.y=π(2-x)2; C.y=-(x 2+4) D.y=-πx 2+16π 5、若y=(2-m)2 2 m x -是二次函数,则m 等于( ) A.±2 B.2 C.-2 D.不能确定 6、下列结论正确的是( ) A.二次函数中两个变量的值是非零实数; B.二次函数中变量x 的值是所有实数; C.形如y=ax 2+bx+c 的函数叫二次函数; D.二次函数y=ax 2+bx+c 中a,b,c 的值均不能为零 二、填空题 7、已知函数y=(k+2)2 4 k k x +-是关于x 的二次函数,则k=________. 8、已知正方形的周长是acm,面积为Scm 2,则S 与a 之间的函数关系式为_____. 9.、填表: 10、在边长为4m y,则y 与x 间的 函数关系式为_________. 11、用一根长为8m 的木条,做一个长方形的窗框,若宽为xm,则该窗户的面积y(m 2)与x(m)之间的函数关 系式为________. 三、解答题 12、已知y 与x 2成正比例,并且当x=1时,y=2,求函数y 与x 的函数关系式,并求当x=-3时,y 的值.当y=8时, 求x 的值.

二次函数基本知识点梳理及训练(最新)

① 二次函数 考点一 一般地,如果y =ax 2+bx +c(a 、b 、c 是常数,a ≠0),那么y 叫做x 的二次函数. 1.结构特征:①等号左边是函数,右边是关于自变量x 的二次式;②x 的最高次数是2;③二次项系数a ≠0. 2.二次函数的三种基本形式 一般形式:y =ax 2+bx +c(a 、b 、c 是常数,且a ≠0); 顶点式:y =a(x -h)2+k(a ≠0),它直接显示二次函数的顶点坐标是(h ,k); 交点式:y =a(x -x 1)(x -x 2)(a ≠0),其中x 1 、x 2 是图象与x 轴交点的横坐标. 考 点二 二次函数的图象和性质

考点三 二次函数y=ax2+bx+c的图象特征与a、b、c及b2-4ac的符号之间的关系 考点四 任意抛物线y=a(x-h)2+k可以由抛物线y=ax2经过平移得到,具体平移方法如下: 考点五 1.设一般式:y=ax2+bx+c(a≠0). 若已知条件是图象上三个点的坐标.则设一般式y=ax2+bx+c(a≠0),将已知条件代入,求出a、b、c的值.2.设交点式:y=a(x-x1)(x-x2)(a≠0). 若已知二次函数图象与x轴的两个交点的坐标,则设交点式:y=a(x-x1)(x-x2)(a≠0),将第三点的坐标或其他已知条件代入,求出待定系数a,最后将解析式化为一般式. 3.设顶点式:y=a(x-h)2+k(a≠0). 若已知二次函数的顶点坐标或对称轴方程与最大值或最小值,则设顶点式:y=a(x-h)2+k(a≠0),将已知条件代入,求出待定系数化为一般式 考点六 二次函数的应用包括两个方法 ①用二次函数表示实际问题变量之间关系. ②用二次函数解决最大化问题(即最值问题),用二次函数的性质求解,同时注意自变量的取值范围. (1)二次函数y=-3x2-6x+5的图象的顶点坐标是() A.(-1,8) B.(1,8) C.(-1,2)D.(1,-4) (2)将二次函数y=x2-2x+3化为y=(x-h)2+k的形式,结果为() A.y=(x+1)2+4 B.y=(x-1)2+4 C.y=(x+1)2+2 D.y=(x-1)2+2 (3)函数y=x2-2x-2的图象如下图所示,根据其中提供的信息,可求得使y≥1成立的x的取值范围是() ②

二次函数知识点梳理

初三年级数学—二次函数的基础 一、考点、热点回顾 二次函数知识点 一、二次函数概念: 1.二次函数的概念:一般地,形如2 y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c , 可以为零.二次函数的定义域是全体实数. 2. 二次函数2 y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c , ,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式 1. 二次函数基本形式:2 y ax =的性质: a 的绝对值越大,抛物线的开口越小。 2. 2 y ax c =+的性质:上加下减。 3. ()2 y a x h =-的性质:左加右减。

4. ()2 y a x h k =-+的性质: 三、二次函数图象的平移 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二: ⑴ c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成 m c bx ax y +++=2(或m c bx ax y -++=2) ⑵ c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成 c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 四、二次函数()2 y a x h k =-+与2 y ax bx c =++的比较 从解析式上看,()2 y a x h k =-+与2 y ax bx c =++是两种不同的表达形式,后者通过配方可以得 到前者,即2 2424b ac b y a x a a -??=++ ?? ?,其中2424b ac b h k a a -=-=,. 五、二次函数2 y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2 y ax bx c =++化为顶点式2 ()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、 与y 轴的交点()0c , 、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. 六、二次函数2 y ax bx c =++的性质 1. 当0a >时,抛物线开口向上,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <- 时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2b x a =-时,y 有最小值2 44ac b a -.

二次函数的图像和性质同步练习

二次函数的图像和性质 习题精选 1.二次函数2y ax =的图像开口向____,对称轴是____,顶点坐标是____,图像有最___点,x ___时,y 随x 的增大而增大,x ___时,y 随x 的增大而减小。 2.关于213 y x =,2y x =,23y x =的图像,下列说法中不准确的是( ) A .顶点相同 B .对称轴相同 C .图像形状相同 D .最低点相同 3.两条抛物线2y x =与2y x =-在同一坐标系内,下列说法中不准确的是( ) 4.在抛物线2y x =-上,当y <0时,x 的取值范围应为( ) A .x >0 B .x <0 C .x ≠0 D .x ≥0 5.对于抛物线2y x =与2y x =-下列命题中错误的是( ) A .两条抛物线关于x 轴对称 B .两条抛物线关于原点对称 C .两条抛物线各自关于y 轴对称 D .两条抛物线没有公共点 6.抛物线y=-b 2x +3的对称轴是___,顶点是___。 7.抛物线y=-21(2)2 x +-4的开口向___,顶点坐标___,对称轴___,x ___时,y 随x 的增大而增大,x ___时,y 随x 的增大而减小。 8.抛物线2 2(1)3y x =+-的顶点坐标是( ) A .(1,3) B .(-1,3) C .(1,-3) D .(-1,-3) 9.已知抛物线的顶点为(-1,-2),且通过(1,10),则这条抛物线的表达式为( ) A .y=32(1)x --2 B .y=32(1)x ++2 C .y=32(1)x +-2 D .y=-32(1)x +-2 10.二次函数2y ax =的图像向左平移2个单位,向下平移3个单位,所得新函数表达式为( ) A .y=a 2(2)x -+3 B .y=a 2(2)x --3 C .y=a 2(2)x ++3 D .y=a 2(2)x +-3

二次函数知识点汇总(全)

二次函数知识点(第一讲) 一、二次函数概念: 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。 2. 2y ax c =+的性质:(上加下减)

3. ()2 y a x h =-的性质:(左加右减) 4. ()2 y a x h k =-+的性质: 三、二次函数图象的平移 1. 平移步骤: 方法一:⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k , 处,具体平移方法如下:

【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”. 方法二: ⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成 m c bx ax y +++=2(或m c bx ax y -++=2) ⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成 c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 四、二次函数() 2 y a x h k =-+与2 y ax bx c =++的比较 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到 前者,即2 2424b ac b y a x a a -? ?=++ ??? ,其中2424b ac b h k a a -=-= ,. 五、二次函数2y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方 向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为: 顶点、与y 轴的交点()0c , 、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. 六、二次函数2y ax bx c =++的性质 1. 当0a >时,抛物线开口向上,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <- 时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2b x a =-时,y 有

相关文档
最新文档