数学物理方程期末试卷
数学物理方法期末考试试题

数学物理方法期末考试试题一、单项选择题(每小题2分)1.齐次边界条件的本征函数是_______。
A) B)C) D)2.描述无源空间静电势满足的方程是________.A) 波动方程 B)热传导方程C) Poisson方程 D)Laplace方程3.半径为R的圆形膜,边缘固定,其定解问题是其解的形式为,下列哪一个结论是错误的______。
A)B)圆形膜固有振动模式是和C)是零阶Bessel函数的第m个零点。
D)满足方程4.是下列哪一个方程的解_________。
A) B)C) D)5.根据整数阶Bessel函数的递推公式,下列结论哪一个是正确的________。
A) B)C) D)二、填空题(每题3分)1.定解问题用本征函数发展开求解时,关于T(t)满足的方程是:__________ 2.Legendre多项式的x的值域是____________。
Bessel函数的x的值域是______________________.3.一圆柱体内的定解问题为1)则定解问题关于ρ满足的方程是:_____________________________;相应方程的解为___________________________;2)关于z满足的方程是_______________________________________;4.计算积分5.计算积分三、(10分)长为的弦,两端固定,初始位移为,初始速度为4x,写出此物理问题的定解问题。
四、(10分)定解问题,若要使边界条件齐次化,,求其辅助函数,并写出相应的定解问题五、(10分)利用达朗贝尔公式求解一维无界波动问题六、(15分)用分离变量法求解定解问题计算积分七、(15分)有一半径为R的薄圆盘,若圆盘的上下面绝热,圆盘边缘的温度分布为,试求圆盘上稳定的温度分布.八、(15分)设有一半径为R的球壳,其球壳的电位分布,写出球外的电位满足的定解问题,并求球外的电位分布参考公式(1)柱坐标中Laplace算符的表达式(2)Legendre多项式(3)Legendre多项式的递推公式(4)Legendre多项式的正交关系(5)整数阶Bessel函数(6)Bessel函数的递推关系。
数学物理方程与特殊函数试题及答案

数学物理方程与特殊函数试题及答案猜你喜欢: 1. 2. 3. 4. 5.数学物理方程与特殊函数是一门专业性比拟强的课程,要学好这门课程,同学们还是要用心去学才能学好数学物理方程与特殊函数。
下面是给大家的数学物理方程与特殊函数试题及答案,欢送大家学习参考。
1.对于一般的二阶线性偏微分方程0(1) 它的特征方程为,假设在域内ACB那么此域内称(1) 椭圆型假设在域内B那么此域内称(1)为抛物型假设在域内 B 那么此域内称(1)为双曲型。
2. 第一类格林公式第二类格林公式 . 已那么 ;而函数按1xP的展开式4.一维热传导方程可用差分方程似代替。
二维拉普拉斯方程可用差分方0 近似代替。
5. 勒让德多项式的正交性???。
二.用别离变量法求?的解。
(15分) 解:用别离变量法求解,先设满足边界条件且是变量被别离形式的特解为tTxXtxu?代入方程(1)上式左端不含有x,右端不含有t,从而得到两个线性常微分方程解(6)得 x由(2)得,及相应的固有函数为xlnBxXnn?sin? 7?? ,再由(5)得,? 由(7),(8)得由(1),(3)得又由(3) 得所以,原定解问题的解为?三.求方程? 的解。
(15分) 解:对(1)两端积分的通解为任意二阶可导函数,令(4)满足(2),(3)得解之得6(5),(6)代入(4)得u 四.求柯西问题的解。
(12分) 解;先确定所给方程的特征线。
为此,写出它的特征方程 dy2-2dxdy-3dx20 它的两族积分曲线为作特征变换4?经过变换原方程化它的通解为中21ff 是两个任意二次连续可微的函数。
方程(1)的通解为由(2。
数学物理方程题库

()()22221211*********cos 3sin 0cos 3sin 40.2cos 2cos 2sin x x y a a a x x xx y x −−+−=∆=−=−++=>⎧⎪==−⎪⎨⎪==−−⎪⎩=−xx xy yy y ,指出下列方程的类型并化为标准形式。
1) u u u u 解:方程的判别式所以方程为双曲型。
dy dx该方程的一组特征微分方程为dy dx 积分得到特征曲线为1112222211122222111222sin 2sin 2sin 2sin 2sin 082x c c y x xy x x c c y x xy x xy x x U U UB a a a x x x y y x y y a a x x y ξηξηξηξηξηξηξηξξ+=−+⎧⎧⇒⎨⎨=−−+=++⎩⎩−+⎧⎨=++⎩∂∂∂++=∂∂∂∂⎛⎞∂∂∂∂∂∂∂∂=+++=−⎜⎟∂∂∂∂∂∂∂∂⎝⎠∂∂=+∂∂∂1211121=于是令此时原方程可以转化为2A A 其中,A A ()()2221222211122212222sin 2sin 00a b y xy y B a a a b y xx x y y yU U Uu u u ξξηηηηξηξηξηξηξηξηξη∂∂++=−−∂∂∂∂∂∂=+++=−−∂∂∂∂∂∂∂∂++=∂∂∂∂⎛⎞∂∂∂++=⎜⎟∂∂∂∂⎝⎠1所以16y+sinx y+sinx +由于y+sinx=,所以上式可以变为关于,得标准方程2+32()22222121122121122211122200.,().02xy y a a a xy x y a y a xyy cx c x x u u uB a a x x y ξηηξηηηη++=∆=−=−=====∂∂∂++=∂∂∂∂∂∂⎛⎞=++⎜⎟∂∂∂⎝⎠2xx xy yy 221122) x u u u 解:方程的判别式所以方程为抛物型。
数学物理方法期末试题(5年试题含答案)

………密………封………线………以………内………答………题………无………效……附:拉普拉斯方程02=∇u 在柱坐标系和球坐标系下的表达式 柱坐标系:2222222110u u u uzρρρρϕ∂∂∂∂+++=∂∂∂∂球坐标系:2222222111sin 0sin sin u u ur r r r r r θθθθθϕ∂∂∂∂∂⎛⎫⎛⎫++= ⎪ ⎪∂∂∂∂∂⎝⎭⎝⎭一、填空题36分(每空2分)1、 数量场2322u x z y z =+在点(2, 0, -1)处沿2423x xy z =-+l i j k 方向的方向导数是。
2、 矢量场()xyz x y z ==+A r r i +j k 在点(1, 3, 3)处的散度为 。
3、 面单连域内设有矢量场A ,若其散度0∇⋅A =,则称此矢量场为 。
4、 高斯公式Sd ⋅=⎰⎰ A S ;斯托克斯公式ld ⋅=⎰ A l 。
5、 将泛定方程和 结合在一起,就构成了一个定解问题。
只有初始条件,没有边界条件的定解问题称为 ;只有边界条件,没有初始条件的定解问题称为 ;既有边界条件,又有初始条件的定解问题称为 。
………密………封………线………以………内………答………题………无………效……6、 ()l P x 是l 次勒让德多项式,则11()()l l P x P x +-''-= ; m n =时,11()()mn P x P x dx -=⎰。
7、 已知()n J x 和()n N x 分别为n 阶贝塞尔函数和n 阶诺依曼函数(其中n 为整数),那么可知(1)()n H x = 。
(2)()n H x = 。
8、 定解问题2222000(0,0)|0,||0,|0x x ay y bu ux a y b x y u u V u u ====⎧∂∂+=<<<<⎪∂∂⎪⎪==⎨⎪==⎪⎪⎩的本征函数为 ,本征值为 。
数学物理方法期末考试试题

数学物理方法期末考试试题# 数学物理方法期末考试试题## 第一部分:选择题(每题2分,共20分)1. 以下哪个不是数学物理中的常用方法?A. 傅里叶变换B. 拉普拉斯变换C. 泰勒级数展开D. 牛顿迭代法2. 求解偏微分方程时,分离变量法的基本思想是什么?A. 将偏微分方程转化为常微分方程B. 将偏微分方程分解为几个独立的方程C. 将偏微分方程转化为线性方程D. 将偏微分方程转化为积分方程3. 在数学物理中,格林函数通常用于解决什么问题?A. 线性代数问题B. 非线性偏微分方程C. 边界值问题D. 初始值问题4. 以下哪个是求解波动方程的典型方法?A. 特征线法B. 有限差分法C. 有限元法D. 蒙特卡洛方法5. 拉普拉斯方程在数学物理中通常描述了什么类型的物理现象?A. 波动现象B. 热传导现象C. 流体动力学问题D. 电磁场问题## 第二部分:简答题(每题10分,共30分)6. 简述傅里叶变换在数学物理中的应用。
7. 解释什么是边界层理论,并说明它在流体力学中的重要性。
8. 描述格林函数在求解偏微分方程中的作用。
## 第三部分:计算题(每题25分,共50分)9. 给定函数 \( f(x) = x^2 - 4x + 3 \),使用泰勒级数展开在\( x = 1 \) 处展开 \( f(x) \) 并求出展开式。
10. 考虑一个无限长直导体,在 \( x \) 轴上,导体的电势 \( V(x) \) 满足泊松方程 \( \nabla^2 V = -\rho/\varepsilon_0 \),其中\( \rho \) 是电荷密度,\( \varepsilon_0 \) 是真空电容率。
假设\( \rho \) 是常数,求解 \( V(x) \)。
## 第四部分:论述题(共30分)11. 论述数学物理方法在解决实际物理问题中的应用,并给出至少两个具体的例子。
请注意,以上内容仅为示例,实际的数学物理方法期末考试试题可能会包含不同的问题和要求。
试题一-数学物理方法-西北师范大学

西北师范大学物理与电子工程学院2006-2007学年度第一学期《数学物理方法》期末试卷(A 卷)系别:专业:级别:班级:学号:姓名:任课教师:题号一二三四五六七八总分得分一、(10分)在经典数学物理方程中,以二阶线性偏微分方程为主要研究对象.请问二阶线性偏微分方程从数学上分为哪几类?在物理上分别对应于什么过程?并写出各类方程的标准形式.二、(10分)数学物理方程有两大基本任务:导出定解问题和求解相应的定解问题.请问什么是定解问题?定解问题包括哪些要素?我们学习了哪些定解问题?以及求解这些定解问题的主要方法有哪些?三、(10分)定解问题的适定性对于导出定解问题和求解定解问题具有重要的指导意义.请问什么是定解问题的适定性?适定性包括哪些方面?并从物理角度分析如下定解问题是不适定的(提示:可以从温度场或静电场出发,解可能不存在).∆u =f (f =0)(在区域D 内)∂u ∂n S =0(S 为区域D 的边界,n 为边界S 的外法线方向)四、(5分)一根长为l 的均匀细杆,其温度分布满足如下定解问题:u t −a 2u xx =0(0<x <l,t >0)u (0,t )=0,u x (l,t )=0(t ≥0)u (x,0)=200(0≤x ≤l )《数学物理方法》试卷(A 卷)第1页(共3页)不求解定解问题,从物理角度直观分析细杆上温度随时间的变化情况,并考察t →+∞时细杆上的温度.五、(30分)分离变量法是求解定解问题的重要方法之一.请问分离变量法对定解问题有什么要求?分离变量法有哪些基本步骤?关键的步骤是什么?请用分离变量法求解如下弦振动方程的混合问题(要求写出完整的求解过程),并分析解的物理意义.u tt =a 2u xx (0<x <l,t >0)u (0,t )=0,u (l,t )=0(t ≥0)u (x,0)=sin 2πx l ,u t (x,0)=0(0≤x ≥l )六、(15分)一根无限长的均匀细杆,其振动满足如下定解问题:u tt =a 2(u xx +2x u x )(−∞<x <∞,t >0)u (x,0)=ϕ(x )(−∞<x <∞)u t (x,0)=ψ(x )(−∞<x <∞)其中ϕ(x ),ψ(x )为充分光滑的已知函数.请求解该定解问题,并说明解的物理意义(提示:令v (x,t )=xu (x,t )).七、(10分)格林函数又称点源影响函数,请用镜像法求出Laplace 方程上半空间Dirichlet 问题的格林函数,并说明其物理意义.同时请写出Laplace 方程上半空间Dirichlet 问题∆u =0(z >0,−∞<x <∞,−∞<y <∞)u (x,y,0)=f (x,y )(−∞<x <∞,−∞<y <∞)解的积分公式.八、(10分)求解常微分方程的本征值问题时,会得到各种各样的特殊函数,诸如Legendre(勒让德)多项式、Bessel(贝塞耳)函数、Hermite(厄密)多项式《数学物理方法》试卷(A 卷)第2页(共3页)和Laguerre(拉盖尔)多项式等.对连带Legendre多项式,请填空(每空2分):l阶连带Legendre微分方程的一般形式为,其中有两个本征值l(l+1)和m.l的取值范围为,相应m的取值范围为.l阶连带Legendre微分方程的解为l阶连带Legendre多项式,连带Legendre多项式的性、性和完备性是使它成为一个坐标函数系的三个重要性质.《数学物理方法》试卷(A卷)第3页(共3页)西北师范大学物理与电子工程学院2006-2007学年度第一学期《数学物理方法》期末试卷(A卷)参考答案一、(10分)二阶线性偏微分方程从数学上分为双曲型、抛物型、椭圆型三类,在物理上,双曲型方程对应于波动过程,抛物型方程对应于传输和扩散过程,椭圆型方程对应于稳定场过程.双曲型方程的标准形式为u tt−a2∆u=f,抛物型方程的标准形式为u t−a2∆u=f,椭圆型方程的标准形式为∆u=f.二、(10分)物理问题在数学上的完整提法是:在给定的定解条件下,求解数学物理方程.数学物理方程加上相应的定解条件就构成定解问题.定解问题包括泛定方程和定解条件.物理规律用偏微分方程表达出来,叫作数学物理方程.数学物理方程,作为同一类物理现象的共性,反映的是矛盾的普遍性,与具体条件无关,是解决问题的依据,所以又称为泛定方程.定解条件包括边界条件和初始条件,有时还需要衔接条件.边界条件和初始条件反映了具体问题特定的环境和历史,即矛盾的特殊性.泛定方程提供解决问题的依据,定解条件提出具体的物理问题,泛定方程和定解条件作为一个整体,合称为定解问题.学习的定解问题有:对波动过程:针对有界弦,提出了弦振动方程的混合问题;针对无界弦,提出了弦振动方程的初值问题(或Cauchy问题).对传输和扩散过程:针对有界杆,提出了热传导方程的混合问题;针对无界杆,提出了热传导方程的初值问题;针对一端有界的杆,提出了热传导方程的半无限问题.对稳定场过程:提出了Laplace方程圆、球、半空间、半平面的Dirichlet问题.求解这些定解问题的主要方法有:分离变量法(有界空间、无界空间、极坐标系、球坐标系)、Fourier级数法(齐次泛定方程、非齐次泛定方程)、行《数学物理方法》试卷(A卷)参考答案第1页(共4页)波解法(或D’Alembert解法)、冲量定理法、格林函数法(波动、热传导、镜像法)等.三、(10分)定解问题是对真实的物理问题经过一定的近似后得到的,近似就涉及到是否合理的问题,即定解问题是否提的正确,这一问题称为定解问题的适定性.定解问题的适定性包括解的存在性、解的唯一性和解的稳定性三个方面.该定解问题如果从温度场来考虑,反映的是这样一种温度场:区域D内存在热源,而边界上是绝热的.热源不停的放出热量,而热量又不能经由边界散发出去,D内的温度必然要不停的升高,其温度分布不可能是稳定的,故该问题不能由Possion方程来描述,因此该定解问题的解是不存在的.从而该定解问题是不适定的.(注:从静电场分析类似,只不过内部有电荷分布,而电场的法向分量为零.)四、(5分)从该定解问题可以看出:杆的左端温度为0,右端绝热,杆内部没有热源,杆上初始时刻各处温度均为常数200.根据热传导规律,杆上的温度将随时间降低,越靠近左端,温度降得越快,最后当t→+∞时细杆的温度将和左端的温度相等,即杆上各处的温度均为0.五、(30分)分离变量法要求定解问题的泛定方程与边界条件必须是齐次的.分离变量法其基本步骤为:1、变量分离;2、求解本征值问题;3、求解另外的常微分方程;4、特解的叠加;5、利用定解条件确定叠加系数.分离变量法关键的步骤是求解本征值问题.1.变量分离设u(x,t)=X(x)T(t),代入泛定方程得X +λX=0T +λa2T=0,其中λ为分离常数.将u(x,t)=X(x)T(t)代入边界条件得X(0)=0,X(l)=0.《数学物理方法》试卷(A卷)参考答案第2页(共4页)2.求解本征值问题X +λX =0X (0)=0,X (l )=0本征值λn =n 2π2l 2,本征函数X n (x )=sin nπxl ,n =1,2,···.3.求解常微分方程T+n 2π2a 2l 2T =0,n =1,2,···T n (t )=C n cos nπa l t +D n sin nπalt ,n =1,2,···.其中C n ,D n 为任意常数.得一系列特解u n (x,t )=X n (x )T n (t )=C n cos nπa l t +D n sin nπa l t sin nπxl,n =1,2,···.4.特解的叠加u (x,t )=∞ n =1u n (x,t )=∞ n =1C n cos nπal t +D n sin nπa l t sin nπx l.5.利用初始条件确定叠加系数C n ,D nu (x,0)=∞ n =1C n sinnπx l =sin 2πxl =⇒C 2=1C n =0,n =2.u t (x,0)=∞ n =1D n nπa l sin nπxl=0=⇒D n =0,n =1,2,···.所以该定解问题的解为u (x,t )=cos2πa l t sin 2πxl.解的物理意义:该Fourier 级数解在物理上表示驻波.六、(15分)令v (x,t )=xu (x,t ).化原定解问题为:v tt =a 2v xx (−∞<x <∞,t >0)v (x,0)=xϕ(x )(−∞<x <∞)v t (x,0)=xψ(x )(−∞<x <∞)利用D’Alembert 公式,有《数学物理方法》试卷(A 卷)参考答案第3页(共4页)v(x,t)=(x−at)ϕ(x−at)+(x+at)ϕ(x+at)2+12ax+atx−atαψ(α)dα.所以,u(x,t)=1xv(x,t)=12x(x−at)ϕ(x−at)+(x+at)ϕ(x+at)+1ax+atx−atαψ(α)dα.解的物理意义:f(x−at)表示右行波(或右传播波、正行波),f(x+at)表示左行波(或左传播波、逆行波),u(x,t)表示沿x轴正、负方向传播的行波,其中前一项来源于初始位移ϕ(x),后一项来源于初始速度ψ(x).七、(10分)Laplace方程上半空间Dirichlet问题的格林函数为:G(M,M0)=1r MM−g(M,M0)=1r MM−1r MM1=1(x−x0)2+(y−y0)2+(z−z0)2−1(x−x0)2+(y−y0)2+(z+z0)2,其中1r MM=1(x−x0)2+(y−y0)2+(z−z0)2在静电学上表示M0(x0,y0,z0)处单位正电荷在M(x,y,z)处产生的电势,−g(M,M0)表示接地导体平面z=0上感应负电荷在M(x,y,z)处产生的电势,其可以用镜像点M1(x0,y0,−z0)处单位负电荷产生的电势−1(x−x0)2+(y−y0)2+(z+z0)2来代替.Laplace方程上半空间Dirichlet问题解的积分公式为:u(x0,y0,z0)=−14πf∂G(M,M0)∂ndS=14π∞−∞∞−∞f(x,y)·∂∂z1(x−x0)2+(y−y0)2+(z−z0)2−1(x−x0)2+(y−y0)2+(z+z0)2z=0dx dy=z02π∞−∞∞−∞f(x,y)(x−x0)2+(y−y0)2+z203/2dxdy八、(10分)(1−x2)d2ydx2−2xdydx+l(l+1)−m21−x2y=0.l=0,1,2,3,···,m=0,1,2,···,l.正交、归一.《数学物理方法》试卷(A卷)参考答案第4页(共4页)。
南昌大学~学第二学期数学物理方法期末考试试题A卷
南昌大学~学第二学期数学物理方法期末考试试题A卷
部门: xxx
时间: xxx
整理范文,仅供参考,可下载自行编辑
南昌大学 2018~2018 学年第二学期期末考试试卷
已知,辐角。
幂级数
为的单极点,则为
泛定方程分离变数后三个变量满足的方程分别为。
______。
下列二阶线形微分方程中,的形式为标准形式。
为的。
若洛朗展开级数中存在的负幂项,则展开中心
和在
的泰勒展开直接求出
求函数的奇点所在的位置,然后计算积分
已知,首先将看作常数,求的拉普拉斯变换函数
换函数,最后对反演计算。
注意此题中满足
未计算及其反演,而直接用留数定理计算
其中。
试用分离变数或其它方法找到方程的一个特解;
利用达朗贝尔公式求解,之后确定
满足下
试给出所满足的数学物理定解问题;
试用分离变数或其它方法找到泛定方程的一个特解,并利用它将或方向上的边界条件齐次化,然后求解;
根据求出虚部
申明:
所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。
山东大学物理学院 数学物理方法 2022-2023期末试题及解析
《数学物理方法》课程考试大纲2022-2023山东大学物理学院 数学物理方法期末试题一、 填空题(每题3分,共27分)1. 已知zz =cos (aa +iibb ),z 的代数表达式为________________2. 指出多值函数�(zz −aa )(zz −bb )的支点和阶数___________3. 已知级数∑aa nn xx nn ∞nn=0的收敛半径为A ,试问级数∑aa nn √1+bb nn nnxx nn ∞nn=0(|bb |<1)的收敛半径为_____________4.ssss nn 2zz zz 3的极点为_____,且为______ 阶极点5. 利用柯西公式计算∮zz 2−zz+1zz 2(zz−1)ddzz |zz |=2_______________6. 连带勒让德多项式的正交代数表达式为_______________7. 计算留数1(zz 2+1)2_________________________8. 从t=a 持续作用到t=b 的作用力ff (tt ),可以看作许多前后相继的瞬时力的总和,其数学表达形式为__________9. ∫3δδ(xx −ππ)[ee 2xx +cccccc xx ]ddxx 10−10=_________________ 二、 简算题(每题5分,共15分)1. 将函数ff (zz )=1zz 2−3zz+2,在区域0<|zz −1|<1上展开为洛朗级数 2. �cos mmxx(xx 2+aa 2)2d xx ∞−∞,m>03. 已知解析函数ff =uu +iiνν,而uu =xx 3−3xxyy 2,试求ff三、 (8分)用级数法解微分方程yy ′′+xxyy ′+yy =0四、 (10分)在圆域ρρ<ρρ0上求解泊松方程的边值问题�ΔΔuu =aa +bb (xx 2−yy 2)uu ρρ=pp 0=cc五、 (15分)设有一均匀球体,在球面上的温度为cos 2θθ,试在稳定状态下求球内的温度分布(已知,PP 0(xx )=1,PP 1(xx )=xx , PP 2(xx )=12(3xx 2−1))六、 (10分)利用拉普拉斯变换解RC 电路方程:�RRRR +1CC �RR dd tt tt=EE 0sin ωωttRR (0)=0七、 (15分)计算:⎩⎨⎧ðð2uu ððtt 2−aa 2ðð2uuððxx2=AA cos ππxx ll sin ωωttuu |xx=0=0, uu |xx=ll =0uu |tt=0=φφ(xx ), uu tt |tt=0=ψψ(xx )2022-2023 数学物理方法期末试题 参考答案一、 填空题(每题3分,共27分)1.【正解】 12(ee bb +ee −bb )cos aa +i2(ee −bb −ee bb )sin aa 【解析】cos (aa +i bb )=ee ss (aa+ss bb )+ee −ss (aa+ss bb )2=12(ee −bb ee ss aa+ee bb ee −ss aa )=12[e −bb(cos aa +isin aa )+e bb (cos aa −isin aa )]=12[(e bb+e −bb )cos aa +i(e −bb −e bb )sin aa ]=12(ee bb +ee −bb)cos aa +i 2(ee −bb−ee bb )sin aa 2.【正解】支点:z=a 、b 、∞;皆为一阶支点【解析】注意到函数为12次,且当z=a 、b 时函数置零,z=∞为熟知的支点,阶数皆为2−1=1 3.【正解】A【解析】由根值判别法,幂级数的收敛区间为ll ii ll nn→∞�aa nn ⋅(1+bb nn )nn⋅xxxx (−1,1)而|bb |<1⇒ll ii ll nn→∞√1+bb nn nn=1故收敛半径保持不变,仍为A 4.【正解】zz =0;一阶 【解析】ll ii llzz→0ssss nn 2zz zz 3→∞,且ll ii ll zz→0zz ⋅ssss nn 2zz zz 3=1故zz =0为一阶极点5.【正解】2πi注意到原函数的极点为zz =0和zz =1,且分别为2阶与一阶极点,故上述积分即为II =2ππii �Re cc�ff (zz ),0]+Re cc [ff (zz ),1]��而Re cc [ff (zz ),0]=ll ii ll zz→0dd �zz 2−zz +1zz −1�ddzz=0Re cc [ff (zz ),1]=ll ii ll zz→1zz 2−zz +1zz 2=1因此II =2ππii6.【正解】�PP ll mm (xx )⋅PP kk mm (xx )ddxx =01−1(ll ≠kk ) 7. 【正解】Re cc [ff (zz ),ii ]=ll ii ll zz→ss dd �1(zz +ii )2�ddzz=−2[2ii ]−3Re cc [ff (zz ),−ii ]=ll ii ll zz→−ss dd �1(zz −ii )2�ddzz=−2[−2ii ]−38.【正解】∫ff (ττ)1−1δδ(tt −ττ)ddττ 9.【正解】ee 2ππ−1【解析】由δδ函数的挑选性,上述积分即为 (ee 2xx +cccccc xx )|xx=ππ=ee 2ππ−1 二、 简算题(每题5分,共15分)1.【解析】在区域0<|zz −1|<1内ff (zz )=1zz 2−3zz +2=−12⋅11−zz 2−1zz −1=−12⋅11−zz 2−1zz ⋅11−1zzff (zz )=−�12kk+1zz kk ∞kk=0−�zz −(kk+1)∞kk=0 =−�zz kk−1kk=−∞−�12kk+1zz kk∞kk=02.【解析】由约旦引理,从上半平面的半圆弧补全围道,上半平面有一个二阶极点zz 0=iiaa ,该点的留数为RReeccff (zz 0) =limzz→zz 0d d zz e immzz(zz +aa i)2=lim zz→zz 0[i ll e immzz (zz +aa i)2−2e ss nn zz (zz +aa i)3] =−llaa +14aa 3ie −mmaaII =ππi ⋅(−llaa +14aa 3ie −mmaa )=llaa +14aa3ππe −mmaa 3.【解析】根据C-R 条件,有∂uu ∂xx =3xx 2−3yy 2=∂νν∂yy−∂uu ∂yy =6xxyy =∂νν∂xxddνν=−(−6xxyy )d xx +3(xx 2−yy 2)d yy =d(3xx 2yy −yy 3) 有νν=3xx 2yy −yy 3+CC ,代入得ff (zz )=xx 3−3xxyy 2+i(3xx 2yy −yy 3+CC ) =(xx +i yy )3+i CC =zz 3+i CC 0三、(8分)【解析】设 yy =�aa nn xx nn ∞nn=0 是方程的解,其中 aa 0,aa 1 是任意常数,则yy ′=�nnaa nn xx nn−1∞nn=1yy ′′=�nn (nn −1)aa nn xx nn−2∞nn=2=�(nn +2)(nn +1)aa nn+2xx nn ∞nn=0方程 yy ′′+xxyy ′+yy =0,得�[(nn +2)(nn +1)aa nn+2+nnaa nn +aa nn ]xx nn ∞nn=0=0故必有(nn +2)(nn +1)aa nn+2+(nn +1)aa nn =0即aa nn+2=−aa nnnn +2(nn =0,1,2,⋯ ) 可见,当 nn =2(kk −1) 时aa 2kk=(−12kk )aa 2kk−2=(−12kk )(−12kk −2)⋯(−12)aa 0=aa 0(−1)kkkk !2kk当nn =2kk −1时aa 2kk+1=(−12kk +1)aa 2kk−1=(−12kk +1)(−12kk −1)⋯(−13)aa 1=aa 1(−1)kk (2kk +1)!�aa 2nn xx 2nn ∞nn=0与�aa 2nn+1xx 2nn+1∞nn=0的收敛域均为(−∞,+∞) 故yy =�aa κκxx κκ∞κκ=0=�aa 2κκxx 2κκ∞κκ=0+�aa 2κκ+1xx 2κκ+1∞κκ=0=�aa 0(−1)nn nn !2nn xx 2nn∞nn=0+�aa 1(−1)nn (2nn +1)!xx 2nn+1∞ss=0即yy =aa 0e −xx 22+aa 1�(−1)nn (2nn +1)!xx 2nn+1∞nn=0,xx ∈(−∞,+∞)四、 (10分)【解析】 首先找到满足方程的特解vv =aa 4(xx 2+yy 2)+bb 12(xx 4−yy 4)=aa 4ρρ2+bb 12(xx 2+yy 2)(xx 2−yy 2) =aa 4ρρ2+bb 12ρρ4cos 2φφ 令uu =vv +ww =aa 4ρρ2+bb 12ρρ4cos 2φφ+ww对于齐次方程,且满足球心为有限值的泊松方程通解为ww (ρρ,φφ)=�ρρnn (AA mm cos ll φφ+BB nn sin llφφ)∞mm=0代入边界条件,有 �ρρ0nn (AA mmcos ll φφ+BB nn sin llφφ)∞mm=0=cc −aa 4ρρ02−bb 12ρρ04cos 2φφ比较系数解得uu =vv +ww =cc +aa 4(ρρ2−ρρ02)+bb 12ρρ2(ρρ2−ρρ02)cos 2φφ 五、(15分)【解析】对于满足球心处为有限值的拉普拉斯方程通解为uu (rr ,θθ)=�AA ll rr l P ll (cos θθ)∞ll=0代入边界条件有�AA ll rr 0l P ll (cos θθ)∞ll=0=cos 2θθ=xx 2由于P 2(xx ) =12(3xx 2−1) ,有xx 2=13[1+2P 2(xx )]=13P 0(xx )+23P 2(xx )即�AA ll rr 0lP ll (cos θθ)∞ll=0=cos 2θθ=xx 2=13P 0(xx )+23P 2(xx )对比系数可得uu (rr ,θθ)=13+23⋅1rr 02⋅rr 2P 2(cos θθ)六、(10分)【解析】对方程进行拉普拉斯变换,有jj ‾RR +jj ‾ppCC =EE 0ωωpp 2+ωω2 解得jj ‾=ωωEE 0(RR +1ppCC )(pp 2+ωω2)再进行反演RR (tt )=EE 0ωωRR (−RRCC e llRRRRωω2RR 2CC 2+1+RRCC cos ωωtt +ωωRR 2CC 2sin ωωtt ωω2RR 2CC 2+1) =EE 0RR 2+1/CC 2ωω2(RR sin ωωtt +1CCωωcos ωωtt )−EE 0/CCωωRR 2+1/CC 2ωω2e −tt /RRRR七、(15分)【解析】应用冲量定理法,先求解vv uu −aa 2vv xxxx =0ννxx ∣x=0=0,vv x ∣x=l =0vv ∣tt=ττ+0=0,vv t ∣t=ττ+0=AA cos ππxxllsin ωωττ根据通解的一般形式并代入边界条件,可得vv (xx ,tt ;ττ)=AAllππaasin ωωττsin ππaa (tt −ττ)ll cos ππxx ll uu (xx ,tt )=�vv (xx ,tt ;ττ)tt=AAll ππaa cos ππxx ll �sin ωωττsin ππaa (tt −ττ)ll d ττtt 0=AAll ππaa 1ωω2−ππ2aa 2/ll 2(ωωsin ππaa ll tt −ππaa ll sin ωωtt )cos ππxx ll。
数学物理方程复习题
2.问初始条件)(x ϕ与)(x ψ满足怎样的条件时,齐次波动方程初值问题的解仅由右传播波组成?解:波动方程的通解为 u=F(x-at)+G(x+at)其中F ,G 由初始条件)(x ϕ与)(x ψ决定。
初值问题的解仅由右传播组成,必须且只须对 于任何t x ,有 G(x+at)≡常数. 即对任何x, G(x)≡C 0又 G (x )=⎰-+xx aC d ax 02)(21)(21ααψϕ所以)(),(x x ψϕ应满足 +)(x ϕ⎰=xx C d a1)(1ααψ(常数)或'ϕ(x)+)(1x aψ=03.利用传播波法,求解波动方程的特征问题(又称古尔沙问题)⎪⎪⎩⎪⎪⎨⎧==∂∂=∂∂=+=-).()(0022222x u x u x ua t u at x at x ψϕ ())0()0(ψϕ= 解:u(x,t)=F(x-at)+G(x+at) 令 x-at=0 得 )(x ϕ=F (0)+G (2x ) 令 x+at=0 得 )(x ψ=F (2x )+G(0)所以 F(x)=)2(x ψ-G(0). G (x )=)2(xϕ-F(0).且 F (0)+G(0)=).0()0(ψϕ= 所以 u(x,t)=(ϕ)2atx ++)2(at x -ψ-).0(ϕ即为古尔沙问题的解。
1. 用分离变量法求下列问题的解:(1)⎪⎪⎪⎩⎪⎪⎪⎨⎧==<<-=∂∂=∂∂=∂∂==0),(),0()0()1(,3sin 022222t l u t u l x x x t u l x u x u a t u ot t π解:边界条件齐次的且是第一类的,令)()(),(t T x X t x u =得固有函数x ln x X n πsin)(=,且 t lan B t lan A t T n n n ππsincos)(+=,)2,1( =n于是 ∑∞=+=1sin)sincos(),(n n n x ln t lan B t lan A t x u πππ今由始值确定常数n A 及n B ,由始值得 ∑∞==1s i n3s i nn n x ln A lx ππ∑∞==-1sin)(n n x ln B lan x l x ππ所以 ,13=A ,0=n A 当3≠n ⎰-=ln x d x ln x l x an B 0sin)(2ππ⎩⎨⎧ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+-=x l n x n l x l n n lx l n x n l l an πππππππcos sincos 22222)}))1(1(4cos2sin24430333222nlan lxln n lx ln n x l --=--πππππ因此所求解为∑∞=--+=1443s i ns i n)1(143s i n 3c o s ),(n nx ln t lan na lx l t l a t x u πππππ(2) ⎪⎪⎪⎩⎪⎪⎪⎨⎧=∂∂==∂∂==∂∂-∂∂0)0,(,)0,(0),(0),0(022222x tu x l h x u t l tu t u x ua t u 解:边界条件齐次的,令 )()(),(t T x X t x u =得:⎩⎨⎧='==+''0)(,0)0(0l X X X X λ (1)及 )2(02=+''X a T λ。
兰州大学——数学物理方法期末试卷A
数学物理方法常用的公式(注:仅供参考):拉普拉斯算子作用于标量场在圆柱坐标系和球坐标系下的表示:22222211u u uuzρρρρρϕ⎛⎫∂∂∂∂∇=++⎪∂∂∂∂⎝⎭;22222222111sinsin sinu u uu rr r r r rθθθθθϕ∂∂∂∂∂⎛⎫⎛⎫∇=++⎪ ⎪∂∂∂∂∂⎝⎭⎝⎭勒让德多项式的微分表示:()()21P12!lll l ldx xl dx=-勒让德-傅里叶级数展开:定义在x的区间[]1,1-的至少分段光滑函数()f x可以展开为广义傅里叶级数:()()Pl llf x a x+∞==∑其中,系数()()1121P2l lla f x x dx-+=⎰勒让德多项式的生成函数:()()()()11P cos,0P cos,llllllllrr RRRr Rrθθ+∞+=+∞+=⎧≤<⎪⎪=⎨⎪>⎪⎩∑∑在球坐标下下的梯度表示()()()(),,,,,,11,,sinru r u r u ru r e e er r rθϕθϕθϕθϕθϕθθϕ∂∂∂∇=++∂∂∂r r r一、(本题10分,每小题5分)(1)证明:()k r k∇•=r rr,其中x y zr xe ye ze=++r r r r,kr为常矢量。
(2)计算矢量场2sinx y zA xye z ye yz e=++r r r r的旋度。
二、(本题10分,每小题5分)将下列复数写成代数形式,其中i 为虚数单位,(1 (2)cos 23i π⎛⎫+ ⎪⎝⎭三、(本题10分)已知解析函数()f z 的实部323u x xy =-,且满足()00f =,求该解析函数()f z 。
四、(本题10分) 将函数()2132f z z z =-+以01z =为中心的邻域内做洛朗级数展开。
五、(本题10分) 计算实变函数积分2212cos dxI x πεε=-+⎰, ()01ε<<六、(本题10分)设有一根均匀的柔软的细弦,当它做微小的横振动时,除受内部张力作用外,还受到阻尼力的作用,设阻尼力与速度成正比,比例系数为k ,即单位长度的弦所受阻力(),du x t f kv k dt=-=-。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012学年第二学期数学与物理方程期末试卷
出卷人:欧峥
1、长度为 l
系在弹性系数为
k
相应的定解问题。
(10分)
2
0度,另一端有已知的恒定热流进
写出其定解问题。
(10分)
3、试用分离变量法求定解问题(10分):
.
4、分离变量法求定解问题(10分)
5、利用行波法,求解波动方程的特征问题(又称古尔沙问题)(10分):
⎪
⎪⎪
⎩⎪
⎪⎪
⎨⎧===><<∂∂=∂∂===x t x x u
t u u u u t x x 2,0,00,40,04
022
6、用达朗贝尔公式求解下列一维波动方程的初值问题(10分)
7、用积分变换法求解定解问题(10分):
8
9、用格林函数法求解定解问题(10分
):
10、写出格林函数公式(三维)及满足的条件,并解释其物理意义。
(10分)
⎪⎩⎪⎨⎧=∂∂=>+∞<<-∞+∂∂=∂∂==0
,2sin 0,,cos 0022
2
22t t t u x u t x x x u a t u ⎪⎪⎩⎪
⎪⎨⎧=+=>>=∂∂∂==,1,10,0,1002y x u y u y x y x u
考试内容分析
①用数理方程研究物理问题的一般步骤;数理方程的建立(导出),包括三类典
型方程的建立(导出)推导过程。
这里的1,2两道题就是考察学生在实际物理背景下能否写出定解问题。
这些定解问题并不复杂,主要就是让学生了解一下。
②3,4两道题主要考察分离变量法的精神、解题步骤和适用范围。
第3题是最
基本的分离变量法的运用,分离变量法的主要思想:1、将方程中含有各个变量的项分离开来,从而原方程拆分成多个更简单的只含1个自变量的常微分方程;2、运用线性叠加原理,将非齐次方程拆分成多个齐次的或易于求解的方程;3、利用高数知识、级数求解知识、以及其他巧妙方法,求出各个方程的通解;4、最后将这些通解“组装”起来。
第4题是非齐次方程,主要考察学生对非齐次方程的处理能力。
③5,6两道题是考察行波法。
第5题就是书本中一维波动方程的D'Alembert
公式的推导,是最最基础的东西,在这里考察学生平时的基础,题目不难但是能很好的考察学生对行波法的理解。
第6题考察了D'Alembert公式的应用,同时又因为方程式非齐次的,也考察了方程的齐次化。
④第7,8两道题是对积分变换法的考察。
第7题是对拉普拉斯变换的考察拉普
拉斯变换的基本概念以及常见函数的拉普拉斯正变换;利用拉普拉斯变换的基本定理,拉普拉斯变换表以及部分分式展开法对常见函数进行拉普拉斯反变换。
第8题主要考察傅里叶变换的基本定理及其性质。
⑤9,10两道题是考察格林函数法。
第9题有些难度,是一道二维拉普拉斯的
狄利克雷问题,主要考察对第二格林公式的理解及其应用。
第10题看似比较简单,但是也是大家比较容易忽略的问题,不一定能将其完整的解答。
这里还要求你写出其物理意义,意图当然不言而喻了,就是想体现数学物理方程这门课的意义,将数学与物理结合起来,了解古典方程的类型,明白其物理意义和现象。
答案及分析
1、解:
(2
分)
因此(2分) 又右端系在弹性系数为
k 的弹性支承上面,所以
即(2分) 而初始条件为
(2分)
因此,相应的定解问题为
(2分)
2、解:侧面绝热,方程为
(3分)
边界条件为 (3分)
初始条件为 (3分)
因此,相应的定解问题为:
{
2
,0,0t xx u a u x l t =<<> 00,,0x x x l q
u u t k ====>0(),02t x l x u x l =-=<<
(1分)
3、解 令(2分),代入原方程中得到两个常微分方程:
)()(),(t T x X t x u =
,(2分),由边界条件得到,
对的情况讨论,只有当时才有非零解,令,得到
为特征值,特征函数(1分),再解,得到(2
分),于是
(1分)再由初始条件得到
(1分),所以原定解问题的解为
(1分)
4
(1分)
将其代入定解问题可以得到:
(1分)
(1分)
(2)
(2分) 对于(1),由分离变量法可得一般解为
(2分) 由初始条件可求得:
分) 所以,原定解问题的解为:
0)()('=+t T t T λ0)()(''=+x X x X λ0)4()0(==X X λ0>λ2
βλ=22
22
4πβλn ==4sin )(πn B x X n n =)(t T 16;
22)(t n n n e C t T π-
=,
4sin
(),(16
1
22x
n e
C t x u t
n n n ππ-
∞
=∑=1
40)1(164sin 242+-==
⎰n n n xdx n x C ππ,
4sin
)1(16
),(16
11
22x
n e n t x u t n n n ππ
π-+∞
=-=∑
(1分)
5、解:u(x,t)=F(x-at)+G(x+at)
(2分) 令 x-at=0 得
(0)+G (2x ) (2分) 令
x+at=0 得(2x )+G(0)
(
2
分)
所以
(x ) (
2
分)
且 F (0)
(1分) 所以
(1分)
即为古尔沙问题的解。
6、解令(1分),代入原方程中,将方程齐次化,因此
(2分),再求
定解问题 (2分)由达朗贝尔公
式
得
到
以
上
问
题
的
解
为
(4分)
故
)(),(),(x w t x v t x u +=x a x w x x w a x x w x v a t v cos 1)(0cos )(cos )]([2'
'2''22
222=⇒=+⇒++∂∂=∂∂⎪⎪⎩
⎪⎪⎨⎧
=∂∂-
=>∂∂=∂∂==,
0),(cos 12sin 0,0
20
22
222t t t
v
x xw a x t x
v a t v v at
x a at x at x a
at x at a a at x t x v cos cos 1
cos sin 0
)]cos(1
)(2sin )cos(1)(2[sin 21),(222-=+---++-+=
(1分)
7、解 对y 取拉普拉斯变换(1分),对方程和边界条件同时对
y 取拉普拉斯变换得到
(3分),解这个微分方程得到
(3分),再取拉普拉斯逆变换有(2分)
所以原问题的解为.(1分) 8、解:对于初值问题关于x 作Fourier 变换,得:
(2分)
(2分)
(2分)
(2分)
Fourier 逆变换
(2分)
9
为
分) .cos 1cos cos 1cos sin ),(22x a at x a at x t x u +-
=),()],([p x U y x u L =p
p U p
dx dU p
x 1
1,1
20
+=
==p
p x p p x U 1
11),(22++=
1),(++=y yx y x u 1),(++=y yx y x u
(2)(1)+(2)可得
分
)
(3)
(2分)
(1分)显然其满足(3)。
从而可得格林函数
(3分)
故而
分)
10、解:(1)格林函数公式(三维)为:
G(M, g(M,
(2分)
其中函数g满足的条件为:
(3分)
(2)格林函数的物理意义:
则有它在该导电曲面内一点M
,
将此闭合导电曲面接地,又静电平衡理论,则
电荷,其在M 处的电势
— g (M
,,并且导电面上的电势恒等于0
5分)
友情提示:本资料代表个人观点,如有帮助请下载,谢谢您的浏览!。