酶量增加一倍时的底物浓度和反应速度的关系

酶量增加一倍时的底物浓度和反应速度的关系
酶量增加一倍时的底物浓度和反应速度的关系

酶量增加一倍时的底物浓度和反应速度的关系曲线

[2003年上海高考生物第11题]下图纵轴为酶反应速度,横轴为底物浓度,其中正确表示酶量增加1倍时,底物浓度和反应速度关系的是

命题者提供的参考答案是B。但在K12生物论坛的讨论中,很多老师认为应该选A。也有老师说虽然知道应该选B,但总觉得理由不充分。笔者认为,要正确理解这道题目,首先是必须弄懂酶促反应速度(题目中如此,其实正确的说法,应该称为“酶促反应速率”)的含义,其次要有酶促反应的动力学的有关知识作为基础。下面,笔者先把那些认为应该选A的老师提出的理由整理出来,然后介绍酶促反应速率的含义以及酶促反应的动力学的有关知识,并在此基础上阐述该题正确答案是B的理由。

1 许多老师错误地选A的理由

先观察A、B选项中任何一条曲线,曲线的前半段,随横坐标底物浓度的增加,纵坐标酶促反应速度也增加,说明底物浓度是此时反应速度增加的限制因素。此时,即使增加酶量也不会使反应速度也增加。而曲线的后半段反应速度不再随底物浓度变化而变化,说明底物足够,此时底物浓度已不是反应速度增加的限制因素了;此时,酶的数量则相对不足,此时增加酶量会使反应速度加快。综上所述,正确的曲线应该是最初两条曲线重合,底物浓度足够多时才能体现出酶的数量对反应速度的影响。

2 酶促反应速率的概念

酶促反应的速率(v),一般是以单位时间内底物被分解的量来表示的。假设x克蔗糖在t 时间内被一定的蔗糖酶水解为葡萄糖和果糖,则x/t即为蔗糖酶反应的速率。

酶促反应在开始的初期速率较大,一定时间后,由于反应产物浓度逐渐增加,反应速率渐渐下降,最后完全停止。如果底物浓度相当大,而pH及温度又保持恒定,则在反应初期的一定短时限内,酶的反应速率尚不受反应产物的影响,可以保持不变。故测酶的反应速率一般只测反应开始后的初速,而不是测反应达到平衡时所需要的时间。

3 酶促反应的动力学(影响酶反应的因素)的相应知识

酶促反应的速率是受酶浓度、底物浓度、pH、温度、反应产物、变构效应、活化剂和抑制剂等因素的影响的。下面仅讨论与此题有关的酶浓度和底物浓度的影响。

3.1 酶浓度的影响

在有足够底物的情况下,而又不受其他因素的影响,则酶的反应速率(v)与酶浓度成正比。即

v=k[E] (1)

k为反应速率常数,[E]为酶浓度。

因为有底物足够的条件,因此,对任一酶浓度[E],由(1)式求出的酶的反应速率v应当就是在该酶浓度下的最大反应速率Vmax。

3.2 底物浓度的影响(米氏方程)

实验证明:当酶浓度、温度和pH恒定时,在底物浓度很低的范围内,反应初速与底物浓度成正比;此后,随着底物浓度的增加,反应速率的增加量逐渐减少;最后,当底物浓度增加到一定量时,反应速率达到一最大值Vmax,此时再增加底物浓度也不能使反应速率再增加。1931年,Michaelis与Menten根据中间产物理论提出了能表示整个反应中底物浓度与反应速率关系的公式,称Michaelis-Menten方程或简称米氏方程:

v=Vmax[S]/(Km+[S]) (2)

公式中,v为反应速率,Vmax为最大速率,Km为米氏常数。

Km是酶的特征常数之一,在数值上等于酶促反应速率达到最大速率一半(v=Vmax/2)时的底物浓度,单位为mol/L。

4 正确答案是B的理由

对于底物浓度较大时,增加酶量可以增大反应速率这一结论,大家都没有异议。现在大家争议的焦点,就是在底物浓度很小时,增加酶量能否增大反应速率?对于这一问题的不同回答,决定上述高考题的答案选择:如果回答是肯定的,那么此题的正确答案是B;反之,正确答案就是A了。下面笔者为大家仔细分析一下这个问题。

上述题目中只涉及一种酶,从上面引述的酶促反应的动力学的相关知识中我们看到,对于同一种酶来说,Km为定值。题目中涉及的酶浓度有2种,从上面引述的酶促反应的动力学的相关知识中我们看到,酶的最大反应速率Vmax与酶浓度[E]成正比。而根据米氏方程,酶的反应速率v 与最大速率Vmax成正比。由此我们可以得出结论:在底物浓度一定时,酶促反应速率v与酶浓度[E]成正比。即使在底物浓度[S]很小时,酶的浓度不同,反应速率也不会相同。酶的浓度增加1倍,反应速率也会相应增加1倍。

这样看来,上面这道题只能选B,不能选A,理由是很充足的哦!

5 从中学生物范围内怎样理解这道题

从上述分析中我们看到,要透彻理解这道,需要有关酶促反应的动力学方面的基础知识,而这些知识是中学教材中没有涉及到的,甚至中学生物教师用书上也没有。因此,尽管这道题并没有什么错误(“反应速度”的提法不妥除外),但有超纲之嫌。

如果要求在中学生物知识的范围内,对这一道题作出合理的解答,确实比较困难。下面推荐K12生物论坛中一些老师提出的解释:这个题目中影响整体反应速度的因素有两个:一是底物浓度,一是酶的浓度。所以当底物浓度不变时,酶的浓度决定反应速度;当酶的浓度不变时,底物浓度决定反应速度。两个浓度都变时,共同决定反应速度。老实说,笔者尽管倾向于支持上述说法,但也觉得它无法圆满解释在底物浓度很低的情况下,为什么增加酶量能够加快反应速度。所以笔者想,这可能也算是一个没有办法的办法罢。

12月19日补记:最近又有人在K12论坛上讨论这个试题,网友“小黑牛”提出了下列观点,似乎有利于在中学知识范围内解释清楚这个试题:中间产物学说(E+S-----ES-------E+C+D)认为,酶也是反应物,只是在这样的反应中,反应了的酶又能重新生成。由于酶也是反应物,所以增加反应物浓度或增加酶的浓度,反应速率都会增大。

参考文献:

1 郑集:普通生物化学,人民教育出版社

2 张玉中、阎一林:基础生物化学问答,科学普及出版社

实验一底物浓度对酶促反应的影响

实验一 底物浓度对酶促反应的影响 一、实验目的 掌握底物浓度对酶活性的影响,了解碱性磷酸酶(Alkaline Phosphatase, AKP )的Km 值的测定原理和方法,理解Km 值的意义。 二、实验原理 在温度、pH 及酶浓度等恒定的条件下,底物浓度对酶的催化作用有很大的影响。当底物浓度较低时,酶促反应速度V 随底物浓度[S]的增高而显著加快,随着底物浓度渐高,反应速度加快程度渐小,当底物浓度增加到一定程度以上时,再增高底物浓度,反应速度亦不再增加,成为该条件下极限最大反应速度Vmax 。底物浓度与反应速度的这种关系可以用下列米-曼(Michaclis-Menten )氏方程式表示。 V= ] [] max[S Km S V 或Km=[S](V V max — 1) 式中,Km 为米氏常数。当V=Vmax/2时,则Km=[S],即米氏常数是反应速度等于最 大速度一半时底物物浓度的数值。如图所示: [V] 2 max V Km [S] 图1 底物浓度与酶促反应速度的关系 Km 是酶的特征性常数,不同酶的Km 值不同,同一酶作用于不同底物的Km 值亦不同。大多数纯酶的Km 值在0.01~100mmol/L 之间。Km 值的测定在酶学研究中有重要的实际意义。 根据实验结果绘制上述直角双曲线,难以准确求出Km 和Vmax 值。而用米曼氏方程式的下列变换式,则容易求得Km 及Vmax 值。 米曼氏方程式中各项皆采用倒数表示,则成为Lineweaver —Burk 氏方程式:

V 1=max V Km ·][1S +max 1V 如图所示: 图2 Lineweaver —Burk 氏法作图求Km 值 这是个上截式直线方程式。V 1与S 1 为直线关系,如上图。直线斜率为max V Km ,纵轴 截距为max 1V ,横轴截距为-Km 1.据此可以测定不同浓度底物的反应速度,按V 1与S 1 关 系作图而容易正确得出Km 值。 另有其他变换式,例如把上式两侧皆乘以[S],则转换成Wilkinson 氏方程式。 V S ][=max V Km +max 1 V ·[S] 如图所示: -K m [S] 图3 Wilkinson 氏法作图求Km 值 这也是直线方程式。以 V S ] [为纵轴,[S]为横轴作图,则直线在横轴上的截距为-Km. Km 1 ] [1S

酶底物法测定水中总大肠菌群和大肠埃希氏菌综合试卷解析及答案

一、填空题 1.采用固定底物技术酶底物法定性测定总大肠菌群和大肠埃希氏菌(粪大肠菌群)时,需要取 ml水样,在±℃培养 h。①② 答案:100 36 1 24 2.采用固定底物技术酶底物法定性测定总大肠菌群,水样加入培养基后经过适当温度及时间培养后,呈现色为阳性。① 答案:黄 3.采用固定底物技术酶底物法定性测定大肠埃希氏菌,水样加入培养基后经过适当温度及时间培养后,将呈现——色的水样在暗处用波长为__ ___nm的紫外灯光照射,如果有产生则表示有大肠埃希氏菌存在。② 答案:黄 366 蓝色荧光 4.采用固定底物技术酶底物法定量测定总大肠菌群和大肠埃希氏菌时,水样加入培养基摇匀后,需倒入51孔或97孔无菌定量盘内,以手抚平定量盘背面以,然后用封口。①② 答案:赶除孔穴内气泡程控定量封口机 二、判断题 1.总大肠菌群酶底物法是指在选择性培养基上能产生乒半乳糖苷酶的细菌群组,该细菌群组能分解色原底物释放出色原体使培养基呈现颜色变化,以此技术来检测水中总大肠菌群的方法。( )① 答案:正确 2.采用固定底物技术酶底物法测定总大肠菌群和大肠埃希氏菌可以定性测量,也可以定量测量。( )①② 答案:正确 3.采用固定底物技术酶底物法可在48h判断水样中是否含有总大肠菌群和大肠埃希氏菌及含有的总大肠菌群和大肠埃希氏菌的最可能数值。( )①② 答案:错误 正确答案为:应该是24h。 三、问答题 采用固定底物技术酶底物法定量测定大肠埃希氏菌时,采用正确步骤培养后的样品,怎样判断大肠埃希氏菌的数值?②

答案:采用固定底物技术酶底物法定量测定大肠埃希氏菌,采用正确步骤培养后的样品,观察51孔或97孔无菌定量盘,将变成黄色的水样的定量盘在暗处用波长为366nm的紫外灯光照射,如果有蓝色荧光产生则表示该定量盘孔穴中有大肠埃希氏菌存在,计算有荧光反映的孔穴数,对照MPN表即可查出大肠埃希氏菌最大可能数(MPN),结果以MPN/100m1表示;如所有孔未产生荧光,则可报告为大肠埃希氏菌未检出。

酶促反应动力学实验.

酶动力学综合实验 实验(一)——碱性磷酸酶Km值的测定 【目的要求】 1.了解底物浓度对酶促反应速度的影响 2.了解米氏方程、Km值的物理意义及双倒数作图求Km值的方法。 【实验原理】 1、碱性磷酸酶: 碱性磷酸酶是广泛分布于人体各脏器器官中,其中以肝脏为最多。其次为肾脏、骨骼、肠和胎盘等组织。但它不是单一的酶,而是一组同功酶。本实验用的碱性磷酸酶是从大肠杆菌中提取的。 2、米氏方程: Michaelis-Menten 在研究底物浓度与酶促反应速度的定量关系时,导出了酶促反应动力学的基本公式,即: 错误!未找到引用源。(1) 式中:v表示酶促反应速度, 错误!未找到引用源。表示酶促反应最大速度, [S]表示底物浓度, 错误!未找到引用源。表示米氏常数。 3、错误!未找到引用源。值的测定主要采用图解法,有以下四种: ①双曲线作图法(图1-1,a) 根据公式(1),以v对[s]作图,此时1/2错误!未找到引用源。时的底物浓度[s]值即为Km值,以克分子浓度(M)表示。这种方法实际上很少采用,因为在实验条件下的底物浓度很难使酶达到饱和。实测错误!未找到引用源。一个近似值,因而1/2错误!未找到引用源。不精确。此外由于v对[S]的关系呈双曲线,实验数据要求较多,且不易绘制。 ②Lineweaver- Burk作图法双倒数作图法(图1-1,b) 实际工作中,常将米氏方程(式(1))作数学变换,使之成为直线形式,测定要方便、精确得多。其中之一即取(1)式的倒数,变换为Lineweaver- Burk方程式:错误!未找到引用源。(2) 以错误!未找到引用源。对错误!未找到引用源。作图,即为y=ax+b形式。此时斜率为错误!未找到引用源。,纵截距为错误!未找到引用源。。把直线外推与横轴相交,其截距相交,其截距即为—错误!未找到引用源。。 ③Hofstee作图法(略) 把(2)式等号两边乘以错误!未找到引用源。,得: 错误!未找到引用源。(3) 以v对错误!未找到引用源。作图,这时斜率为错误!未找到引用源。,纵截距

水中粪大肠菌群快速检测方法_固定底物酶底物法与多管发酵法的比较_高瑞坤

收稿日期:2008-07-08 作者简介:高瑞坤(1963-),男,福建泉州人,工程师.参考文献: [4]Gitelson A,Mayo M,Yacobi Y Z,et al.The use of hi gh spectral radiometer data for detection of low chlorophyll concentrations in Lake Kinneret[J].J.Plank ton Res. 1994,16:993-10021 [5]Hoge F,Swift R.Ocean color spectral variability studies using solar induced chlorophyll fluorescence[J].Applied Optics.1987,26:18-21 [6]Iluz D,Yacobi Y Z,Gitelson A.Adaptation of an algori thm for chlorophyll-a es timation by optical data in the oligotrophic Gulf of Eilat[J].Int.J.Remote Sensing. 2003,24(5):1157-11631 [7]Schalles J F,Gitelson A,Yacobi Y Z,Kroenke A E. Chlorophyll esti mation using whole seasonal,remotely sensed high spectral-resolutiondata for an eutrophic lake [J].J.Phycol.1998,34:383-391 [8]Yacobi Y Z,Gi telson A,M ayo M.Remote sensing of chlorophyll in Lake Kinneret using high spectral resolution radiometer and Landsat TM:Spectral features of reflectance and algorithm development[J].J.Plankton Res.1995,17:2155-21731 水中粪大肠菌群快速检测方法-固定底物酶底物法 与多管发酵法的比较 高瑞坤1,汤琳2,付强3(1.厦门市环境监测中心站,福建厦门361004; 2.上海环境监测中心,上海200030;31中国环境监测总站,北京100012) 摘要:目的在于比较固定底物酶底物法与多管发酵法用于水中粪大肠菌群(耐热大肠菌群)的检测,使用科立得T M (Colilert R o)试剂和传统方法检测地表水、水源水及污水水样,比较固定底物酶底物法与多管发酵法用于水中粪大肠菌群(耐热大肠菌群)检测结果的一致性。结果表明,固定底物酶底物法与多管发酵法用于水中粪大肠菌群(耐热大肠菌群)检测结果具有一致性,固定底物酶底物法可以用作评价水质微生物污染的标准方法。 关键词:粪大肠菌群(耐热大肠菌群);固定底物酶底物法科立得TM(Colilert R o);多管发酵法;快速检测 中图分类号:X832文献标识码:A文章编号:1002-6002(2008)04-0039-03 Com parison between rapid detection m ethod of Defined Substrate Technology(DST)enzyme substrate technique and multiple-tube fermentation technique in water Fecal bacteria(Thermotoleerant coliform bacteria)detection GAO Ru-i kun1,et al(1.Xiamen Environ mental Monitoring Centre,Xiamen361004,China) Abstract:In order to compare bet ween rapid detection method of Defined Substrate Technology(DST)enzyme substrate technique and mul tiple-tube fermentation technique in water Fecal bacteria(Thermotoleerant coliform bacteria)detection,use科立得TM(Colilertò) and traditional method to test real water samples are included in this experiment.Results demonstrate that Defined Substrate Technology (DST)enzyme substrate technique shows equivalence with multiple-tube fermentation technique.It is suggested that Defined Substrate Technology(DST)enzyme substrate technique can be used as a standard method for water microbiological safety evaluation. Key words:Fecal bacteria(Thermotoleeran t coliform bacteria);Defined Substrate Technology(DST)enzyme substrate technique科立得TM(Colilert R o);Mul tiple-tube fermentation technique;Rapid detection 目前水中粪大肠杆菌群(耐热大肠菌群)检测方法主要有传统的滤膜法及多管发酵法,并且已经列入环保行业标准方法(HJ P T347-2007),此两种传统方法被国内环境检测部门广泛采用,但上述方法操作时间需2~5天,步骤较为繁琐,需验证试验,不能对水的卫生学状况做出快速评价,制约了其应用。且多管发酵法每毫升水样中最低检出限为2个粪大肠菌群,而固定底物酶底物法却能抑制200万个异样细菌,精确检测到1个粪大肠菌群。因此,采用快速简便且精确的检测方法 第24卷第4期2008年8月 中国环境监测 Environmental Monitoring i n China Vol.24No.4 Aug.2008

影响酶活性的因素

影响酶活性的因素 a.温度: 温度(temperature)对酶促反应速度的影响很大,表现为双重作用:(1)与非酶的化学反应相同,当温度升高,活化分子数增多,酶促反应速度加快,对许多酶来说,温度系数(temperature coefficient)Q10多为1~2,也就是说每增高反应温度10℃,酶反应速度增加1~2倍。(2)由于酶是蛋白质,随着温度升高而使酶逐步变性,即通过酶活力的减少而降低酶的反应速度。以温度(T)为横坐标,酶促反应速度(V)为纵坐标作图,所得曲线为稍有倾斜的钟罩形。曲线顶峰处对应的温度,称为最适温度(optimum temperature)。最适温度是上述温度对酶反应的双重影响的结果,在低于最适温度时,前一种效应为主,在高于最适温度时,后一种效应为主,因而酶活性迅速丧失,反应速度很快下降。动物体内的酶最适温度一般在35~45℃,植物体内的酶最适温度为40~55℃。大部分酶在60℃以上即变性失活,少数酶能耐受较高的温度,如细菌淀粉酶在93℃下活力最高,又如牛胰核糖核酸酶加热到100℃仍不失活。 最适温度不是酶的特征性常数,它不是一个固定值,与酶作用时间的长短有关,酶可以在短时间内耐受较高的温度,然而当酶反应时间较长时,最适温度向温度降低的方向移动。因此,严格地讲,仅仅在酶反应时间已经规定了的情况下,才有最适温度。在实际应用中,将根据酶促反应作用时间的长短,选定不同的最适温度。如果反应时间比较短暂,反应温度可选定的略高一些,这样,反应可迅速完成;若反应进行的时间很长,反应温度就要略低一点,低温下,酶可长时间发挥作用。 各种酶在最适温度范围内,酶活性最强,酶促反应速度最大。在适宜的温度范围内,温度每升高10℃,酶促反应速度可以相应提高1~2倍。不同生物体内酶的最适温度不同。如,动物组织中各种酶的最适温度为37~40℃;微生物体内各种酶的最适温度为25~60℃,但也有例外,如黑曲糖化酶的最适温度为62~64℃;巨大芽孢杆菌、短乳酸杆菌、产气杆菌等体内的葡萄糖异构酶的最适温度为80℃;枯草杆菌的液化型淀粉酶的最适温度为85~94℃。可见,一些芽孢杆菌的酶的热稳定性较高。过高或过低的温度都会降低酶的催化效率,即降低酶促反应速度。 最适温度在60℃以下的酶,当温度达到60~80℃时,大部分酶被破坏,发生不可逆变性;当温度接近100℃时,酶的催化作用完全丧失。 一般而言,温度越高化学反应越快,但酶是蛋白质,若温度过高会发生变性而失去活性,因而酶促反应一般是随着温度升高反应加快,直至某一温度活性达到最大,超过这一最适温度,由于酶的变性,反应速度会迅速降低。 热对酶活性的影响对食品很重要,如,绿茶是通过把新鲜茶叶热蒸处理而得,经过热处理,使酚酶、脂氧化酶、抗坏血酸氧化酶等失活,以阻止儿茶酚的氧化来保持绿色。红茶的情况正相反,是利用这些酶进行发酵来制备的。

水中固定底物技术大肠菌群酶底物法检测系统

水中固定底物技术大肠菌群酶底物法检测系统 一、产品技术参数 1.程控定量封口机 用于水中总大肠菌群和大肠埃希氏菌,耐热大肠菌群,肠球菌的检测。 封口速度:51孔/97孔定量检测盘封口时间≤15秒/个 预热时间:≤30min 工作环境温度:-10℃—50℃ 工作电压:AC 220V±10%,50Hz 无漏液,无破孔,符合水质大肠菌群酶底物法检测系统生产和销售的质量管理体系文件ISO9001,并要求在中国国家认证认可管理监督委员会中可以查找出。 2.手持式紫外分析仪带暗室(灯箱) 带254,366nm双波长,可手持使用,与暗箱配套方便观察大肠埃希氏菌检测荧光,通过观察孔来判断是否显荧光。 3.酶底物法检测试剂 为完全符合《生活饮用水标准检验方法》的培养基,包装上有可视窗口,便于观察试剂的物理性状判读在保质期内是否能正常使用,有切割口,便于打开而不会有粉末喷溅,每个试剂上有批号,到期时间,在有效使用期内具有可靠的稳定性。 4. 定量检测盘 无漏液,无破孔。封好的孔格能够耐受一定的压力,不会由于定量盘叠加受力造成孔与孔之间的串连以及破损。51孔定量检测盘无须稀释可检测200MPN/100ml总大肠菌群和大肠埃希氏菌或粪大肠菌群,97孔定量检测盘无须稀释可检测2419MPN/100ml总大肠菌群和大肠埃希氏菌或粪大肠菌群,具有微生物定量检测盘的证明文件。 5. 100ml无菌定量瓶/取样瓶 内含硫代硫酸钠,可中和水中余氯,可定量100ml水样,溶解酶底物检测试剂。瓶体通透性好,可判读阳性结果。 6. 51孔橡胶垫及97孔橡胶垫 定量检测盘封口时底托。 7. 阳性标准比色盘 每个阳性标准比色盘上都有到期日期、批号,有符合ISO9001质量合格体系的合格证书,用于辨别阳性结果,可以指示颜色变化或荧光变化的最低限。 8. 51孔及97孔定量盘MPN表 可根据定量检测盘阳性孔格数来查询总大肠菌群和大肠埃希氏菌,耐热大肠菌群MPN值,且有95%置信区间。

浅述酶底物法快速测定地表水中总大肠菌群与大肠埃希氏菌

浅述酶底物法快速测定地表水中总大肠菌群与大肠埃希氏菌摘要:根据《生活饮用水卫生标准》中对微生物指示菌检测的方法要求,提出采取精确、快速、可靠的总大肠菌群及大肠埃希氏菌检测方法,通过试验方法对比、实际水样检测,比较酶底物法与多管发酵法、滤膜法用于生活饮用水地表水中总大肠菌群和大肠埃希氏菌的检测结果。实验结果表明,酶底物法能够快速检测地表水中总大肠菌群和大肠埃希氏菌,结果精确、快速、可靠,并认为在控制流行疾病的发生传播,从而保障公众健康安全有重要的预报价值和科学意义,同时鉴于我省大多数自来水公司的水质检测还没有增加此方法,建议今后该方法应得到普及和应用。 关键词:总大肠菌群;大肠埃希氏菌;酶底物法 我国新的国家《生活饮用水卫生标准》(GB 5749-2006)中对生活饮用水、水源水、地表水等进行卫生评价时,总大肠菌群(Total coliforms)和大肠埃希氏菌(Escherichia coli)是判定水质是否被粪便污染的两个重要指标,尤其是大肠埃希氏菌是粪便污染最有意义的指示菌,已被世界上许多组织、国家和地区使用。新的国家《生活饮用水卫生标准》中加入大肠埃希氏菌指标,限值为100mL 不得检出大肠埃希氏菌。并注明:若检出总大肠菌群,必须进行耐热大肠菌群或大肠埃希氏菌检测。若水样中检出耐热大肠菌群或大肠埃希氏菌,则说明水质可能受到严重污染,必须采取相应措施。目前,新国标中对总大肠菌群和大肠埃希氏菌的测定有三种标准方法,多管发酵法、滤膜法和酶底物法,其中多管发酵法和滤膜法是目前常用的传统检测方法,这两种方法设备简单,试验步骤较为繁琐,对操作人员专业水平要求较高,不利于应急检测,和对水的卫生学状况做出快速评价。酶底物法检测水中总大肠菌群和大肠埃希氏菌具有操作方便、快速;干预性结果容易判断等特点,适用于水中总大肠菌群和大肠埃希氏菌的快速检测,对于及时准确的监测饮用水、地表水和水源水粪便污染状况,从而有效预报和控制

酶底物法工作原理

酶底物法检测工作原理 还在为大肠菌群酶底物检测试剂烦恼么? 小编为你解忧,采用酶底物法对地表水水样进行不同倍数的稀释后进行培养检测,观察地表水结果变化。结果表明:地表水水样稀释倍数越小,结果越准确。采用酶底物法测定地表水中的粪大肠菌群具有快速、简便的特点,准确掌握水样稀释倍数对测定结果就越准确。 【工作原理】 加入含有总大肠菌群细菌的水样,放入程控定量封口机中,目标细菌在Minimal Medium ONPG-MUG培养基中36℃培养,总大肠菌群细菌产生的特异性生物酶β一半乳糖苷酶能分解MinimalMedium ONPG-MUG培养基中的色源底物ONPG,使培养呈现黄色;同时水样中大肠埃希氏菌产生特异性的β一葡萄糖醛酸酶分解Minimal Medium ONPG-MUG培养基中的荧光底物MUG,产生特征性荧光。同样原理,耐热大肠菌群(粪大肠菌群)在44.5℃培养时会分解Minimal Medium ONPG-MUG培养基中的色源底物ONPG,使培养基呈现黄色。 程控定量封口机9900Z SEALER PLUS: 智能程控定量封口机配合51孔定量盘或97孔定量盘提供简单、快速、准确的定量检测总大肠菌群、大肠埃希氏菌、粪(耐热)大肠菌群、肠球菌和绿脓假单胞菌的实验方案。捷骋牌51孔定量盘和97孔定量盘是基于传统方法最大可能数(MPN) 统计模型而设计的半自动定量方法。 ·通过9900Z sealer PLUS程控定量封口机自动将样品/试剂混合液分配到独立孔中。 ·培养结束后,阳性孔数可以转化为MPN 值。

·51孔定量盘可检测每100 mL 水样中1-200MPN 值。 ·97孔定量盘可检测每100 mL 水样中1-2,419 MPN 值。 ·整个检测过程手工操作时间小于1 分钟。 【使用方法】 定性测试: 第一步、在100ml水样中加入试剂,溶解,36℃培养24h; 第二步、结果判读 无色=阴性 黄色=总大肠菌群阳性 黄色+荧光=大肠埃希氏菌群阳性 注:耐热大肠群菌(粪大肠菌群)需44.5℃培养24h后,观察黄色为阳性 定量检测 第一步、在100ml水样中加入试剂,溶解; 第二步、倒入51孔定量检测盘(定量孔板)或97孔定量检测盘(定量孔板)中; 第三步、用程控定量封口机对定量检测盘(定量孔板)进行封装,36 ℃培养24h; 第四步、51孔定量检测盘(定量孔板)结果判读: 无色=阴性 黄色格子=总大肠菌群阳性 黄色+荧光格子=大肠埃希氏菌群阳性 查对照MPN表计数 注:耐热大肠群菌(粪大肠菌群)需44.5℃培养24h后,观察黄色格子为阳性结果,查对照MPN表计数。

酶底物法系统

西安立科环保科技有限公司 水质大肠菌群酶底物法检测系统介绍 一、检测用途: 酶底物法测定用途:用于检测水中总大肠菌群粪大肠菌群(耐热大肠菌群)和大肠埃希氏菌。可用于检测水的类型:饮用水、水源水、废水、食品水、地 表水、地下水、海水、瓶装水、中水、二次供水、管网水、畜牧用水、医疗用 水等。 二、检测原理: 酶底物法采用 ONPG 和 MUG 两种营养指示剂,这两种试剂分别可以被大肠菌群的β-半乳糖苷酶和大肠杆菌的β-葡糖醛酸酶分解代谢。当大肠菌群在酶底物检测试剂中生长时,其使用β-半乳糖苷酶分解代谢 ONPG,并使样品从无色变为黄色。大肠杆菌使用β-葡糖醛酸酶分解代谢 MUG 时,能够发出荧光。 三、优势特点: 酶底物法为GB5750-2006收录的用于大肠杆菌检测标准方法,酶底物法是目前水中大肠杆菌检测的最先进方法,目前在发达国家水质大肠菌群检测分别占到95%和90%的市场,以其方便快捷,假阳性低,适用大量样品快速检测等优点正逐步被国内检测部门所认可。 相对于多管发酵和滤膜法,酶底物法检测步骤大大减少,而且对实验环境要求不高,检测时间可减少到24小时,在日常水样监测及应急监测中具有很好的应用前景,可及时检测,预防,最大限度的减少重大公共安全事故的发生几率。以GB5750-2006中总大肠菌群测定为例,比较三种方法,如表所示。

表1 多管发酵法、滤膜法及酶底物法比较统计 方法优势: 1.无需在无菌室内操作。 2.手工操作时间小于1分钟。 3.无需培养基制备和大量玻璃器皿灭菌。 4.24小时即可完成定性定量分析,无需验证试验。 已经列入 1.GB/T5750.12-2006《生活饮用水标准检验方法》微生物指标。 产品特点: 1.colitech酶底物法检测试剂,LK定量检测盘/定量孔板,LK定量瓶出厂前均已灭菌,客户可以直接放心使用。 2.colitech酶底物法检测试剂是我公司潜心研制并符合GB/T5750.12-2006的酶底物法培养基,假阳性和假阴性均优于传统方法。 3.colitech酶底物法检测试剂经大量客户实验室使用和验证,表明与传统方法多管发酵法和滤膜法具有方法一致性和可比性。 准确/可信 ●使用MPN法进行定量检测,可直接检测100毫升水样中1~2419MPN(个)目标细菌 ●精确检出100ml水样中单个的活性大肠杆菌群和大肠埃希氏菌,假阴性低

固定底物技术酶底物法 技术参数

微生物固定底物技术酶底物法测定仪 原理: 科立得--DST酶底物法是可在24小时内快速定量和定性检测“总大肠菌群及大肠埃希氏菌及粪大肠菌群”,其原理是利用了MMO-MUG特异性培养基的呈色和荧光反应,该方法比传统的滤膜法和多管法的假阳性和假阴性发生率更低,培养时间更短。 技术特点: 1、DST酶底物法试剂 完全符合《生活饮用水标准检验方法》的MMO-MUG 培养基,采用固定底物技术(DST)酶底物法,Snap包装。200个/包。 能够精确检出100ml水样中单个的活性总大肠菌群和大肠埃希氏菌,以及粪大肠菌群,假阴性率低。每个单位试剂可抑制200万个异养细菌,假阳性率低。能够消除传统方法中的主观判断影响,准确性高于滤膜法及多管发酵法。 2006年被列入到《生活饮用水标准检验方法》(GB/T5750.12-2006),是国标认可的MMO-MUG培养基;经美国环保署的认可作为24 小时检验出厂水与源水中总大肠菌群和大肠埃希氏菌或耐热大肠菌群(粪大肠菌群)的方法; 通过水与废水检验的标准方法分析化学工作者协会 (AOAC) 、国际瓶装水协会 (IBWA) 及欧洲瓶装水协会 (EBWA)认证;中国、美国、加拿大、英国、德国、法国、日本、韩国、阿根廷、巴西、澳大利亚、新西兰、南非等50多国家及地区的饮用水,地表水,污水等检验标准。年全球使用量超过数千万次,美国90%以上的实验室使用科立得试剂。 2、定量盘 Quanti-tray或Quanti-tray 2000定量盘 Quanti-tray(51孔定量盘),有50个标准孔格,1个大孔格。无须稀释可检测200MPN/100ml总大肠菌群和大肠埃希氏菌或粪大肠菌群 Quanti-tray2000(97孔定量盘),有48个标准孔格,1个大孔格和48个小孔格,无须稀释可检测2419MPN/100ml总大肠菌群和大肠埃希氏菌或粪大肠菌群 3、无菌取样瓶

酶促反应动力学实验报告

酶促反应动力学实验报告 杨恩原 实验目的: 1.观察底物浓度对酶促反应速度的影响 2.观察抑制剂对酶促反应速度的影响 3.掌握用双倒数作图法测定碱性磷酸酶的Km值 实验原理: 一、底物浓度对酶促反应速度的影响 在温度、pH及酶浓度恒定的条件下,底物浓度对酶的催化作用有很大的影响。在一般情况下,当底物浓度很低时,酶促反应的速度(v)随底物浓度[S]的增加而迅速增加,但当底物浓度继续增加时,反应速度的增加率就比较小,当底物浓度增加到某种程度时反应速度达到一个极限值(即最大速度Vmax)。底物浓度和反应速度的这种关系可用米氏方程式来表示(Michaelis-Menten方程)即: 式中Vmax为最大反应速度,Km为米氏常数,[S]为底物浓度 当v=Vmax/2时,则Km=[S],Km是酶的特征性常数,测定Km是研究酶的一种重要方法。但是在一般情况下,根据实验结果绘制成的是直角双曲线,难以准确求得Km和Vmax。若将米氏方程变形为双倒数方程(Lineweaver-Burk方程),则此方程为直角方程,即: 以1/V和1/[S]分别为横坐标和纵坐标。将各点连线,在横轴截距为-1/Km,据此可算出Km值。

本实验以碱性磷酸酶为例,测定不同浓度底物时的酶活性,再根据1/v和1/[S]的倒数作图,计算出其Km值。 二、抑制剂对酶促反映的影响 凡能降低酶的活性,甚至使酶完全丧失活性的物质,成为酶的抑制剂。酶的特异性抑制剂大致上分为可逆性和不可逆性两类。可逆性抑制又可分为竞争性抑制和非竞争性抑制等。竞争性抑制剂的作用特点是使该酶的Km值增大,但对酶促反映的最大速度Vmax值无影响。非竞争性抑制剂的作用特点是不影响[S]与酶的结合,故其Km值不变,然而却能降低其最大速度Vmax。本实验选取Na2HPO4作为碱性磷酸酶的抑制物,确定其抑制作用属于哪种类型。 实验步骤: 实验一:底物浓度对酶促反应速度的影响 管号 试剂 1.取试管9支,将L基质液稀释成下列不同浓度:

酶底物法(科立得)检测总大肠菌和大肠埃希 菌(或粪大肠菌)技术参数

酶底物法(科立得)检测总大肠菌群和粪大肠杆菌(或大肠埃希菌) 一、适用范围:用于水样中的总大肠菌群和粪大肠杆菌(或大肠埃希菌)的同步定量分析。 二、工作环境:(a)室内使用:环境温度 -10°C~50°C (b)电源供给:220V±10%,50HZ (c)相对湿度:25%~85%,无凝结 三、原理:1,大肠菌群细菌能特异性产生β-半乳糖苷酶(β-D-galactosidase),该生物酶可以分解ONPG(Ortho-nitrophenyl-β-D-galactopyranoside,β-半乳糖醛苷),使培养液呈黄色。(注:检测粪大肠菌的培养温度为44.5°C;检测总大肠菌的培养温度为:36±1℃) 2,大肠埃希氏菌能特异性产生β-葡萄糖醛酸酶(β-glucuronidase),分解MUG(4-甲基-伞形葡萄糖苷酸,4-methyl-umbelliferyl-β-D-glucuronide),使培养液在波长366nm紫外光下产生荧光。利用该原理,来判断水样中是否含有大肠菌群及大肠埃希氏菌(或粪大肠菌)。 四、仪器技术参数: 1、国产程控定量封口机 # 技术指标性能 (1)可靠性无漏液,无破孔 (2)噪音 <50 dba @ 2 ft. (3)重量 <17公斤. (4)处理速度 <15秒/样品 (5)预热时间 <15分钟 (6)加热温度(内辊) 200°C +/- 10°C (7)外罩温度 <40°C (8)工作电压 220V±10% (9)工作环境温度 -10°C~50°C (10)带51孔及97孔定量盘橡胶托垫

2、紫外灯 (1)6W 365 nm长波紫外灯,含灯管. (2)尺寸:(9 cm x 7 cm x 27 cm) (3)电源:220V 四、技术参数指标: (1)量程范围: 0-200个/100mL 或0-2419个/100mL (2)绝对检出限:0个 (3)培养基:ONPG-MUG (4)样品体积: 100mL (5)检测周期: 24小时 五、系统配置及性能指标:本配置能够简单快捷地同时测定水中总大肠菌群和粪大肠菌群(或大肠埃希菌);应包括所有能正常分析的仪器设备及消耗品: 1 、消耗品:应能保证1000个水样常规检测所需的消耗品 (1)DST酶底物法24小时Colilert试剂( ONPG-MUG培养基):200个/盒;(2)取样瓶:独立密封包装; (3)定量盘:51孔或97孔; 2 、程控定量封口机(带51孔及97孔定量盘橡胶托垫); 3 、6瓦特紫外灯,220v,366nm;

2酶促反应动力学共39页word资料

2 酶促反应动力学 教学基本内容: 酶促反应的特点;单底物酶促反应动力学方程(米氏方程)的推导;抑制剂对酶促反应的影响,竞争性抑制和非竞争性抑制酶促反应动力学方程的推导;产物抑制、底物抑制的概念,产物抑制和底物抑制酶促反应动力学方程的推导;多底物酶促反应的机制,双底物酶促反应动力学的推导;固定化酶的概念,常见的酶的固定化方法,固定化对酶性质的影响及固定化对酶促反应的影响,外扩散过程和内扩散过程分析;酶的失活动力学。 2.1 酶促反应动力学的特点 2.2 均相酶促反应动力学 2.2.1 酶促反应动力学基础 2.2.2 单底物酶促反应动力学 2.2.3抑制剂对酶促反应速率的影响 2.2.4多底物酶促反应动力学 2.3 固定化酶促反应动力学 2.4 酶的失活动力学 授课重点: 1. 酶的应用研究与经典酶学研究的联系与区别 2. 米氏方程。 3 竞争性抑制酶促反应动力学方程。 4. 非竞争性抑制酶促反应动力学方程。 5. 产物抑制酶促反应动力学方程。 6. 底物抑制酶促反应动力学方程。 7. 双底物酶促反应动力学方程。 8. 外扩散对固定化酶促反应动力学的影响,Da准数的概念。 9. 内扩散对固定化酶促反应动力学的影响,φ准数的概念。 10. 酶的失活动力学。 难点: 1. 采用稳态法和快速平衡法建立酶促反应动力学方程。 2. 固定化对酶促反应的影响,五大效应(分子构象的改变、位阻效应、微扰效应、分配效应及扩散效应)的区分。 3. 内扩散过程分析,涉及到对微元单位进行物料衡算和二阶微分方

程的求解、无因次变换、解析解与数值解等问题。 4.温度对酶促反应速率和酶的失活速率的双重影响,最适温度的概念。温度和时间对酶失活的影响。 本章主要教学要求: 1. 掌握稳态法和快速平衡法推导酶促反应动力学方程。 2. 了解酶的固定化方法。理解固定化对酶促反应速率的影响。掌握Da准数的概念及φ准数的概念,理解外扩散和内扩散对酶促反应速率的影响。 3. 了解酶的一步失活模型与多步失活模型,反应过程中底物对酶稳定性的影响。 2 酶促反应动力学 2.1 酶促反应动力学的特点 2.1.1 酶的基本概念 2.1.2 酶的稳定性及应用特点 酶是以活力、而不是以质量购销的。 酶有不同的质量等级:工业用酶、食品用酶、医药用酶。 酶的实际应用中应注意,没有必要使用比工艺条件所需纯度更高的酶。 2.1.3酶的应用研究与经典酶学研究的联系与区别 经典酶学研究中,酶活力的测定是在反应的初始短时间内进行的,并且酶浓度、底物浓度较低,且为水溶液,酶学研究的目的是探讨酶促反应的机制。工业上,为保证酶促反应高效率完成,常需要使用高浓度的酶制剂和底物,且反应要持续较长时间,反应体系多为非均相体系,有时反应是在有机溶剂中进行。 2.2 均相酶促反应动力学

水中大肠菌群快速检测方法酶底物孙宗科_附件

水中大肠菌群快速检测方法-酶底物法与多管发酵法的比较 《卫生研究》2006第3期 孙宗科丁培薛金荣陈西平1吴榕2张雅婕3张淑红4遇晓杰5 中国疾病预防控制中心环境与健康相关产品安全所,北京100021 摘要:目的比较酶底物法与多管发酵法用于水中大肠菌群的检测。方法应用加标试验和实际水样检测的方式,比较酶底物法与多管发酵法用于水中大肠菌群检测结果的一致性,以及假阳性率。结果酶底物法与多管发酵法用于水中大肠菌群检测结果具有一致性,假阳性率无统计学意义的差别。结论酶底物法可以用作评价水质微生物污染的标准方法。 关键词:大肠菌群酶底物法多管发酵法快速检测 Comparison between rapid detection method of enzyme substrate technique and multiple-tube fermentation technique in water coliform bacteria detection Sun Zongke, Wu Rong, Chen Xiping, et al. Institute for Environment Hygiene and Health Related Product Safety, Chinese Center for Disease Control and Prevention, Beijing 100021, China Abstract:In order to compare between rapid detection method of enzyme substrate technique and multiple-tube fermentation technique in water coliform bacteria detection, inoculated and real water samples are included in this experiment.Results demonstrate that enzyme substrate technique shows equivalence with multiple-tube fermentation technique. It is suggested that enzyme substrate technique can be used as a standard method for water microbiological safety evaluation. Key words:coliform bacteria, enzyme substrate technique, multiple-tube fermentation technique, rapid detection 目前我国对生活饮用水、水源水、地表水等进行卫生学评价,检测的指标为大肠菌群(coliform bacteria)和粪大肠菌群(faecal coliforms),以这两种指标作为粪便污染的指示菌。采用的标准检测方法为膜过滤法(MF)和多管发酵法(MTF)。但这两种方法检测时间相对较长,需2~5天,需验证试验,试验步骤较为繁琐,不能对水的卫生学状况做出快速评价。因此,采用快速简便的检测方法十分必要。酶底物法可以较好的弥补传统方法的不足。 酶底物法(enzyme substrate technique)采用大肠菌群细菌能产生β-半乳糖苷酶(β-D-galactosidase)分解ONPG(Ortho-nitrophenyl-β-D-galactopyranoside)使培养液呈黄色,以及大肠埃希氏菌产生β-葡萄糖醛酸酶(β-glucuronidase)分解MUG (4-methyl-umbelliferyl-β-D-glucuronide)使培养液在波长366nm紫外光下产生荧光的原理,来判断水样中是否含有大肠菌群及大肠埃希氏菌。酶底物法可以采用成品的培养基及试剂, 基金项目:GB/T 5750《生活饮用水标准检验方法》修订工作项目。 作者简介:孙宗科,男,实习研究员 责任作者:陈西平,男,研究员

酶促反应动力学实验报告

酶促反应动力学实验报告 14301050154 杨恩原 实验目的: 1.观察底物浓度对酶促反应速度的影响 2.观察抑制剂对酶促反应速度的影响 3.掌握用双倒数作图法测定碱性磷酸酶的Km值 实验原理: 一、底物浓度对酶促反应速度的影响 在温度、pH及酶浓度恒定的条件下,底物浓度对酶的催化作用有很大的影响。在一般情况下,当底物浓度很低时,酶促反应的速度(v)随底物浓度[S]的增加而迅速增加,但当底物浓度继续增加时,反应速度的增加率就比较小,当底物浓度增加到某种程度时反应速度达到一个极限值(即最大速度Vmax)。底物浓度和反应速度的这种关系可用米氏方程式来表示(Michaelis-Menten方程)即: 式中Vmax为最大反应速度,Km为米氏常数,[S]为底物浓度 当v=Vmax/2时,则Km=[S],Km是酶的特征性常数,测定Km是研究酶的一种重要方法。但是在一般情况下,根据实验结果绘制成的是直角双曲线,难以准确求得Km和Vmax。若将米氏方程变形为双倒数方程(Lineweaver-Burk方程),则此方程为直角方程,即: 以1/V和1/[S]分别为横坐标和纵坐标。将各点连线,在横轴截距为-1/Km,据此可算出Km值。 本实验以碱性磷酸酶为例,测定不同浓度底物时的酶活性,再根据1/v和1/[S]的倒数作图,计算出其Km值。 二、抑制剂对酶促反映的影响

凡能降低酶的活性,甚至使酶完全丧失活性的物质,成为酶的抑制剂。酶的特异性抑制剂大致上分为可逆性和不可逆性两类。可逆性抑制又可分为竞争性抑制和非竞争性抑制等。竞争性抑制剂的作用特点是使该酶的Km 值增大,但对酶促反映的最大速度Vmax 值无影响。非竞争性抑制剂的作用特点是不影响[S]与酶的结合,故其Km 值不变,然而却能降低其最大速度Vmax 。本实验选取Na 2HPO 4作为碱性磷酸酶的抑制物,确定其抑制作用属于哪种类型。 实验步骤: 实验一:底物浓度对酶促反应速度的影响 1. 取试管9支,将0.01mol/L 基质液稀释成下列不同浓度: 2. 另取9支试管编号,做酶促反应: 3. 混匀,37 ℃水浴保温5分钟左右。 4. 加入酶液后立即计时,各管混匀后在37 ℃准确保温15分钟。 5. 保温结束,立即加入0.5mol/L NaOH 1.0 ml 以中止反应。各管分别加入0.3% 4-氨基安替 比林1.0 ml 及0.5% 铁氰化钾 2.0 ml 。 试剂 管号 试剂 管号

酶量增加一倍时的底物浓度和反应速度的关系曲线

酶量增加一倍时的底物浓度和反应速度的关系曲线 [2003年上海高考生物第11题]下图纵轴为酶反应速度,横轴为底物浓度,其中正确表示酶量增加1倍时,底物浓度和反应速度关系的是 命题者提供的参考答案是B。但在K12生物论坛的讨论中,很多老师认为应该选A。也有老师说虽然知道应该选B,但总觉得理由不充分。笔者认为,要正确理解这道题目,首先是必须弄懂酶促反应速度(题目中如此,其实正确的说法,应该称为“酶促反应速率”)的含义,其次要有酶促反应的动力学的有关知识作为基础。下面,笔者先把那些认为应该选A的老师提出的理由整理出来,然后介绍酶促反应速率的含义以及酶促反应的动力学的有关知识,并在此基础上阐述该题正确答案是B 的理由。 1 许多老师错误地选A的理由 先观察A、B选项中任何一条曲线,曲线的前半段,随横坐标底物浓度的增加,纵坐标酶促反应速度也增加,说明底物浓度是此时反应速度增加的限制因素。此时,即使增加酶量也不会使反应速度也增加。而曲线的后半段反应速度不再随底物浓度变化而变化,说明底物足够,此时底物浓度已不是反应速度增加的限制因素了;此时,酶的数量则相对不足,此时增加酶量会使反应速度加快。综上所述,正确的曲线应该是最初两条曲线重合,底物浓度足够多时才能体现出酶的数量对反应速度的影响。 2 酶促反应速率的概念 酶促反应的速率(v),一般是以单位时间内底物被分解的量来表示的。假设x克蔗糖在t时间内被一定的蔗糖酶水解为葡萄糖和果糖,则x/t即为蔗糖酶反应的速率。 酶促反应在开始的初期速率较大,一定时间后,由于反应产物浓度逐渐增加,反应速率渐渐下降,最后完全停止。如果底物浓度相当大,而pH及温度又保持恒定,则在反应初期的一定短时限内,酶的反应速率尚不受反应产物的影响,可以保持不变。故测酶的反应速率一般只测反应开始后的初速,而不是测反应达到平衡时所需要的时间。 3 酶促反应的动力学(影响酶反应的因素)的相应知识 酶促反应的速率是受酶浓度、底物浓度、pH、温度、反应产物、变构效应、活化剂和抑制剂等因素的影响的。下面仅讨论与此题有关的酶浓度和底物浓度的影响。 3.1 酶浓度的影响 在有足够底物的情况下,而又不受其他因素的影响,则酶的反应速率(v)与酶浓度成正比。即 v=k[E] (1) k为反应速率常数,[E]为酶浓度。 因为有底物足够的条件,因此,对任一酶浓度[E],由(1)式求出的酶的反应速率v应当就是在该酶浓度下的最大反应速率Vmax。 3.2 底物浓度的影响(米氏方程) 实验证明:当酶浓度、温度和pH恒定时,在底物浓度很低的范围内,反应初速与底物浓度成正比;此后,随着底物浓度的增加,反应速率的增加量逐渐减少;最后,当底物浓度增加到一定量时,反应速率达到一最大值Vmax,此时再增加底物浓度也不能使反应速率再增加。1931年,Michaelis与Menten根据中间产物理论提出了能表示整个反应中底物浓度与反应速率关系的公式,称Michaelis-Menten方程或简称米氏方程: v=Vmax[S]/(Km+[S]) (2) 公式中,v为反应速率,Vmax为最大速率,Km为米氏常数。 Km是酶的特征常数之一,在数值上等于酶促反应速率达到最大速率一半(v=Vmax/2)时的底物浓度,单位为mol/L。 4 正确答案是B的理由 对于底物浓度较大时,增加酶量可以增大反应速率这一结论,大家都没有异议。现在大家争议的焦点,就是在底物浓度很小时,增加酶量能否增大反应速率?对于这一问题的不同回答,决定上述高考题的答案选择:如果回答是肯定的,那么此题的正确答案是B;反之,正确答案就是A了。下面笔者为大家仔细分析一下这个问题。

相关文档
最新文档