压力容器大开孔补强计算——等面积法、分析法和有限元应力分析法
开孔补强计算时接管厚度附加量对计算结果的影响

开孔补强计算时接管厚度附加量对计算结果的影响陆英(常州市乐萌压力容器有限公司,江苏 常州 213138)[摘 要] 国内外大多数压力容器设计标准规范中开孔补强计算是以有效厚度进行计算的,但GB 150.3-2011标准中计算外伸、内伸接管有效补强高度时,是以接管名义厚度计算的,由于名义厚度中包含了厚度附加量,不符合强度计算理论。
通过对一台氯气缓冲罐接管开孔补强计算进行对比说明,按GB 150.3-2011标准计算开孔补强满足强度要求,如采用接管有效厚度进行计算,则不能满足强度要求,建议GB 150.3-2011标准中开孔补强计算以接管有效厚度作为计算依据。
[关键词] 接管开孔补强;接管有效厚度;接管有效补强高度;接管厚度附加量作者简介:陆英(1976—),女,江苏常州人,本科学历,工程师。
在常州市乐萌压力容器有限公司主要从事压力容器设计和制造工作。
压力容器根据操作工艺要求,需要在壳体上开设各种规格的管口。
容器壳体开孔后,因承载面积的减少及结构不连续,而引起应力集中,使开孔边缘应力增大且强度受到削弱,所以需要对接管开孔进行补强计算,保证接管开孔部位满足强度要求。
接管开孔补强计算是压力容器设计过程中的一项重要内容。
1 开孔补强的原理及计算方法压力容器受到介质压力作用后,壳体承受薄膜应力。
当在壳体上开孔后,既减少了壳体的承载面积而使应力增加,又由于开孔引起结构不连续,导致开孔部位应力集中[1]。
由此可知,壳体开孔后将使开孔部位强度削弱。
为了保证壳体承载能力不因开孔削弱而降低,需在开孔边缘附近增加相应的承载金属面积,以满足强度要求。
满足开孔补强的强度条件是开孔边缘区域内的应力在许用范围内,需要通过开孔补强计算,确定开孔区域是否满足强度要求。
开孔补强计算方法有等面积法、压力面积法、应力分析法及有限元分析法[2],最常用方法是等面积法,等面积法是壳体开孔所需补强面积等于因开孔而削弱的面积。
采用等面积补强计算时,壳体开孔所需补强面积是壳体计算厚度与开孔直径乘积[3],在有效补强范围内补强截面积包括壳体多余面积、接管多余面积、补强区域内焊缝面积以及另加补强金属面积。
不同标准大开孔补强计算方法的分析比较

于2 . 2 倍 许 用应 力 。基 于 上 述分 析 , 对 于 内压
下 圆柱壳 开孑 L 补 强 问题 , 一 次 局 部 薄膜 应 力 强度 的设计 准则 如下 :
¥ 占双林 , 男, 1 9 7 9年 9月 生 , 工 程 师 。北 京 市 , 1 0 0 0 8 5 。
2 0 1 l的 压 力 面积 法 、 A S MEⅧ . 1附 录 1 — 7的膜 一弯 曲应 力 法及 AS ME W一 1附 录 1 — 1 0的 压 力 一面积 应 力
法 是 目前 解 决 该 问 题 的 几种 计 算 方 法 。通 过 对 4种 方 法 的计 算理 论 和 应 用 于 实 际结 构 的 计 算 结 果 进 行
内, 校 核大 开孔结 构 的安 全性 ’ 。 文献 [ 6 , 7 ] 中的应 力分 类 法是 将 一次 局 部 薄 膜应 力控 制在 1 . 5倍许 用 应 力 以内 , 此 设 计 准 则 的提 出是 基于简 单梁 的理论 。 由于压力 容器绝 大
通常 可采用 常规 的等面 积补强 法对 壳体 上开 孔率 不大 于 0 . 5的小 开 孔 进 行 补 强 计 算 ’ , 容 器壳 体开 孔 以后 , 由 于部 件 之 间 的变 形 协调 必 将 在 开孔边 缘引起 局 部 的弯 曲应 力 , 这 种 弯 曲应 力
文献 标 识 码 A
文章编号
0 2 5 4 — 6 0 9 4 ( 2 0 1 3 ) 0 6 - 0 7 4 8 - 0 5
在压 力容器 筒体 上开 孔接管 对容 器 的不 利影
1 不 同计算 方法 的分析 比较 1 . 1 分 析法
响主要有 3方 面 : 一 是 开孔 削 弱 了容 器 壳 体材 料
压力容器大开孔补强问题探讨

许 多探 讨性研 究 结果 口 】 ,但 目前 尚未 有完 善 的设计 规范。
压 力 面 积 法 是 以受 压 面 积 和 承 载面 面积 的力 平 衡 为 基础 的方 法 , 即压 力 在 受压 面 积 上 形成 的
第8 期
孟智慧等
压力容器大开孔补强问题探讨
多 ,且 较 靠 近 开 孔 边 缘 ,降 低 了局 部 应 力 集 中水 平 ,局 部 应 力 引 起 的安 全 性 问题 相 对 缓 和 ,故 一 般 可用 于开 孔率 较大 的场 合 。
为 满足 工 艺 要 求 ,压 力容 器 上 开 孔 是 不 可 避 免 的 ,有 时 甚 至要 开大 孔 。容 器 开孔 后 ,不 仅 会 削弱 整 体 强 度 ,而 且 还 会 引起 应 力集 中造 成 开 孔 边 缘 局 部 应 力 过 高 。 当开 孔 直 径较 大 时 ,孔 周 边 将 会 出现 较 大 的弯 曲应 力 ,大 直径 薄 壁 容 器 开 大 孔 时尤 为 突 出 。 因此 压 力 容器 设计 中必 须 充 分考 虑 开T  ̄ 强 问题 ,特 别 是大开 孔 的补 强 问题 。 LI , 对 大 开 孔 问 题 的 处 理 , 因 开 孔 直 径 已超 出 GB1 0 l 9 钢制 压 力 容器 》 中允 许 的范 围 ,不 5 一9 8《 能按 国标规 定 的方 法 做 补 强计 算 。 目前 , 较 常用 的大 开 T  ̄ 强 的计 算 方法 主 要 有 :压 力面 积 法 、 Lt - 等 面 积 法 和 有 限 元 计 算 等 方 法 。 有 限 元 法 虽 然 计 算 精度 高 ,能 较 真 实地 反映 结 构 中的应 力分 布 情 况 和应 力 值 ,能 适 应各 种 结 构 分 析 ,但 对 设 计 的 软 、硬 件 条 件 要 求较 高 ,在 工 程 设计 中不 够 简 便 , 因此 应 用 并 不 广泛 。压 力 面 积 法和 等 面 积 法 虽然 都是 一 种 经 验 的 设计 方 法 ,对 不 同直 径 的开 孔会 有 不 同 的安 全 系数 ,但 由于 简 单 易行 ,具 有 长期 的实 践 经验 基础 ,所 以在 工程 设计 中应 用 极
详解压力容器中开孔补强的一般规定及限制要求

详解压力容器中开孔补强的一般规定及限制要求引言压力容器上的开孔不仅影响结构强度,还会因为接管有着各种载荷所产生的应力、温度应力,以及容器材质和制造缺陷等因素的综合作用,往往是造成容器破坏的根源,所要解决这些问题,就必须了解开孔补强中的规定以及要求。
1.压力容器补强结构解析与一般规定压力容器的补强结构可分为:补强圈搭焊结构和整体补强结构。
1.1补强圈搭焊结构补强当容器采用补强圈搭焊结构时,其应当符合的基本的条件为,容器壳体名义厚度不得大于38mm补强圈的材料厚度不得大于1.5 倍容器壳体的厚度尺寸;使用低合金钢的标准抗拉强度应当小于540MPa若条件许可,优先举荐使用厚壁管代替补强圈进行补强。
当容器为低温压力容器的时候,补强接管应当尽可能采用后壁管进行补强,焊接焊缝应当使用全焊透结构,且焊缝圆滑过渡;带补强板的接管与容器器壁的连接接头应当符合相当于HG/T20583中的G28 G29 G30 G33的要求。
补强板采用与器壁相同的材料,带补强板的结构不得用于容器器壁厚度大于30mm 的场合,也不适用于设计温度低于-40°的场合。
带补强圈的接管与壳体的连接,以及补强圈与壳体搭接的角焊接头壳采用GB15 0中所示结构进行,且接管端部应与容器表面齐平,端部内角应当打磨成R不小于3mm勺圆角。
?a 强圈虽然结构简单,易于加工,但是补强效果较差,补强圈与壳体之间勺间隙不可避免,同时虽然补强圈上设有排气孔,但是补强圈结构在最终勺热处理后应力缺很复杂。
1.2整体补强结构补强当具有下列条件时,应当采用整体补强或者局部整体补强。
①高强度钢(标准抗拉强度大于540MPa和铬钼钢(如15CrMoR 14Cr1MoR 12Cr2Mo1R 制造的压力容器;②补强圈勺厚度大于1.5 倍容器壁厚度;③设计压力大于或者等于4MPa的第三类容器;④容器的壳体壁厚大于或者等于38mm;⑤疲劳压力容器或者容器盛装介质为毒性的高位介质容器。
压力容器圆筒开孔补强计算方法研究.docx

压力容器圆筒开孔补强计算方法研究应力集中危害问题要通过正确的方式强化管理,实现补强计算分析,进而充分的保障压力容器的安全性,提升整体的经济性。
通过开孔补强计算方式,可以有效的解决此种问题。
1.压力容器圆筒大开孔补强计算方法应用价值多数工程具有复杂化、大型化以及工艺特殊的特征,在施工中一些压力容器要通过较大的开孔接管进行处理,此种方式会转变原有容器的应力状态,消弱压力容器的强度。
针对与柱壳容器,开孔之后会导致其受到接管弹性约束的影响,导致容器主管的开孔附近受到薄膜应力状态轴向力以及环向力的影响,出现弯矩以及扭矩等问题。
为了提升整体稳定性,在实践中针对一些大开孔设计y要通过科学合理的方式分析受力状况,进而保障施工安全性,提升整体质量。
2.压力容器圆筒大开孔补强计算方法2.1压力面积法通过欧盟标准压力面积法,综合我国实际状况,在被开孔削弱面积补在孔的周围,给出其需药补强的具体面积,不计孔周边的应力集中问题。
开孔补强设计主要的要求就是基于结构进行静力强度分析,基于一次应力强度出发,分析开孔边缘二次应力安定性。
综合其安全系数以及实践经验系统分析。
此种方式对于开孔边缘的应力强度进行分析是否满足一次总体以及局部中对于薄膜应力静力强度要求。
通过对补强范围材料平均薄膜应力控制的方式达到进行应力强度的控制与管理,要保障其在一倍的许用应力。
综合压力在壳体受压面积产生的荷载以及有效补强范围中的课题、接管。
补强材料面积承载能力平衡的相关静力平衡条件则可以确定其进行接管补强计算的方式。
在壳体以及接管、补强材料相同的时候要根据以下公式进行补强计算公式为:P表示的是设计压力。
2.2分析法分析法就是根据弹性薄壳理论获得的应力分析方式。
主要就是在内压作用之下其具有径向接管圆筒开孔的补强设计分析。
分析法设计准则与压力面积法之间具有一定的差别。
此种方式的模型假定接管以及壳体属于连续性的整体型结构,其计算模型如下图所示。
在应用分析法的时候,要保障焊接接头的质量,保障其整体焊透性。
压力容器设计开孔补强精品文档4页

开孔补强4.5.5.5等面积补强的分析与计算■等面积补强----壳体承受应力所必需的金属截面,因开孔被削去多少,就必须在开孔周围的补强范围内补回同样截面的金属面积。
有效补强的金属面积大于或等于开孔削弱的金属面积A 、判断是否可以不补强和不作进一步补强计算(1)强度裕量(开孔后仍有的)●容器实际壁厚大于计算壁厚(δδφe )●接管厚度大于计算厚度(t et δδφ)●接管根部有填角焊缝 ●所开孔不在焊缝处,但壁厚计算的中径公式仍考虑了焊缝系数,计算壁厚有裕量。
(2)GB150-1998对不另行补强的规定同时满足下列条件时,开孔后可不另行补强:②相邻两孔中心的距离()2d d +≥B、等面积补强计算(1)所需最小补强面积接管有效面积:接管转化为壳体的当量面积:ΔA-----弥补[][]tttσσ≤而需增加的面积;或接管有效承载面积的折减量。
■圆柱壳■外压柱壳或球壳■平盖注:上述平盖和外压容器的公式来由参见丁伯民《压力容器设计----原理及应用》对平盖和外压容器,决定壳体厚度或承载能力的是弯曲应力,开孔削弱的是抗弯截面模量(而不是壁厚截面积)。
为保证开空前后的抗弯截面模量相等(w=w 0),要求k=A/A 0=1/(2+S/S 0),为保守起见,取k=0.5。
s —补强圈厚度,s 0----平盖厚度;A----补强面积,A 0----开孔削弱面积。
(2)补强范围■有效宽度B■接管外侧高度h 1■接管内侧高度h 2{}接管实际内伸高度,min 2nt d h δ=1(3)补强范围内富裕的可作补强的金属面积A e■A 1----壳体有效厚度减去计算厚度之后的多余面积■接管有效厚度减去计算厚度之后的多余面积()()r et r t et f C h f h A 221222-+-=δδδ■A 3----有效补强区内焊缝金属的截面积(4)有效补强区内另外再增加的补强元件的金属截面积A 4若A A e >,则开孔后无需补强。
球形封头开孔补强四种设计方法对比
球形封头开孔补强四种设计方法对比孙 禹∗ 华陆工程科技有限责任公司 西安 710065摘要 本文简要介绍了如何使用解析法、应力分类法、极限载荷法和弹塑性分析法确定压力容器结构的最大允许载荷,并以球壳模型和球壳+接管模型为算例,分别使用上述四种方法确定结构的最大允许载荷,通过对数值计算结果的对比分析得出以下结论:常规设计方法的安全裕量随着厚径比的增大而逐渐减小,在使用常规设计法确定结构尺寸时,对于壁厚较大的设备应适当提高设计裕量;使用应力分类法确定厚壁容器的结构尺寸时可能偏于危险,此时应采用更为合理的极限载荷分析法或者弹塑性应力分析法。
关键词 解析法 应力分类法 极限载荷分析法 弹塑性应力分析法 最大允许载荷。
∗ 孙 禹:工程师。
2015年毕业于北京化工大学 动力工程及工程热物理专业获硕士学位。
现主要从事压力容器设计工作。
联系电话:029-********,E-mail :************************。
压力容器的设计根据计算方法不同可以分为常规设计法和分析设计法。
因为一般压力容器厚度方向尺寸远远小于另外两向尺寸,所以常规设计将压力容器简化为薄壳结构,以回转薄壳无力矩理论为基础,求得结构尺寸的解析解。
经过多年的发展,常规设计理论已经日趋完善,目前工程领域中绝大多数压力容器均可以通过常规设计完成设计工作。
近年来,随着计算机处理能力的不断提升,以有限单元法为理论基础的分析设计取得了很大的发展,在压力容器设计领域逐渐占有一席之地,尤其在常规设计无法解决的领域发挥了极大的作用,帮助设计人员完成设计工作,使得在复杂温度场、交变载荷等苛刻工况作用下的设备得以安全运行[1]。
壳体与接管相贯的结构在压力容器中最为常见,壳体开孔处的强度问题也直接影响设备的安全。
常规设计对壳体的开孔补强主要采用等面积补强法;分析设计根据材料模型和结构响应不同可分为弹性分析和塑性分析,目前,国际上广泛应用的主要有应力分类法、极限载荷分析法、弹塑性应力分析法。
压力容器开孔补强分析及各种补强方法的比较
( un zo a i G a gh uHu —L —HegC e ia Id s yE u m n C . Ld ,G ag o gG a gh u5 4 C ia n h m cl n ut q i e t o , t. u n d n u nzo 4 2, hn ) r p 1 1
力集 中系数大于法 向接管开孔 , 图 2中的( ) b 的应 力集 如 a 比( )
中系 数 大 。
1 开 孔 附 近 的 应 力 分 析
1 1 平板 开孔 附近 的应 力 .
经分析 … : ①平板 开圆形 孔 ; ②壳体 开孑 ; 平 板开 椭 圆形 L③
孔; ④无 限大平板开 多个孔 。得 出以下结 论 : ①开孔 的应 力集 中区域 内的应 力是 属于 局部 应力 , 衰减很
轴线 , 否则将 使柱壳强度大大降低 ; 图 1中的 ( ) a 好。 如 b 比( )
⑤多个开孔 , 随着 间距 减小 , 孔边 应力 梯度 也减小 , 大 其 最 应力逐渐接近与按作用面积计算 的平均应力 ; ⑥无论是球壳或简体 , 若将开圆孔与椭 圆孔相 比 , 者应 力 后 集 中系数 比前者大 , 故当接管的方 向不在壳体 的法线 时 , 的应 它
的要求 , 使设备能够进行正常的操作 、 测试 和检修 , 在壳 体和端盖 上不可避免地有各种 开孔并连接接管 , 例如 , 物料进 口、 口, 出 测量
和控制点 ( 压力表 、 测温 口)视镜 、 、 液面计 、 人孔和手孔等 。 开孑 的结果 , L 不但会 削弱容器壁 的强 度 , 且在 开孔附 近会 而 形成应 力集中 , 峰值 应力通常达到容 器壁 中薄 膜应力 的数倍 , 其 例如 3倍 , 时甚至达到 5~ 有 6倍 。这样高的局部应力 , 加上接管 上有 时还有其他 的外载荷所产生 的应力 , 温度应 力 , 以及容 器材 质 和开孔 结构在制造过程 中不可 避免地会 形成制造 缺 陷。残 余 应力 、 是开孔 附近 就往往 成为容 器的破 坏源 一主要 是疲 劳破 于 坏 和脆性 裂 口。因此 , 开孔补 强设计 是压 力容 器设 计 中较重 要 的组成部分 , 是保 证容 器安 全操作 的重 要 因素。我 们必 须正 确 分析 开孔 附近的应力集 中, 并采取适 当的补强方法 。
压力容器圆筒开孔补强计算方法研究.docx
压力容器圆筒开孔补强计算方法研究.docx压力容器圆筒开孔补强计算方法研究应力集中危害问题要通过正确的方式强化管理,实现补强计算分析,进而充分的保障压力容器的安全性,提升整体的经济性。
通过开孔补强计算方式,可以有效的解决此种问题。
1.压力容器圆筒大开孔补强计算方法应用价值多数工程具有复杂化、大型化以及工艺特殊的特征,在施工中一些压力容器要通过较大的开孔接管进行处理,此种方式会转变原有容器的应力状态,消弱压力容器的强度。
针对与柱壳容器,开孔之后会导致其受到接管弹性约束的影响,导致容器主管的开孔附近受到薄膜应力状态轴向力以及环向力的影响,出现弯矩以及扭矩等问题。
为了提升整体稳定性,在实践中针对一些大开孔设计y要通过科学合理的方式分析受力状况,进而保障施工安全性,提升整体质量。
2.压力容器圆筒大开孔补强计算方法2.1压力面积法通过欧盟标准压力面积法,综合我国实际状况,在被开孔削弱面积补在孔的周围,给出其需药补强的具体面积,不计孔周边的应力集中问题。
开孔补强设计主要的要求就是基于结构进行静力强度分析,基于一次应力强度出发,分析开孔边缘二次应力安定性。
综合其安全系数以及实践经验系统分析。
此种方式对于开孔边缘的应力强度进行分析是否满足一次总体以及局部中对于薄膜应力静力强度要求。
通过对补强范围材料平均薄膜应力控制的方式达到进行应力强度的控制与管理,要保障其在一倍的许用应力。
综合压力在壳体受压面积产生的荷载以及有效补强范围中的课题、接管。
补强材料面积承载能力平衡的相关静力平衡条件则可以确定其进行接管补强计算的方式。
在壳体以及接管、补强材料相同的时候要根据以下公式进行补强计算公式为:P表示的是设计压力。
2.2分析法分析法就是根据弹性薄壳理论获得的应力分析方式。
主要就是在内压作用之下其具有径向接管圆筒开孔的补强设计分析。
分析法设计准则与压力面积法之间具有一定的差别。
此种方式的模型假定接管以及壳体属于连续性的整体型结构,其计算模型如下图所示。
压力容器常见结构的设计计算方法
第三章 压力容器常见结构的设计计算方法常见结构的设计计算方法4.1 圆筒4.2 球壳 4.3 封头4.4 开孔与开孔补强 4.5 法兰4.6 检验中的强度校核4.1.1 内压圆筒 1)GB150中关于内压壳体的强度计算考虑的失效模式是结 构在一次加载下的塑性破坏,即弹性失效设计准则。
2)壁厚设计釆用材料力学解(中径公式)计算应力,利用第一强度理论作为控制。
轴向应力:环向应力:(取单位轴向长度的半个圆环)校核:σ1=σθ,σ2=σz ,σ1=0 σθ≤[σ]t ·φ对应的极限压力:2)弹性力学解(拉美公式)讨论:1)主应力方向?应力分布规律?径向、环向应力非线形分布(内壁应力绝对值最大),轴向应力均布; 2)K 对应力分布的影响?越大分布越不均匀,说明材料的利用不充分; 例如,k =1.1时,R =1.1内外壁应力相差10%; K =1.3时,R =1.35内外壁应力相差35%; 4 常见结构的设计计算方法 962)弹性力学解(拉美公式)主应力:σ1=σθ,σ2=σz ,σ3=σr 屈服条件:σⅠ=σ1=σθ=σⅡ=σ1-μ(σ2+σ3)=σⅢ=σ1-σ3=σⅣ=3)GB150规定圆筒计算公式(中径公式)的使用范围为:p/[σ]·φ≤0.4(即≤1.5)4.1.2 外压圆筒1)GB150中关于外压壳体的计算所考虑的失效模式:弹性失效准则和失稳失效准则(结构在横向外压作用下的横向端面失去原来的圆形,或轴向载荷下的轴向截面规则变化)2)失稳临界压力的计算长圆筒的失稳临界压力(按Bresse公式):长圆筒的失稳临界压力(按简化的Misse公式):失稳临界压力可按以下通用公式表示:圆筒失稳时的环向应力和应变:定义——外压应变系数于是取稳定系数m=3,有·应变系数A的物理意义-系数A是受外压筒体刚失稳时的环向应变,该系数仅与筒体的几何参数L、D。
、δe 有关,与材料性能无关·应力系数B的物理意义:与系数A之间反映了材料的应力和应变关系(应力),可将材料的δ-ε曲线沿σ轴乘以2/3而得到B-A曲线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
压力容器大开孔补强计算——等面积法、分析法和有限元应力分析法
【摘要】首先对压力容器大开孔补强计算中涉及的应力特点及强度分析进行阐述,然后将目前存在的三种主要的补强计算方法的计算原理、特点等做了详细的介绍,并对三种不同的方法的优缺点进行比较总结,从而要求设计的容器更加符合安全、经济等多方面的要求,实现优化设计的目的。
【关键词】压力容器大开孔补强等面积法分析法及有限元应力分析法
在设计者设计容器及压力容器的过程中通常都需要设计计算壳体的大开孔补强,GB150-2011即钢制压力容器中规定了容器壳体开孔范围,根据壳体的内径不同,分别作了明确地规定,当内径小于1500毫米时,开孔的最大直径要小于等于二分之三的内径,且不能大于520毫米;而当其内径大于1500毫米时,开孔最大直径则应当小于等于三分之二的内径,且其直径不能大于1000毫米。
本文中的容器的大开孔指的是超过以上范围的开孔。
现如今,主要是通过等面积法、分析法及有限元应力分析法三种方法计算压力容器大开孔的补强。
1 大开孔应力特点及强度分析
对压力容器的壳体做开孔后,容器开孔的边缘会形成较为复杂的应力状况,以下是对会引起的三种应力的详细描述。
1.1 局部薄膜应力
一般来说压力容器的壳体承受的都是一次总体薄膜应力,指的是它承受的薄膜应力是均匀的。
而对其进行开孔后,会导致其面积的减少,即该截面的承载压力的面积减少,将会破坏其原有的均匀受力的情况,对开孔的周边其变化尤为明显,其应力会明显的增加,而对远离开孔的地方,其应力则基本不受影响。
此种仅在开孔附近发生变化的应力被称为局部薄膜应力,同时若这种应力引起失效,则被称为静力强度失效。
1.2 弯曲应力
当容器开孔后,一般需要有另外的一个壳体与被开孔的容器相互贯通。
即需要设置接管、人孔。
两个相连通的壳体在压力的载荷作用下的直径的增大度一般来说不同,而当对其进行接管后,为了平衡、协调其不一致的变形,壳体自身通常会产生一种被称为边界内力的平衡力。
这些边界内力主要是通过在开孔的边缘或者接管的端部引起二次应力从而使其两部分在连接点上的变形能够相互协调。
若这种应力引起的失效,被称为塑性疲劳破坏。
1.3 峰值应力
主要是由于应力在开孔的边缘或者接管的连接处的分布范围过小或者说分布过于集中导致的应力值过高,被称为峰值应力,该种应力主要会造成疲劳破坏。
当对容器进行开孔时,虽然上述的三种应力同时存在,但是其是否会引起破坏则与其加压、卸压的循环次数也密切相关。
因此,对压力容器强度的设计最重要的是考虑其会发生的破坏的形式;然后根据应力性质的不同,分别采取不同的方式计算应力值,从而使容器既符合安全标准又满足经济最大化的要求。
2 方法
2.1 等面积法
用等面积法计算补强,一般来说只涉及到补强材料的薄膜应力。
用该种方法计算补强,主要考虑的是补强是否在有效的范围内,粗略的认为壳体的高应力是处在同一截面上,其忽略了开孔问题中的应力集中以及应力系数的问题。
2.2 分析法
GB150-2011中新增加分析法是根据我国自主研发的薄壳理论解得到的,设计准则是基于塑性极限与安定分析得出的,通过保证一次加载时有足够的塑性承载能力和反复加载的安定要求来保证安全性,把变形协调处的应力归为等效薄膜应力,和等效总应力,然后进行计算、校核、评定。
分析法适用于开孔率为0.1至0.9,大大扩展了圆柱壳开孔补强设计方法的适用范围。
需要注意分析法计算的原则是,其主要应用在计算内压作用下具有平齐接管的圆筒的开孔补强上,且假定接管和壳题是一个连续的整体结构。
2.3 有限元应力分析法
该种方法主要是通过专用软件来计算,其软件主要是基于弹性应力分析以及塑性失效准则对应力进行分类设计。
其方法原理是,线性化处理危险的截面,从而判断开孔附近的薄膜应力以及整个壳体的应力是否能够达到强度要求。
运用该种方法计算补强,需得注意以下几个方面:第一需要对压力容器以及其组件从理论分析、数值计算以及试验测定等几个方面进行详细的弹性应力的分析。
第二对压力容器采用塑性失效准则进行强度校核。
用极限载荷的方法限制一次应力,从而避免容器整体的塑性失效;用安定载荷的方法控制一次应力以及二次应力;用疲劳寿命法控制容器的总应力以及最大应力,从而防止其循环失效。
第三对弹性应力进行分类,其分类准则为塑性失效准则。
第四确定各类危险度不同的应力的极限值,确定其极限值符合等安全裕度原则。
3 等面积法、分析法与有限元应力分析法的比较
对于三种应力的综合考虑,等面积法中粗略的认为壳体的高应力是处在同一
截面上,其忽略了开孔问题中的应力集中以及应力系数的问题,因此在设计计算开孔率较大、径厚比也比较大的压力容器的开孔问题时,其安全系数无法达到要求。
将分析法用于计算带有径向内伸的接管补强时,需要忽略其接管的内伸的部分,将容器按照具有平齐的接管方式进行补强计算;同时为满足其结构的整体性,需要令补强件、接管以及补强范围内的壳体与平齐的接管采用同样的焊缝形式并且达到同样的无损检测的要求,因此会导致其设计计算的结果太过保守。
而且GB150中的等面积法以及分析法均未曾考虑到峰值应力,因此都不能用来做疲劳设计;而相对来说有限元应力分析法则是以等面积法为基准,对其进行了改进与完善,在考虑三种应力的基础上,对容器的弹性应力以及塑性失效准则又进行了详细的考虑。
4 结语
对于不同的工程实例,计算补强应当认识到大开孔所引起的三种应力对于容器的影响,所以在计算时应当考虑到是否将这三种应力的影响均包括在内了。
对于更准确的开孔补强计算,不能只考虑单一的一种应力,应当将薄膜应力、弯曲应力、局部薄膜应力以及二次应力等众多应力对开孔补强的影响均考虑在内。
设计者必须明确地知道三种方法的不足之处,通过对三种方法的分析汇总,进行优化设计,从而使得设计出的容器更加符合经济、安全等多方面的要求。
参考文献
[1] GB 150一2011.钢制压力容器[S]
[2] 桑如苞.压力容器强度设计技术分析(三)[J].石油化工设计.2007.7(1):47—54
[3] AD压力容器规范(1 983版)[S]。