模糊数学在实际生活中的应用
模糊数学算法

模糊数学算法模糊数学算法在实际生活中有着广泛的应用,它能够处理一些模糊的和不确定的问题,为决策提供一种有效的方法。
本文将从模糊数学的基本概念、模糊集合、模糊关系以及模糊推理等方面进行阐述。
一、模糊数学算法的基本概念模糊数学算法是一种用于处理模糊问题的数学工具。
它通过引入模糊集合的概念,将不确定性和模糊性量化为数值,从而进行分析和决策。
模糊数学算法的核心思想是将传统的二元逻辑扩展为多元逻辑,使得问题能够更好地被描述和解决。
二、模糊集合模糊集合是模糊数学的核心概念之一。
与传统的集合不同,模糊集合中的元素具有一定的隶属度,而不仅仅是0或1。
模糊集合的隶属度表示了元素与集合的关系的程度,它可以是一个实数,取值范围在0到1之间。
模糊集合的隶属度函数可以是线性的,也可以是非线性的,根据具体问题的需要进行选择。
三、模糊关系模糊关系是模糊数学的另一个重要概念。
它是对两个模糊集合之间的关系进行描述。
模糊关系可以用矩阵表示,其中的元素表示两个模糊集合之间的隶属度。
模糊关系可以用来描述模糊的空间关系、时间关系、因果关系等,为问题的分析和决策提供依据。
四、模糊推理模糊推理是模糊数学算法的重要应用之一。
它通过将已知的模糊信息进行推理,得出新的模糊结论。
模糊推理可以分为两个步骤:模糊化和去模糊化。
模糊化将传统的精确信息转化为模糊集合,而去模糊化则将模糊集合转化为具体的数值。
模糊推理可以用于模糊控制、模糊优化和模糊决策等方面,为实际问题的解决提供了一种有效的方法。
模糊数学算法是一种用于处理模糊问题的数学工具,它通过引入模糊集合和模糊关系的概念,将不确定性和模糊性量化为数值,从而进行分析和决策。
模糊推理是模糊数学算法的重要应用之一,它通过将已知的模糊信息进行推理,得出新的模糊结论。
模糊数学算法在实际生活中有着广泛的应用,可以用于模糊控制、模糊优化和模糊决策等方面,为实际问题的解决提供了一种有效的方法。
模糊数学简介

模糊数学简介
模糊数学
模糊数学的产生及背景
模糊数学的思想和原理
模糊数学的应用范围
模糊数学的特点
模糊数学的应用实例
Company Logo
模糊数学的产生及背景
在较长时间里,精确数学及随机数学在描述自然界多 种事物的运动规律中,获得显著效果。但是,在客观 世界中还普遍存在着大量的模糊现象。以前人们回避 它,但是,由于现代科技所面对的系统日益复杂,模 糊性总是伴随着复杂性出现。就必须研究和处理模糊 性。 模糊数学是研究和处理模糊性现象的数学方法。 众所 周知,经典数学是以精确性为特征的。然而,与精确 形相悖的模糊性并不完全是消极的、没有价值的。 甚 至可以这样说,有时模糊性比精确性还要好。
A(x)
x 140 190 140
也可用Zadeh表示法:
A
0 x1
0 .2 x2
0 .4 x3
0 .6 x4
0 .8 x5
1 x6
模糊集的运算
相等:A = B A(x) = B(x); 包含:AB A(x)≤B(x); 并:A∪B的隶属函数为 (A∪B)(x)=A(x) ∪ B(x); 交:A∩B的隶属函数为 (A∩B)(x)=A(x) ∩ B(x); 余:Ac的隶属函数为 Ac (x) = 1- A(x)
模糊集合的表达方式
当论域X为有限集合{X1,X2,… Xn}时, (1)Zadeh表示法 ( ) ( )
A
A( 1 )
A
2
1
...
A
n
2
n
(2)序偶表示法 A={(x1, μA (x1),)(x2, μA (x2)),…(xn ,(μA xn),}
模糊数学例题大全

模糊数学例题大全标题:模糊数学例题大全模糊数学,又称为模糊性数学或者弗晰数学,是一个以模糊集合论为基础的数学分支。
它不仅改变了过去精确数学的观念,而且广泛应用于各个领域,从物理学、生物学到社会科学,甚至。
下面,我们将通过一些具体的例题来展示模糊数学的应用。
例1:模糊逻辑门在经典的逻辑门中,我们使用AND、OR和NOT等操作符来处理布尔值(0或1)。
然而,在现实世界中,很多情况并不是绝对的0或1。
例如,我们可以将“温度高”定义为大于25度,但24度是否算高呢?模糊逻辑门提供了更广泛的定义方式,允许我们使用模糊集合来描述这些边界情况。
例2:模糊聚类分析在统计学中,聚类分析是一种将数据集分类成几个组的方法,其中同一组内的数据点相似度高。
然而,在某些情况下,我们无法用精确的数值来描述数据点的相似度。
这时,模糊聚类分析就派上用场了。
它允许我们使用模糊矩阵来表示数据点之间的相似度,从而更准确地分类数据。
例3:模糊决策树在机器学习中,决策树是一种用于分类和回归的算法。
然而,在某些情况下,我们无法用精确的规则来描述决策过程。
这时,模糊决策树就派上用场了。
它允许我们在决策节点使用模糊规则来代替传统的布尔值规则,从而更好地模拟人类的决策过程。
例4:模糊控制系统在控制系统中,我们通常需要设计一个控制器来控制系统的行为。
然而,在某些情况下,系统的输入和输出并不是绝对的0或1。
这时,模糊控制系统就派上用场了。
它允许我们使用模糊集合来描述系统的输入和输出,从而更准确地控制系统的行为。
例5:模糊图像处理在图像处理中,我们通常需要分类、识别或分割图像中的对象。
然而,在某些情况下,图像中的对象边界并不清晰。
这时,模糊图像处理就派上用场了。
它允许我们使用模糊集合来描述图像中的对象边界,从而更准确地分类、识别或分割图像中的对象。
以上只是模糊数学众多应用的一小部分。
这个领域仍在不断发展,为解决各种复杂的现实问题提供了新的工具和方法。
通过学习模糊数学,我们可以更好地理解和处理那些边界模糊、难以用传统数学方法描述的问题。
模糊数学法的原理及应用

模糊数学法的原理及应用1. 引言模糊数学是一种基于模糊逻辑的数学方法,其目的是处理那些现实世界中存在不确定性和模糊性的问题。
相对于传统的二值逻辑,模糊数学可以更好地刻画事物的模糊性和不确定性,因此被广泛应用于各个领域。
2. 模糊数学的基本概念模糊数学的基本概念包括模糊集合、隶属函数和模糊关系等。
2.1 模糊集合模糊集合是指元素隶属于集合的程度可以是连续的,而不仅仅是二值的。
模糊集合可以用隶属函数来描述,隶属函数将元素和隶属度之间建立了映射关系。
2.2 隶属函数隶属函数描述了元素对模糊集合的隶属程度。
隶属函数通常是一个在区间[0, 1]上取值的函数,表示元素隶属于模糊集合的程度。
2.3 模糊关系模糊关系是指模糊集合之间的关系。
模糊关系可以用矩阵来表示,其中每个元素表示了模糊集合之间的隶属度。
3. 模糊数学的应用模糊数学在各个领域都有广泛的应用,下面将介绍几个常见的应用实例。
3.1 模糊控制模糊控制是一种通过模糊逻辑和模糊推理来进行控制的方法。
模糊控制可以应用于各种物理系统,例如温度控制、汽车驾驶等,通过模糊控制可以更好地应对系统不确定性和模糊性的问题。
3.2 模糊分类模糊分类是一种模糊集合的分类方法。
与传统的二值分类不同,模糊分类可以更好地处理具有模糊边界的样本。
模糊分类可以应用于各种模式识别和数据挖掘任务中。
3.3 模糊优化模糊优化是一种利用模糊数学方法进行优化的技术。
传统的优化方法通常需要准确的数学模型和目标函数,而模糊优化可以在模糊和不确定的情况下进行优化。
3.4 模糊决策模糊决策是一种基于模糊逻辑和模糊推理的决策方法。
模糊决策可以用于各种决策问题,例如投资决策、风险评估等,通过模糊决策可以更好地处理决策中的不确定性和模糊性。
4. 总结模糊数学是一种处理不确定性和模糊性的有效方法,它可以更好地刻画现实世界中存在的模糊信息。
模糊数学在控制、分类、优化和决策等领域都有广泛的应用。
随着人工智能和大数据技术的不断发展,模糊数学的应用将会更加重要和广泛。
模糊集合论及其应用

模糊集合论及其应用模糊集合论是一种重要的数学工具,它能够处理现实世界中的模糊、不确定和不精确的信息,具有广泛的应用前景。
本文首先介绍模糊集合论的基本概念和运算,然后探讨其在决策分析、控制理论、人工智能等领域的应用,并最后展望其未来发展方向。
一、模糊集合论的基本概念和运算1.1 模糊集合的定义在传统的集合论中,一个元素只能属于集合或不属于集合,不存在中间状态。
而在模糊集合论中,一个元素可以同时属于多个集合,并且对于不同的元素,其属于集合的程度也不同。
因此,模糊集合论将集合的概念进行了扩展,使其能够更好地描述现实世界中的不确定性和模糊性。
设X为一个非空的集合,称为全集,一个模糊集A是一个从X到[0,1]的函数,即:$$A(x):Xrightarrow[0,1]$$其中,A(x)表示元素x属于模糊集A的隶属度,取值范围为[0,1]。
当A(x)=1时,表示x完全属于A;当A(x)=0时,表示x完全不属于A;当0<A(x)<1时,表示x部分属于A。
1.2 模糊集合的运算模糊集合的运算包括模糊集合的交、并、补和乘积等。
模糊集合的交:对于两个模糊集合A和B,其交集为:$$(Acap B)(x)=min{A(x),B(x)}$$模糊集合的并:对于两个模糊集合A和B,其并集为:$$(Acup B)(x)=max{A(x),B(x)}$$模糊集合的补:对于一个模糊集合A,其补集为:$$(eg A)(x)=1-A(x)$$模糊集合的乘积:对于两个模糊集合A和B,其乘积为:$$(Atimes B)(x,y)=min{A(x),B(y)}$$其中,(A×B)(x,y)表示元素(x,y)属于模糊集合A×B的隶属度。
1.3 模糊关系和模糊逻辑在模糊集合论中,还有两个重要的概念,即模糊关系和模糊逻辑。
模糊关系是指一个元素对另一个元素的隶属度,可以用矩阵表示。
例如,设A和B是两个模糊集合,它们之间的模糊关系R可以表示为: $$R=begin{bmatrix} R_{11} & R_{12} R_{21} & R_{22}end{bmatrix}$$其中,Rij表示元素i与元素j之间的隶属度。
模糊推理方法

模糊推理方法模糊推理方法是一种基于模糊逻辑的推理方法,它不同于传统的二值逻辑推理,而是考虑了事物之间的不确定性和模糊性。
在现实生活中,我们经常面对各种模糊的问题,例如天气预报、医学诊断、金融风险评估等等,这些问题都存在一定的模糊性和不确定性。
而模糊推理方法正是为了解决这些模糊问题而被提出的。
模糊推理方法的核心是模糊集合理论,它将模糊性作为一个数学概念进行描述。
在模糊集合理论中,每个元素都可以具有一定的隶属度,表示该元素属于该模糊集合的程度。
通过模糊集合的隶属度,我们可以对事物进行模糊分类和模糊推理。
模糊推理方法主要包括模糊逻辑推理和模糊数学推理两种形式。
模糊逻辑推理是通过对模糊命题的模糊逻辑运算,推导出模糊结论的过程。
模糊数学推理则是利用模糊数学的方法,通过模糊关系的运算,得出模糊结论的过程。
在模糊推理方法中,常用的推理规则包括模糊蕴涵规则、模糊合取规则、模糊析取规则等。
这些推理规则可以根据具体的问题和需求进行选择和组合,以实现对模糊问题的推理和决策。
模糊推理方法的应用非常广泛。
在天气预报中,由于气象数据的不确定性和模糊性,传统的二值逻辑推理往往无法准确预测天气情况。
而模糊推理方法可以通过对多个气象数据的模糊运算,得出更准确的天气预报结果。
在医学诊断中,由于病情的复杂性和多样性,传统的二值逻辑推理往往无法全面考虑各种可能性。
而模糊推理方法可以通过对病情特征的模糊分类和模糊推理,提供更全面的医学诊断结果。
除了天气预报和医学诊断,模糊推理方法还广泛应用于金融风险评估、交通流量预测、工程管理等领域。
在金融风险评估中,由于金融市场的不确定性和复杂性,传统的二值逻辑推理往往无法准确评估风险。
而模糊推理方法可以通过对各种金融指标的模糊运算,得出更准确的风险评估结果。
在交通流量预测中,由于交通数据的不确定性和随机性,传统的二值逻辑推理往往无法准确预测交通流量。
而模糊推理方法可以通过对多个交通数据的模糊运算,得出更准确的交通流量预测结果。
模糊数学方法及其应用
i=j i≠j i , j=1,2,…,n
适当选取M,使得0≤rij≤1。 (2)欧氏距离 欧氏距离 见相似性度量聚类中的相似系数。 见相似性度量聚类中的相似系数。
12
(3)切比雪夫距离 切比雪夫距离
d ij = ∨ xik − x jk
k =1
m
(i, j = 1,2, L , n)
建立模糊相似矩阵的其他方法,就不再介绍了。 建立模糊相似矩阵的其他方法 就不再介绍了。 就不再介绍了 三、聚类 1.模糊等价矩阵 模糊等价矩阵 给定U上的一个模糊关系Rij=[rij]n×n, 若它满足: × 若它满足 (1)自反性 rij=1 ); 自反性( 自反性 ; (2)对称性 rij=rji ); 对称性( 对称性 ; (3)传递性 R o R ⊆ R ); 传递性( 传递性 ; 上的一个模糊等价矩阵 模糊等价矩阵。 则称R是U上的一个模糊等价矩阵。
第j类中第 个变量的平均值 x 类中第k个变量的平均值 类中第 个变量的平均值:
x
( j) k
( j) k
1 = nj
( xikj ) ∑ i =1
nj
( (k = 1,2,L, m); x ( j ) = ( x1( j ) , x 2( j ) , L, x mj ) )
1 n x k = ∑ xik (k = 1,2, L , m); x = ( x1 , x 2 , L , x m ) n i =1
第十一章 模糊数学方法及其应用
§1 模糊聚类分析(参考内容) §2 模糊模型识别(参考内容)
1
前言 模糊数学是用数学方法研究和处理具有“模糊性” 模糊数学是用数学方法研究和处理具有“模糊性” 现象的数学。 现象的数学。所谓的模糊性主要是指客观事物差异 的中间过渡界线的“不分明性” 的中间过渡界线的“不分明性”。如储层的含油气 油田规模的大小,成油地质条件的优劣, 性、油田规模的大小,成油地质条件的优劣,圈闭 的形态,岩石的颜色等。 的形态,岩石的颜色等。这些模糊变量的描述或定 义是模糊的,各变量的内部分级没有明显的界线。 义是模糊的,各变量的内部分级没有明显的界线。 地质作用是复杂的, 地质作用是复杂的,对其产生的地质现象有些可 以采用定量的方法来度量, 以采用定量的方法来度量,有些则不能用定量的数 值来表达, 值来表达,而只能用客观模糊或主观模糊的准则进 行推断或识别。 行推断或识别。
模糊算法的基本原理与应用
模糊算法的基本原理与应用模糊算法是20世纪60年代提出的一种新的数学分析方法,具有广泛的应用领域,如控制理论、人工智能、模式识别、决策分析等。
本文将介绍模糊算法的基本原理以及在实际应用中的一些案例。
一、模糊算法的基本原理模糊算法的核心思想是将不确定性和模糊性考虑进来,将数据分为模糊集合,不再是传统意义上的精确集合。
模糊集合是指一个元素可能属于这个集合的程度,它用隶属度函数来表示。
举个例子,一个人的身高不可能绝对的是1米80,可能是1米78或者1米82,那么身高就可以看成一个模糊集合,每个身高值对应一个隶属度。
隶属度函数一般用μ(x)表示,μ(x)的取值范围是[0,1],它表示元素x属于该模糊集合的程度。
为了使模糊算法具有可操作性,需要建立一套模糊集合运算规则。
常用的包括交运算和并运算。
1. 交运算:模糊集合A和B的交集,定义为:A ∩B = { (x, min(μA(x), μB(x))) | x∈X }其中X是数据集合。
这个公式的意思是,对于集合A和B中都出现的元素x,它们的隶属度的最小值就是A∩B中x的隶属度。
2. 并运算:模糊集合A和B的并集,定义为:A ∪B = { (x, max(μA(x), μB(x))) | x∈X }其中X是数据集合。
这个公式的意思是,对于集合A和B中出现的元素x,它们的隶属度的最大值就是A∪B中x的隶属度。
二、模糊算法在实际应用中的案例1. 模糊控制系统模糊控制系统是模糊算法应用最广泛的领域之一。
传统的控制系统需要建立数学模型,对系统进行分析和设计。
而模糊控制系统则是基于经验的,采用模糊集合来描述系统状态,从而规划控制策略。
比如在家电产品中,智能洗衣机的控制系统就采用了模糊控制算法,根据衣物的不同湿度、污渍程度、质地等因素,自动调整洗涤方案,达到最佳的洗涤效果。
2. 模糊识别系统模糊识别系统是指通过对事物进行模糊描述和抽象,进行模式匹配和分类的一类智能系统。
它可以处理各种类型的信息,比如图像、声音、文本等等。
模糊与运筹学
模糊与运筹学
模糊与运筹学是一门交叉学科,它将模糊理论和运筹学的方法相结合,用于解决各种实际问题。
模糊理论是一种处理不确定性和模糊性的数学工具,它可以处理那些不够精确或无法确定的信息。
在运筹学中,我们通常面对的是决策问题,需要在有限的资源和时间下做出最优的选择。
模糊与运筹学结合后,可以更好地处理这种决策问题,使得决策更加科学和准确。
在实际应用中,模糊与运筹学常常用于生产调度、供应链管理、金融风险评估等领域。
例如,在生产调度中,我们需要考虑不确定的因素,如机器故障、工人缺席等,这些因素可能导致生产计划的延误或资源的浪费。
通过运用模糊与运筹学方法,我们可以更好地预测潜在的问题,并采取相应的措施来降低风险。
在供应链管理中,我们需要考虑多个环节的配合和协作,以实现高效的物流和库存管理。
模糊与运筹学可以帮助我们确定最佳的物流路线和最优的库存水平,以最大程度地满足客户需求并降低成本。
在金融风险评估中,模糊与运筹学可以帮助我们预测市场的不确定性和波动性,以制定更加科学的投资策略。
总之,模糊与运筹学是一门重要的交叉学科,它将模糊理论和运筹学的方法相结合,用于解决各种实际问题。
在未来,随着大数据和人工智能的发展,模糊与运筹学将会变得更加重要和广泛应用。
- 1 -。
工程模糊数学方法及其应用
工程模糊数学方法及其应用
工程模糊数学是一种将模糊数学理论应用于工程领域的方法。
模糊数学是一种处理不确定性问题的数学方法,它可以用来处理模糊的、不完全的信息,因此在工程领域中有着广泛的应用。
在工程领域中,很多问题都存在不确定性,例如:环境污染、交通流量、市场需求等等。
这些问题的不确定性往往导致传统的精确数学方法无法有效处理。
而工程模糊数学方法则可以通过建立模糊数学模型来解决这些问题。
工程模糊数学方法主要包括模糊逻辑、模糊集合、模糊关系、模糊推理等方面。
其中,模糊逻辑是将传统的二元逻辑扩展为多元逻辑,可以用于处理多个变量之间的不确定性关系;模糊集合是将传统的集合概念扩展为模糊集合,可以用于描述模糊的、不确定的概念;模糊关系是将传统的关系扩展为模糊关系,可以用于描述模糊的、不确定的关系;模糊推理是一种基于模糊逻辑和模糊关系的推理方法,可以用于处理模糊的、不确定的问题。
工程模糊数学方法在工程领域中有着广泛的应用,例如:工程设计、控制系统、决策分析、优化问题等等。
通过使用工程模糊数学方法,可以有效地处理不确定性问题,提高工程设计的准确性和可信度,为工程实践提供有效的支持。
- 1 -。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 浅谈模糊数学及在实际中的一些应用 摘要:美国数学家查德早在1965年发表论文《模糊集合》,标志着模糊数学的诞生。这门新兴学科的产生使得心理学、语言学等过去与数学不相关的学科能够用数学化进行处理和描述,大大地扩展了数学的应用范围。目前,模糊数学体系已基本形成。系统学科的发展需要促使模糊数学的产生,在多变量的大系统中,模糊性与精确性构成了一复杂的矛盾体,模糊数学成为描述模糊信息强有力的数学工具。在深入研究中发现,在决策对象与约束条件较为模糊的情况下,将模糊数学理论应用于决策研究,便成为模糊决策技术工具,大大降低了决策研究的难度系数,从而获得更好的决策结果。本次研究主要阐述模糊数学的产生及基本理论,从而分析模糊数学在考古、医学、模糊识别等领域的实际运用。 关键字:模糊数学;发展;应用; Abstract: American mathematician Chad as early as in 1965 published "fuzzy set", marks the birth
of fuzzy mathematics. The generation of this new discipline in the past such as psychology, linguistics and mathematical unrelated disciplines can use mathematical processing and description, enlarges the application range of the mathematics. At present, fuzzy system has basically formed. System subject to prompt the development of fuzzy mathematics, in multivariable system, fuzziness and accuracy make a contradiction of the complex, fuzzy mathematics to describe fuzzy information powerful mathematical tool. Found in the study, objects and constraints in the decision under the condition of relatively fuzzy, fuzzy mathematics theory was applied to the decision-making research, become fuzzy decision technology tools, greatly reduced the difficulty coefficient of decision-making research, in order to gain better decisions. This research mainly elaborated and the basic theory of fuzzy mathematics, so fuzzy mathematical analysis in archaeology, medicine and the practical application of fuzzy recognition and other fields. Key words: fuzzy mathematics; Development; Application 2
一、模糊数学的产生和发展 经典集合论表明,集合是由确定的元素组成,元素本身具有确定性,且元素与集合的关系也是十分明确的,要么属于,要么不属于,不存在这之间的情况。但是,现实生活中,很多事物具有模糊性、不确定性,这样的集合理论局限于模糊概念的处理。数学家们为了能够解决模糊概念的问题,经过苦苦专研,最终美国控制论专家扎德教授创立了模糊数学,并提出了“模糊数学集合论”。目前,模糊数学体系已基本形成。系统学科的发展需要促使模糊数学的产生,在多变量的大系统中,模糊性与精确性构成了一复杂的矛盾体,模糊数学成为描述模糊信息强有力的数学工具。 模糊数学的历史已有22年之久,这门新兴学科的发展迅速,将心理学、语言学等过去与数学不相关的学科联系起来,大大地扩展了数学的应用范围。随着模糊数学理论研究和发展,模糊数学的应用也得到了很大的扩展,广泛应用于心理学、社会学、生态学、语言学等学科领域。在深入研究中发现,在决策对象与约束条件较为模糊的情况下,将模糊数学理论应用于决策研究,便成为模糊决策技术工具,大大降低了决策研究的难度系数,从而获得更好的决策结果。 二、模糊数学的基本理论及其方法 扎德在论文“Fuzzy Sets”正视了经典集合论中元素与集合的关系:要么属于,要么不属于。[3]而生活中事物之间的关系并不是“非此即彼”那么简单,具有一定的复杂性和不确定性,因此他提出了“模糊数学”的概念来对事物间的关联进行描述,因此模糊数学的理论便是以模糊集为基础。 (一)集合及其特征函数 1、集合 论域E 中具有的属性P元素作为一个整体称为集合。 (ⅱ)集合的运算 集合中常用的运算包括:交(∩)、并(∪)、补 2、特征函数 对于论域E上的集合A和元素x,如有以下函数:
的特征函数为集合则称当当A,0,1x
AxAxxAA
特征函数表达了元素x对集合A的隶属程度。可以用集合来表达各种概念的精确 3
数学定义和各种事物的性质。 (二)模糊集合 查德以精确数学集合论为基础,推出“模糊集合”的概念,用作表现模糊事物,在模糊集合中建立运算及其运算规律。在模糊集合中,元素与集合的关系不单单只是“属于”或“不属于”,从属条件不再是“0”或“1”,有明确的界限,而是介于“0”和“1”之间,存在过度的元素。 1、概念的模糊性 许多概念集合具有模糊性,例如: 年龄:年轻、年老 成绩:好、差 外貌:美、丑 身高:高、矮 头发:长、短 2、隶属度函数
如果一个集合的特征函数()Ax不是{0,1}二值取值,而是在闭区间[0,1]中取值,则()Ax是表示一个对象x隶属于集合A的程度的函数,称为隶属度函数。
AxAxxAxxAA当在一定程度上属于当当,0,10,1
隶属度函数用精确的数学方法描述了概念的模糊性。 3、模糊子集 ① 设集合A为集合U的一个子集,x为U中的任意元素,用隶属度函数()Ax
来表示x对A的隶属程度,则称A是U的一个模糊子集,记为{(),}AiiAxx。模糊子集通常简称模糊集。其中模糊集 A是由隶属函数()Ax唯一确定,一般将二者看为等同的。 ② 模糊集可以用下式表示 1° Zadeh表示法
1212()()()nn
AxAxAx
Axxx 4
或 nnAAAxxxxxxA2211 其中()iiAxx表示ix对模糊集A的隶属度, (1,2,,)ixin称为模糊子集A的支持点,“+”称为查德记号,而不是加号表示求和。 例1 假设以人的岁数作为论域0,120U,单位是“岁”,那么“年轻”,“年老”,都属于U的模糊子集。其隶属函数表示为:
Au
=“年轻”(u)=121025251251205uuu(*)
Bu
=“年老”(u)=120050501501205uuu (**)
(*)表示:年龄不超过25岁的人,对子集“年轻”的隶属函数值是1,则表示一定属于这一子集;而年龄超过25岁的人,子集“年轻”的隶属函数值按122515u
来进行计算,例如年龄为40岁的人,隶属函数值 1240254010.15Au。 同理,由(**)得出:550.5Bu,600.8Bu。 三、模糊数学在实际中的一些应用 现实生活中会遇到很多界限不分明的问题,且不能单纯地规定某种确切的理论去解决,因为问题具有复杂性和模糊性,这时模糊数学理论变成了解决问题的有效工具。运用模糊理论解决模糊问题能有更好的效果。[5]人脑具备较强的处理模糊信息的能力,能在大量的模糊信息中进行识别处理较为复杂的问题。识别模式是计算机系统运用的主要模式,在现代生活中,计算机通过运用模糊技术可以大大地提高系统识别能力,模糊技术的应用也越来越广发。在模糊数学的应用中,经常应用于聚类分析、模式识别和综合评判等方面。 (一)模糊数学在考古学的应用 随着科学的不断进步,考古学也在不断发展,为了保证考古结果的精确性,需要对考古材料进行定量分析,而分析中发现,考古对象所提供的信息便是大量的模糊信息,不确定的因素会影响结果的判断,因此模糊数学的理论与方法也广泛应用于考古