基于高阶剪切变形理论梁的热屈曲和后屈曲分析
薄板的屈曲

115第六章 薄板的屈曲钢结构大型梁、柱等构件,通常都由板件组合而成,为了节省材料,板件通常宽而薄,薄板在面内压力作用下就可能失稳,并由此导致整个构件的承载力下降;另外,在构件连接的节点也存在板件失稳的可能性。
因此,对板件失稳和失稳后性态的研究也是钢结构稳定的重要问题。
板根据其厚度分为厚板、薄板和薄膜三种。
设板的最小宽度为b ,厚度为t 。
当t /b >1/5~1/8时称为厚板,这时横向剪力引起的剪切变形与弯曲变形大小同阶,分析时不能忽略剪切变形的影响。
当1/80~1/100<t /b <1/5~1/8时称为薄板,此时横向剪力引起的剪切变形与弯曲变形相比可以忽略不计。
当板极薄,t /b <1/80~1/100时,称为薄膜,薄膜没有抗弯刚度,靠薄膜拉力与横向荷载平衡。
平分板的厚度且与板的两个面平行的平面称为中面。
本章只介绍等厚度薄板中面内受力的板的弹性失稳。
与前面所介绍过的失稳问题比较,板的失稳有如下几个特点: ⑴作用于板中面的外力,不论是一个方向作用有外力还是在两个方向同时作用有外力,屈曲时板产生的都是出平面的凸曲现象,产生双向弯曲变形,因此在板的任何一点的弯矩x M 、y M 和扭矩xy M 以及板的挠度w 都与此点的坐标(x ,y )有关。
⑵板的平衡方程属于二维偏微分方程,除了均匀受压的四边简支的理想矩形板可以直接求解其分岔屈曲荷载外,对于其他受力条件和边界条件的板,用平衡法很难求解。
可以用能量法(如瑞利—里兹法,伽辽金法)或者数值法(如差分法、有限元法等)求解屈曲荷载,在弹塑性阶段,用数值法可以得到精度很高的板屈曲荷载。
⑶理想薄板失稳属于稳定分岔失稳。
对于有刚强侧边支承的板,凸屈后板的中面会产生薄膜应变,从而产生薄膜应力。
如果在板的一个方向有外力作用而凸曲时,在另一个方向的薄膜拉力会对它产生支持作用,增强板的抗弯刚度进而提高板的强度,这种凸屈后的强度提高称为屈曲后强度。
基于高阶剪切变形理论的四边形求积元板单元及其应用

基于高阶剪切变形理论的四边形求积元板单元及其应用申志强;夏军;宋殿义;程盼【期刊名称】《力学学报》【年(卷),期】2018(050)005【摘要】近年来由各类新型复合材料或功能梯度材料构成的板结构在工程领域得到了广泛应用,其显著特点是材料性能沿板厚变化.为合理考虑横向剪切应变,许多学者基于Reddy高阶剪切变形理论,构建了不同的有限元单元对该类板结构进行分析,但其中满足C1连续条件的单元相对较少.本文基于Reddy高阶剪切变形理论,采用求积元方法,建立了C1连续的四边形板单元.利用该单元对均质材料、复合材料、功能梯度材料构成的等厚度矩形板、变厚度矩形板及等厚度斜板的线弹性弯曲和自由振动问题进行了计算分析,并与现有文献中的相应计算结果进行了对比.研究表明:基于高阶剪切变形理论的四边形求积元板单元具有较高的计算效率和良好的适应性,文中各类材料构成的等/变厚度矩形板及等厚度斜板均只需1个单元即可得到理想的计算结果.对于等/变厚度矩形板,可仅使用9×9个积分点,而对于等厚度斜板,随着斜角的增大,所需积分点的数目逐渐增多至15×15.该四边形求积元板单元可进一步用于新型复合材料板的非线性分析.【总页数】11页(P1093-1103)【作者】申志强;夏军;宋殿义;程盼【作者单位】国防科技大学军事基础教育学院,长沙410072;国防科技大学军事基础教育学院,长沙410072;国防科技大学军事基础教育学院,长沙410072;国防科技大学空天科学学院,长沙410072【正文语种】中文【中图分类】O343.1【相关文献】1.一种基于高阶剪切变形板模型的有限元算法 [J], 周云;孙秦2.基于1,2-3高阶剪切变形理论的四边形层合板单元列式 [J], 陈荣庚;张启光;3.基于高阶剪切变形理论梁的热屈曲和后屈曲分析 [J], 于旭光;申幸幸;郑宏4.基于高阶剪切变形理论梁的热屈曲和后屈曲分析 [J], 于旭光;申幸幸;郑宏;5.基于一阶剪切变形理论的新型复合材料层合板单元 [J], 岑松;龙驭球;姚振汉因版权原因,仅展示原文概要,查看原文内容请购买。
【国家自然科学基金】_后屈曲分析_基金支持热词逐年推荐_【万方软件创新助手】_20140730

2012年 序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
科研热词 屈曲 非线性弹性土 非线性几何关系 非线性 静水压力 轴向碰撞 螺旋屈曲 细长柔性杆 管道 管柱 等效刚度模型 深海 模态转变 桩基 有限元法 有限元 最大挠度 曲线封闭 斜直圆筒 微分求积单元 弹塑性 弧长法 应力波 屈曲和后屈曲特性 失稳 后屈曲分析 后屈曲 动力屈曲 加筋柱壳 分岔分析 优化设计 代理模型 maple eu打靶法 平衡路径 非线性有限元 铺管形状 轴向压缩 脱粘 稳定性 盒段 渐进破坏 混沌运动 海底管道 横向屈曲 桩基的稳定性 极限分析 机理分析 有限元法 有限元分析 最新进展 数值计算 数值解 摄动法 拟静力试验 抗震性能 承载能力 弹性边界条件 弯曲型耗能梁 应力集中 带钢 屈曲后屈曲 屈曲 失稳类型 失效表征 多墙 复合材料圆柱壳 圆柱壳 参数共振 动力稳定 加筋板 功能梯度杆 分岔 内聚单元 内力 偏心支撑框架 倾斜浪 传载机制 临界荷载 临界应力 中厚蒙皮 galerkin方法
推荐指数 7 4 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2011年 序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
屈曲分析实例解析

屈曲分析屈曲分析- 分析内容屈曲分析主要用于研究结构在特定载荷下的稳定性以及确定结构失稳的临界载荷,屈曲分析包括:线性屈曲和非线性屈曲分析。
线弹性失稳分析又称特征值屈曲分析;线性屈曲分析可以考虑固定的预载荷,也可使用惯性释放;非线性屈曲分析包括几何非线性失稳分析,弹塑性失稳分析,非线性后屈曲(Snap-through)分析。
欧拉屈曲buckling结构丧失稳定性称作(结构)屈曲或欧拉屈曲。
L.Euler从一端固支另一端自由的受压理想柱出发.给出了压杆的临界载荷。
所谓理想柱,是指起初完全平直而且承受中心压力的受压杆。
设此柱是完全弹性的,且应力不超过比例极限,若轴向外载荷P小于它的临界值,此杆将保持直的状态而只承受轴向压缩。
如果一个扰动(如—横向力)作用于杆,使其有一小的挠曲,在这一扰动除去后。
挠度就消失,杆又恢复到平衡状态,此时杆的直的形式的弹性平衡是稳定的。
若轴向外载荷P大于它的临界值,柱的直的平衡状态变为不稳定,即任意扰动产生的挠曲在扰动除去后不仅不消失,而且还将继续扩大,直至达到远离直立状态的新的平衡位置为止,或者弯折。
此时,称此压杆失稳或屈曲(欧拉屈曲)。
屈曲分析- 分析分类线性屈曲:是以小位移小应变的线弹性理论为基础的,分析中不考虑结构在受载变形过程中结构构形的变化,也就是在外力施加的各个阶段,总是在结构初始构形上建立平衡方程。
当载荷达到某一临界值时,结构构形将突然跳到另一个随遇的平衡状态,称之为屈曲。
临界点之前称为前屈曲,临界点之后称为后屈曲。
侧扭屈曲:梁的截面一般都作成窄而高的形式,对截面两主轴惯性矩相差很大。
如梁跨度中部无侧向支承或侧向支承距离较大,在最大刚度主平面内承受横向荷载或弯矩作用时,荷裁达一定数值,梁截面可能产生侧向位移和扭转,导致丧失承载能力,这种现象叫做梁的侧向弯扭屈曲,简称侧扭屈曲。
理想轴向受压直杆的弹性弯曲屈曲:即假定压杆屈曲时不发生扭转,只是沿主轴弯曲。
但是对开口薄壁截面构件,在压力作用下有可能在扭转变形或弯扭变形的情况下丧失稳定,这种现象称为扭转屈曲或弯扭屈曲。
混凝土梁的屈曲分析方法

混凝土梁的屈曲分析方法一、概述混凝土梁是结构中常见的构件,其在受力过程中会出现屈曲现象。
因此,混凝土梁的屈曲分析是建筑结构设计中必不可少的一环。
本文将介绍混凝土梁的屈曲分析方法,包括理论分析方法和实验方法。
二、理论分析方法1. 弹性理论方法弹性理论方法是混凝土梁屈曲分析中最为常用的方法之一。
其基本思想是将混凝土梁看做一个弹性体,利用弹性力学理论分析其受力情况。
具体步骤如下:(1)建立混凝土梁的弹性力学模型;(2)确定混凝土梁的边界条件;(3)解出混凝土梁的位移场和应力场;(4)根据位移场和应力场计算混凝土梁的屈曲载荷。
2. 塑性理论方法塑性理论方法是另一种常用的混凝土梁屈曲分析方法。
其基本思想是将混凝土梁看做一个塑性体,利用塑性力学理论分析其受力情况。
具体步骤如下:(1)建立混凝土梁的塑性力学模型;(2)确定混凝土梁的边界条件;(3)根据应变硬化规律和流动规律计算混凝土梁的塑性应力场;(4)根据塑性应力场计算混凝土梁的屈曲载荷。
三、实验方法1. 静态试验方法静态试验方法是混凝土梁屈曲分析中最为常用的实验方法之一。
其基本思想是在实验室中对混凝土梁进行一系列加载,记录其变形和载荷数据,从而得出混凝土梁的屈曲载荷。
具体步骤如下:(1)制备混凝土梁试件,包括尺寸、配筋等参数;(2)进行预应力或预加载处理;(3)按照一定的步长逐渐增加载荷;(4)记录载荷和变形数据;(5)根据载荷和变形数据绘制载荷-变形曲线和变形-应力曲线;(6)根据载荷-变形曲线计算混凝土梁的屈曲载荷。
2. 动态试验方法动态试验方法是一种较为复杂的混凝土梁屈曲分析方法。
其基本思想是在实验室中对混凝土梁进行冲击或震动加载,记录其变形和载荷数据,从而得出混凝土梁的屈曲载荷。
具体步骤如下:(1)制备混凝土梁试件,包括尺寸、配筋等参数;(2)进行预应力或预加载处理;(3)进行冲击或震动加载;(4)记录载荷和变形数据;(5)根据载荷和变形数据绘制载荷-变形曲线和变形-应力曲线;(6)根据载荷-变形曲线计算混凝土梁的屈曲载荷。
整体屈曲分析一阶分析二阶分析

整体屈曲分析一阶分析二阶分析
钢结构标准中要求按照结构二阶效应系数的大小判断结构设计的分析方法是采用一阶分析法还是二阶分析法。
根据标准5.1.6条,当结构二阶效应系数大于0.1时,需要进行二阶效应分析。
标准对结构二阶效应系数的计算区分了不同的结构类型。
对弯曲型和剪弯型变形形态的一般钢结构,包括钢框架支撑结构、复杂钢结构及钢结构混凝土混合结构等按钢结构标准5.1.6-2公式进行结构二阶效应系数的计算,该系数按照整体结构最低阶弹性临界荷载与荷载设计值比值得到的临界因子取倒数得到。
因此,要按照钢结构标准计算结构二阶效应系数,需要对结构进行弹性屈曲分析,得到结构整体最低阶的屈曲因子。
需要注意排除可能出现的一些最薄弱构件的屈曲模态。
PKPM的SATWE软件对一般钢结构,如钢框架支撑体系等,并未完全按照新钢标的公式计算二阶效应系数,而是通过二阶效应系数与刚重比的关系,按照刚重比结果来计算,并输出结构两个方向的二阶效应系数。
也可使用PMSAP软件对结构进行屈曲分析,按照计算的屈曲因子,结合钢结构标准5.1.6-2公式得结构的二阶效应系数。
结合某框架支撑结构案例,按照两种方法分别计算结构的二阶效应系数,并对结果进行对比分析,对设计师在设计中如何正确执行规范提供相
关建议。
屈曲分析分析原理

屈曲分析分析原理屈曲分析原理字数 765预计阅读时间 5min1、小位移和大位移小位移:在利用欧拉公式计算时,属于线弹性计算,忽略了结构的变形对结构的影响,结构的刚度矩阵是不变的。
而实际上,结构的变形是可以影响荷载的作用效应的。
如下图所示。
对杆件施加一定的荷载后,杆件会产生相应的变形,在这个变形的基础上,荷载会继续作用在这个(刚度矩阵)已经改变的杆件上从而导致二阶变形。
为了更好理解,我用银行利息的例子比喻一下这个现象。
比如我拿一万元钱作为荷载,施加到银行这个杆件上,那么它会产生相应的利息。
之后我这个本金加利息的基础上再次对银行施加荷载以获取进一步的利息。
这就是大位移:几何非线性的,考虑了结构变形的影响。
小位移和大位移的计算公式:2、几何刚度在大位移计算中,考虑了结构变形对荷载作用效应的影响,也就是结构刚度的改变,于是引入几何刚度的概念。
同样用一个比喻来帮助大家理解几何刚度的概念,就是拔河。
在大家的感性认识中,绳子在张紧(受拉)状态下的刚度是不是要比松弛(不受力)状态下的刚度大呢?而实际上,绳子的弹性刚度是没有改变的,所以随着外力的改变,我们引入几何刚度来描述这一现象。
3、计算原理Midas的线性屈曲分析可计算包含桁架单元、梁单元、板单元、实体单元的结构的临界荷载系数和相应的屈曲模态。
结构的静力平衡方程如下:结构的几何刚度矩阵由各单元的几何刚度矩阵构成,各单元的几何刚度矩阵与构件的内力相关。
将几何刚度矩阵用临界荷载系数与使用初始荷载计算的几何刚度矩阵的乘积表示如下:上述平衡方程失稳的条件是存在奇异解,即等效刚度矩阵的行列式的值为零。
即线性屈曲分析就是解下式的特征值,屈曲分析中的特征值就是临界荷载系数。
所谓临界荷载就是初始荷载乘以临界荷载系数的荷载值,表示结构作用临界荷载时结构会发生屈曲(失稳)。
结构失稳时常伴随大位移变形和材料屈服,所以屈曲分析常要求考虑几何非线性线或材料非线性。
梁的有限元分析原理 - 考虑剪切变形影响的梁单元

代人
比较:弯曲梁 单元中的单刚
得到:
等截面梁单元有限元分析
8
长沙理工大学
小结
剪切变形的影响通过系数b反映在刚度矩阵中,使刚度减弱。 对矩形截面:
,当l >>h,b趋于0,可以忽略剪力变形的影响。
等截面梁单元有限元分析
9
长沙理工大学
Timoshenko梁单元
铁木辛柯梁单元——采用两个独立变量 挠度 w
几何关系,曲率
对比
等截面梁单元有限元分析
3
最小势能原理
长沙理工大学
k为截面剪切校正因子
1.经典梁单元 2.铁木辛柯梁单元
——C1型单元 ——C0型单元
等截面梁单元有限元分析
4
长沙理工大学
在经典梁单元基础上引入剪切变形的影响. 挠度叠加
结点位移
其中
采用不考虑剪切变形梁单元的w相同的Hermite插值; 采用2结点的Lagrange插值,即线性插值。
解决方法
假设剪切应变
代替插值函数
计算泛函的剪切应变能时,θ采用低一 阶,和dw/dx同阶插值函数代替原插值 函数
18
等截面梁单元有限元分析
长沙理工大学
等截面梁单元有限元分析
——考虑剪切变形的梁单元
2014.4.13
1
长沙理工大学
介绍.
轴力构件 axial elements 杆单元
受弯构件 flexural elements 梁单元
考虑剪切变形的梁单元
等截面梁单元有限元分析
2
长沙理工大学 假设:梁内的横向剪切力Q所产生的剪切变形将引起梁的附加挠度, 并使原来垂直于中面的截面变形后不再和中面垂直,而且发生翘曲。 考虑剪切变形的梁单元 但在这里,假设原来垂直于中面的截面变形后仍保持为平面。 几何描述