2016年10月全国自考概率论与数理统计(经管类)真题试卷(题后含答

合集下载

历年自考概率论与数理统计(经管类)真题及参考答案(全套)

历年自考概率论与数理统计(经管类)真题及参考答案(全套)

2007年4月份全国自考概率论与数理统计(经管类)真题参考答案一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.A. AB. BC. CD. D答案:B解析:A,B互为对立事件,且P(A)>0,P(B)>0,则P(AB)=0P(A∪B)=1,P(A)=1-P(B),P(AB)=1-P(AB)=1.2.设A,B为两个随机事件,且P(A)>0,则P(A∪B|A)=()A. P(AB)B. P(A)C. P(B)D. 1答案:D解析:A,B为两个随机事件,且P(A)>0,P(A∪B|A)表示在A发生的条件下,A或B发生的概率,因为A发生,则必有A∪B发生,故P(A∪B|A)=1.3.下列各函数可作为随机变量分布函数的是()A. AB. BC. CD. D答案:B解析:分布函数须满足如下性质:(1)F(+∞)=1,F(-∞)=0,(2)F(x)右连续,(3)F(x)是不减函数,(4)0≤F(x)≤1.而题中F1(+∞)=0;F3(-∞)=-1;F4(+∞)=2.因此选项A、C、D中F(x)都不是随机变量的分布函数,由排除法知B正确,事实上B满足随机变量分布函数的所有性质.4.设随机变量X的概率密度为A. AB. BC. CD. D答案:A5.设二维随机变量(X,Y)的分布律为(如下图)则P{X+Y=0}=()A. 0.2B. 0.3C. 0.5D. 0.7答案:C解析:因为X可取0,1,Y可取-1,0,1,故P{X+Y=0}=P{X=0,Y=0}+P{X=1,Y=-1}=0.3+0.2=0.5.6.设二维随机变量(X,Y)的概率密度为A. AB. BC. CD. D答案:A7.设随机变量X服从参数为2的泊松分布,则下列结论中正确的是()A. E(X)=0.5,D(X)=0.5B. E(X)=0.5,D(X)=0.25C. E(X)=2,D(X)=4D. E(X)=2,D(X)=2答案:D解析:X~P(2),故E(X)=2,D(X)=2.8.设随机变量X与Y相互独立,且X~N(1,4),Y~N(0,1),令Z=X-Y,则D(Z)=()A. 1B. 3C. 5D. 6答案:C解析:X~N(1,4),Y~N(0,1),X与Y相互独立,故D(Z)=D(X-Y)=D(X)+D(Y)=4+1=5.9.A. 0.004B. 0.04C. 0.4D. 4答案:C10.A. AB. BC. CD. D答案:B二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。

历年自考概率论与数理统计(经管类)真题及参考答案(全套)

历年自考概率论与数理统计(经管类)真题及参考答案(全套)

2007年4月份全国自考概率论与数理统计(经管类)真题参考答案一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.A. AB. BC. CD. D答案:B解析:A,B互为对立事件,且P(A)>0,P(B)>0,则P(AB)=0P(A∪B)=1,P(A)=1-P(B),P(AB)=1-P(AB)=1.2.设A,B为两个随机事件,且P(A)>0,则P(A∪B|A)=()A. P(AB)B. P(A)C. P(B)D. 1答案:D解析:A,B为两个随机事件,且P(A)>0,P(A∪B|A)表示在A发生的条件下,A或B发生的概率,因为A发生,则必有A∪B发生,故P(A∪B|A)=1.3.下列各函数可作为随机变量分布函数的是()A. AB. BC. CD. D答案:B解析:分布函数须满足如下性质:(1)F(+∞)=1,F(-∞)=0,(2)F(x)右连续,(3)F(x)是不减函数,(4)0≤F(x)≤1.而题中F1(+∞)=0;F3(-∞)=-1;F4(+∞)=2.因此选项A、C、D中F(x)都不是随机变量的分布函数,由排除法知B正确,事实上B满足随机变量分布函数的所有性质.4.设随机变量X的概率密度为A. AB. BC. CD. D答案:A5.设二维随机变量(X,Y)的分布律为(如下图)则P{X+Y=0}=()A. 0.2B. 0.3C. 0.5D. 0.7答案:C解析:因为X可取0,1,Y可取-1,0,1,故P{X+Y=0}=P{X=0,Y=0}+P{X=1,Y=-1}=0.3+0.2=0.5.6.设二维随机变量(X,Y)的概率密度为A. AB. BC. CD. D答案:A7.设随机变量X服从参数为2的泊松分布,则下列结论中正确的是()A. E(X)=0.5,D(X)=0.5B. E(X)=0.5,D(X)=0.25C. E(X)=2,D(X)=4D. E(X)=2,D(X)=2答案:D解析:X~P(2),故E(X)=2,D(X)=2.8.设随机变量X与Y相互独立,且X~N(1,4),Y~N(0,1),令Z=X-Y,则D(Z)=()A. 1B. 3C. 5D. 6答案:C解析:X~N(1,4),Y~N(0,1),X与Y相互独立,故D(Z)=D(X-Y)=D(X)+D(Y)=4+1=5.9.A. 0.004B. 0.04C. 0.4D. 4答案:C10.A. AB. BC. CD. D答案:B二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。

自考概率论与数理统计(二)(02197)及答案

自考概率论与数理统计(二)(02197)及答案

概率论与数理统计(二)(课程代码:02197)本试卷共五页,满分100分;考试时间150分钟。

一、单项选择题(每小题4分,共40分)1)、设事件A 、B 满足2.0)(=-A B P ,6.0)(=B P ,则)(AB P =( ) A )、0.12 B )、0.4 C )、0.6 D )、0.8 2)、设二维随机变量),(Y X 的分布律为 则}{Y X P ==( )A)、0.3 B )、0.5 C )、0.7 D )0.8 3)、设随机变量X 服从参数为2的泊松分布,则下列结论中正确的是( ) A )、5.0)(,5.0)(==X D X EB )、25.0)(,5.0)(==X D X EC )、4)(,2)(==XD X ED )、2)(,2)(==X D XE 4)、设随机变量X 服从正态分布(0,4)N ,()x Φ为标准正态分布函数,则{36}( ).P X ≤≤=. (6)(3) . (3)(1.5) 3. (1.5)(1) . (3)()4A B C D Φ-ΦΦ-ΦΦ-ΦΦ-Φ5)、设随机变量)2,1( ~2-N X ,则X 的概率密度=)(x f ( ) A )、4)1(241+-x eπB )、8)1(241+-x eπC )、8)1(2221+-x eπD )、8)1(2221--x eπ6)、设随机变量)1,0(~,)1,0(~N Y N X ,且X 与Y 相互独立,则~22Y X +( )A )、)2,0(NB )、)2(2χC )、)2(tD )、)1,1(F7)、设)2,1( ~2N X ,n X X ,,1 为X 的样本,记∑==n i i X n X 11则有( ) A )、)1,0(~/21N n X - B )、)1,0(~41N X - C )、)1,0(~21N X - D )、)1,0(~21N X - 8)、设总体),( ~2σμN X ,其中μ未知,4321,,,x x x x 为来自总体X的一个样本,则以下关于μ的四个估计:3211513151ˆx x x ++=μ,)(41ˆ43212x x x x +++=μ,1371ˆx =μ,2147261ˆx x +=μ中,哪一个是无偏估计?( )A )、1ˆμB )、2ˆμC )、3ˆμD )4ˆμ 9)、对随机变量X 来说,如果 EX DX ≠,则可断定X 不服从( )分布。

10月概率论与数理统计(经管类)试题及答案

10月概率论与数理统计(经管类)试题及答案

全国2010年10月高等教育自学考试 概率论与数理统计(经管类)试题课程代码:04183一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设随机事件A 与B 互不相容,且P (A )>0,P (B )>0,则( ) (事件的关系与运算) A.P (B |A )=0 B.P (A |B )>0 C.P (A |B )=P (A ) D.P (AB )=P (A )P (B )解:A 。

因为P (AB )=0.2.设随机变量X ~N (1,4),F (x )为X 的分布函数,Φ(x )为标准正态分布函数,则F (3)=( ) A.Φ(0.5) B.Φ(0.75) C.Φ(1) D.Φ(3)(正态分布) 解:C 。

因为F(3)=)1()213(Φ=-Φ 3.设随机变量X 的概率密度为f (x )=⎩⎨⎧≤≤,,0,10 ,2其他x x 则P {0≤X ≤}21=( )A.41 B.31C.21D.43 (连续型随机变量概率的计算)解:A。

因为P {0≤X ≤}21412210==⎰xdx4.设随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧≤≤-+, ,0 ,01,21其他x cx 则常数c =( ) A.-3 B.-1 C.-21D.1解:D.(求连续型随机变量密度函数中的未知数) 由于1)(=⎰+∞∞-dx x f112121212121)(01201=⇒=-=⎥⎦⎤⎢⎣⎡+=+=--∞+∞-⎰⎰c c x cx dx cx dx x f5.设下列函数的定义域均为(-∞,+∞),则其中可作为概率密度的是( ) A. f (x )=-e -x B. f (x )=e -x C. f (x )=||-e 21xD. f (x )=||-e x解:选C。

(概率密度函数性质)A .0<--x e 不满足密度函数性质 由于1)(=⎰+∞∞-dx x f ,B 选项∞=-=+∞∞--+∞∞--⎰xx e dx eC选项12122100||||=-===+∞-+∞-+∞-+∞∞--⎰⎰⎰xx x x e dx e dx e dx eD选项2220||||=-===+∞-+∞-+∞-+∞∞--⎰⎰⎰x xx x edx e dx e dx e6.设二维随机变量(X ,Y )~N (μ1,μ2,ρσσ,,2221),则Y ~( )(二维正态分布)A.N (211,σμ) B.N (221,σμ) C.N (212,σμ)D.N (222,σμ)解:D 。

2016年10月高等教育自学考试全国统一命题考试

2016年10月高等教育自学考试全国统一命题考试
A¥事件A和B互斥B¥事件A和B互为对立事件
C¥P(AB)=P(A)P(B)D¥A B是空集
答案:C
解析:相互独立=P(AB)=P(A)P(B)
5¥某足球运动员罚点球的命中率是90%,则让他罚l0次点球,他罚中的球数是
A¥1B¥9
C¥10D¥以上都有可能
答案:D
解析:命中率是大样本事件得出的结果,10次是小样本事件,什么可能都有
元,该企业全部职工的平均工资为_________。
答案:4400
解析:(0.8×4500+0.2×4000)÷1=4400
三、计算题(本大题共6小题,每小题5分,共30分)
26¥某企业20名员工2014年的请假天数如题26表1所示(单位:天)
20
15
20
16
4
10
20
11
9
10
16
4
13
8
15
9
20
通常服从
A¥二项分布B¥正态分布
C¥均匀分布D¥泊松分布
答案:B
解析:µ=10的正态分布
9.对于随机变量X与Y,已知EX=6,EY=2,则E(2X-3Y+5)=
A¥7B¥9
C¥11D¥13
答案:C
解析:E(2X-3Y+5)=2EX-3EY+5=11
10¥在抽样之前将总体划分为互不交叉重叠的若于层,然后从各个层中独立地抽取一定数
(1)求服用该药后的病人痊愈率。(2分)
(2)检验该药品是否有效(可靠性取95%)?请给出相应假设检验的原假设和备择假设。
(8分)(Z0.05=1.645,Z0.025=1.96)
解:(1)服用该药后的病人痊愈率(样本比例)为:

全国2016年10月高等教育(工本)自学考试试题、详细答案及考点分析

全国2016年10月高等教育(工本)自学考试试题、详细答案及考点分析
橡皮擦干净后,再选涂其他答案标号。不能答在试题卷上。
一、单项选择题(本大题共 5 小题,每小题 3 分,共 15 分) 在每小题列出的四个备选项中只有一个是最符合题目要求的,请将其选出并将“答题卡” 的相应代码涂黑。错涂、多涂或未涂均无分。
1. 在空间直角坐标系中,点 14,3,24 在
A.第二卦限
0
0
0
2 d 2 d 1 r 2 1 r 2 sin dr
0
0
0
2 d 2 sin d 1 r 4 r 2 dr
0
0
0
2
1
1 5
r
5
1 3
r
3
1 0
4 . 15
考核知识点:三重积分的计算(简单应用); 考核要求:掌握计算三重积分的柱面坐标、球面坐标变换法.
考核要求:熟练掌握偏导数求法.
3. 设积分区域 D: x2 y2 1,则二重积分 x d D
A. 4
2 d
1 r cosdr
0
0
B. 2 d 1 r sindr
0
0
C. 2 d 1 r 2 sindr
0
0
D. 2 d 1 r 2 cosdr
0
0
解答:根据极坐标下二重积分的计算方法进行求解。由于积分区域 D: x2 y2 1 ,因此积
dy dx
ex
ey
dy ey
e x dx
故该微分方程为可分离变量的微分方程,选 A.
考核知识点:三类一阶微分方程(简单应用); 考核要求:会求可.分.离.变.量.的.微.分.方.程.、齐次方程、一阶线性微分方程这三种类型方程的通
解和特解.
5.
设无穷级数
1

全国2016年10月高等教育自学线性代数(经管类)试题与详细答案

2016 年 10 月 线性代数(经管类)
全国 2016 年 10 月高等教育自学考试
线性代数(经管类)试题与详细答案
课程代码:04184
说明:在本卷中,AT 表示矩阵 A 的转置矩阵,A*表示矩阵 A 的伴随矩阵,E 是单位矩阵, |A|表示方阵 A 的行列式,r(A)表示矩阵 A 的秩.
一、单项选择题(本大题共 5 小题,每小题 1 分,共 5 分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出并将“答题纸” 的相应代码涂黑。错涂、多涂或未涂均无分。
1, 2 ,3 线性表出的表示式为
.
解答:显然得到
1 1 1 1 0 1 1 1 1 2 3 0 1 1 1
11. 设向量组1 2,1,3T ,2 1,0,1T ,3 k 2,1,0T 线性相关,则数 k
.
解答:构造向量组矩阵,当向量组 1,2 ,3 秩<3 时,向量组 1,2 ,3 线性相关,即
1. 已知 2 阶行列式 a1 a2 2 ,则 a1 a2 2a2
b1 b2
b1 b2 2b2
A. 4
B. 2

解答:使用行列式的性质。因为
C. 2
a1 a2 2a2 2 a1 a2 a2 2 a1 a2 2 a1 a2
b1 b2 2b2
b1 b2 b2
b1 b2
A* A 6
又因为逆矩阵的公式为: A1 1 A* ,因此 A
A1
1 A
A*
1 6
2 0
0 3
10/ 3
0 1/
2

故,选 B.
3. 设 n 阶矩阵 A,B,C 满足 ABC E ,则
1 答案整理:郭慧敏 广州大学松田学院

全国2016年10月自考03327社会保险基金管理与监督试题及答案

全国2016年10月高等教育自学考试社会保险基金管理与监督试题课程代码:03327一、单项选择题(本大题共30小题,每小题1分,共30分)在每小题列出的四个备选项中只有一个是最符合题目要求的,请将其选出并在“答题纸”上将相应代码涂黑。

错涂、多涂或未涂均无分。

1、工伤保险的首创国家是(B)A、英国B、德国C、日本D、中国2、社会保险基金水平要与国民经济承受能力相适应,这体现了社会保险基金制度的(C)A、强制性原则B、社会性原则C、适应性原则D、公平性原则3、在现收现付模式下,社会保险机构的筹资原则是(B)A、以收定支B、以支定收C、先支后收D、只收不支4、确定了我国企业职工养老保险基金筹集实行“部分积累”模式的法规是(C)A、《中人民共和国劳动保险条例》B、《关于企业职工养老保险制度改革的决定》C、《关于建立统一的企业职工基本养老保险制度的决定》D、《关于完善城镇社会保险体系的试点方案》5、在社会保险制度建立初期,社会保险费(税)率标准一般采用(C)A、综合费(税)率制B、综合分类费(税)率制C、分项目费(税)率制D、分险种费(税)率制6、社会保险基金管理最重要也是最基本的目标是(A)A、保证基金安全B、防止基金贬值C、满足给付的需要D、保持高效率7、由相对独立和集中的社会保险基金管理公司等专门机构负责基金的管理和投资运营,这种社会保险基金管理模式是(C)A、财政集中型基金管理模式B、多元分散型基金管理模式C、专门机构的集中基金管理模式D、市场分散型基金管理模式8、组建有养老保险基金管理公司的国家是(D)A、瑞士B、美国C、新加坡D、智利9、20世纪90年代国际上社会保险基金管理的一个新特点是(B)A、放慢基金管理私营化的步伐B、更加强化政府在基金管理中的直接作用C、加强对社会保险基金投资项目的限制D、重视社会保险基金同金融市场的互动发展10、我国社会保险基金管理主体是(C)A、民政部B、交通部C、社会保险经办机构D、省级以下(含省级)财政部门11、我国社会保险基金来自于(D)A、国家和企业B、企业和工会C、国家和个人D、国家、企业和个人12、受社会保险经办机构委托代为征收社会保险基金的机构是(C)A、社区街道组织B、商业银行C、各级税务部门D、各级财政部门13、现收现付模式突出的缺点是(A)A、在人口年龄结构严重老化的情况下会使在职劳动者不堪重负B、不利于缓和贫富差距C、不能体现社会保障的互助性原则D、管理和运营的成本高14、缴费单位的社会保险登记事项发生变更或者缴费单位依法终止的,办理变更或者注销社会保险登记手续的期限是(A)A、30日B、60日C、6个月D、12个月15、养老保险制度采用强制储蓄模式的典型国家是(D)A、中国B、德国C、日本D、新加坡16、我国城镇职工基本医疗保险费由单位和个人共同缴纳,用人单位缴费率控制在工资总额的(C)A、2%左右B、4%左右C、6%左右D、8%左右17、待遇确定型养老保险制度的特点是(B)A、以收定支B、以支定收C、待遇不变D、待遇统一18、关于公平、效率与社会保险制度的关系,下面说法正确的是(B)A、效率是社会保险的本质和核心B、公平是社会保险的本质和核心C、效率与公平无法统一D、效率会造成社会保险高赤字19、“新人”达到退休年龄领取基本养老金,要求个人缴费年限累计须满(B)A、10年B、15年C、20年D、30年20、我国现行医疗保险统筹基金的起付标准原则上控制在(B)A、当地职工年平均工资的5%左右B、当地职工年平均工资的10%左右C、当地职工年平均工资的15%左右D、当地职工年平均工资的20%左右21、关于社会保险基金投资运营的说法正确的是(A)/181A、社会保险基金应选择多种投资工具,采用组合投资B、社会保险基金应全部存放银行和购买国债,以保证基金相对安全C、社会保险基金应采取保守投资策略,不能进入资本市场D、社会保险基金应全部投资于股票领域,以追求高回报22、20世纪末,在全球养老保险基金资产总额居前三位的国家分别是(C)A、美国、法国、日本B、日本、德国、美国C、美国、日本、英国D、英国、美国、德国23、下列选项中,属于会计主体在可以预见的未来不会面临清算、破产,企业的生产经营活动将持续不断地进行下去的是(B)A、会计分期B、持续经营C、会计核算D、货币计量24、通过整理社会保险统计实践得到的统计资料而形成的报表形式的资料,可以比较清晰地反映社会保险基金情况的是(D)A、社会保险基金质量指标B、社会保险基金数量指标C、社会保险基金统计分析D、社会保险基金统计报表25、社会保险基金会计信息披露是基金主体会计工作的成果展示,从而体现其(C)A、决策职能B、经营职能C、财务职能D、运算职能26、下列选项中,属于我国职工基本养老保险的补充和扩大的是(D)A、劳保福利B、年终奖金C、提高工资D、企业年金27、我国《企业年金试行办法》开始正式实施的时间是(D)A、1978年B、1991年C、1998年D、2004年28、从有关监督部门实施现场检查的角度来看,社会保险基金监管是指(C)A、基金管理B、基金控制C、基金检查与审计D、指标管理29、下列选项中,能够反映基金在会计年度的收支状况的好坏,反映基金的支撑能力和社会保险制度活力的是(A)A、结余基金监管B、基金支付监管C、基金征缴监管D、基金财务监管30、在我国社会保险基金监管体系中,属于社会保险经办机构的内部稽查和上级社会保险经办机构对下级社会保险经办机构的监督形式的是(A)A、内部控制B、财政监管C、审计监管D、司法监督二、多项选择题(本大题共5小题,每小题2分,共10分)在每小题列出的五个备选项中至少有两个是符合题目要求的,请将其选出并在“答题纸”上将相应代码涂黑。

概率论与数理统计(经管类)第二章课后习题答案

习题2.11.设随机变量X 的分布律为P{X=k}=,k=1, 2,N,求常数a.aN 解:由分布律的性质=1得∑∞k =1p kP(X=1) + P(X=2) +…..+ P(X=N) =1N*=1,即a=1aN 2.设随机变量X 只能取-1,0,1,2这4个值,且取这4个值相应的概率依次为,,求常数c.12c 34c ,58c ,716c 解:12c +34c +58c +716c =1C=37163.将一枚骰子连掷两次,以X 表示两次所得的点数之和,以Y 表示两次出现的最小点数,分别求X,Y 的分布律.注: 可知X 为从2到12的所有整数值.可以知道每次投完都会出现一种组合情况,其概率皆为(1/6)*(1/6)=1/36,故P(X=2)=(1/6)*(1/6)=1/36(第一次和第二次都是1)P(X=3)=2*(1/36)=1/18(两种组合(1,2)(2,1))P(X=4)=3*(1/36)=1/12(三种组合(1,3)(3,1)(2,2))P(X=5)=4*(1/36)=1/9(四种组合(1,4)(4,1)(2,3)(3,2))P(X=6)=5*(1/36=5/36(五种组合(1,5)(5,1)(2,4)(4,2)(3,3))P(X=7)=6*(1/36)=1/6(这里就不写了,应该明白吧)P(X=8)=5*(1/36)=5/36P(X=9)=4*(1/36)=1/9P(X=10)=3*(1/36)=1/12P(X=11)=2*(1/36)=1/18P(X=12)=1*(1/36)=1/36以上是X 的分布律投两次最小的点数可以是1到6里任意一个整数,即Y 的取值了.P(Y=1)=(1/6)*1=1/6 一个要是1,另一个可以是任何值P(Y=2)=(1/6)*(5/6)=5/36 一个是2,另一个是大于等于2的5个值P(Y=3)=(1/6)*(4/6)=1/9 一个是3,另一个是大于等于3的4个值P(Y=4)=(1/6)*(3/6)=1/12一个是4,另一个是大于等于4的3个值P(Y=5)=(1/6)*(2/6)=1/18一个是5,另一个是大于等于5的2个值P(Y=6)=(1/6)*(1/6)=1/36一个是6,另一个只能是6以上是Y 的分布律了.4.设在15个同类型的零件中有2个是次品,从中任取3次,每次取一个,取后不放回.以X 表示取出的次品的个数,求X 的分布律.解:X=0,1,2X=0时,P=C 313C 315=2235X=1时,P=C 213∗C 12C 315=1235X=2时,P=C 013∗C 22C 315=1355.抛掷一枚质地不均匀的硬币,每次出现正面的概率为,连续抛掷8次,以X 表示出现正面的次数,求23X 的分布律.解:P{X=k}=, k=1, 2, 3, 8C k 8(23)k (13)8‒k 6.设离散型随机变量X 的分布律为X -123P141214解:求P {X ≤12}, P {23<X ≤52}, P {2≤X ≤3}, P {2≤X <3}P {X ≤12}=14P {23<X ≤52}=12P {2≤X ≤3}=12+14=34P {2≤X <3}=127.设事件A 在每一次试验中发生的概率分别为0.3.当A 发生不少于3次时,指示灯发出信号,求:(1)进行5次独立试验,求指示灯发出信号的概率;(2)进行7次独立试验,求指示灯发出信号的概率.解:设X 为事件A 发生的次数,(1)P {X ≥3}=P {X =3}+P {X =4}+P {X =5}=C 35(0.3)3(0.7)2+C 45(0.3)4(0.7)1+C 55(0.3)5(0.7)0=0.1323+0.02835+0.00243=0.163(2) P{X≥3}=1‒P{X=0}‒P{X=1}‒P{X=2}=1‒C07(0.3)0(0.7)7‒C17(0.3)1(0.7)6‒C27(0.3)2(0.7)5=1‒0.0824‒0.2471‒0.3177=0.3538.甲乙两人投篮,投中的概率分别为0.6,0.7.现各投3次,求两人投中次数相等的概率.解:设X表示各自投中的次数P{X=0}=C03(0.6)0(0.4)3∗C03(0.7)0(0.3)3=0.064∗0.027=0.002P{X=1}=C13(0.6)1(0.4)2∗C13(0.7)1(0.3)2=0.288∗0.189=0.054P{X=2}=C23(0.6)2(0.4)1∗C23(0.7)2(0.3)1=0.432∗0.441=0.191P{X=3}=C33(0.6)3(0.4)0∗C33(0.7)3(0.3)0=0.216∗0.343=0.074投中次数相等的概率= P{X=0}+P{X=1}+P{X=2}+P{X=3}=0.3219.有一繁忙的汽车站,每天有大量的汽车经过,设每辆汽车在一天的某段时间内出事故的概率为0.0001.在某天的该段时间内有1000辆汽车经过,问出事故的次数不小于2的概率是多少?(利用泊松分布定理计算)解:设X表示该段时间出事故的次数,则X~B(1000,0.0001),用泊松定理近似计算=1000*0.0001=0.1λP{X≥2}=1‒P{X=0}‒P{X=1}=1‒C01000(0.0001)0(0.9999)1000‒C11000(0.0001)1(0.9999)999=1‒e‒0.1‒0.1e‒0.1=1‒0.9048‒0.0905=0.004710.一电话交换台每分钟收到的呼唤次数服从参数为4的泊松分别,求:(1)每分钟恰有8次呼唤的概率;(2)每分钟的呼唤次数大于10的概率.解: (1) P{X=8}=P{X≥8}‒P{X≥9}=0.051134‒0.021363=0.029771(2) P{X>10}=P{X≥11}=0.002840习题2.21.求0-1分布的分布函数.解:F(x)={0, x<0q, 0≤x<11,x≥12.设离散型随机变量X的分布律为:3 OF 18X -123P0.250.50.25求X 的分布函数,以及概率,.P {1.5<X ≤2.5} P {X ≥0.5}解:當x <‒1時,F (x )=P {X ≤x }=0;當‒1≤x <2時,F (x )=P {X ≤x }=P {X =‒1}=0.25;當2≤x <3時,F (x )=P {X ≤x }=P {X =‒1}+P {X =2}=0.25+0.5=0.75;當x ≥3時,F (x )=P {X ≤x }=P {X =‒1}+P {X =2}+P {X =3}=0.25+0.5+0.25=1;则X 的分布函数F(x)为:F (x )={0, x <‒10.25, ‒1≤x <20.75, 2≤x <31, x ≥3P {1.5<X ≤2.5}=F (2.5)‒F (1.5)=0.75‒0.25=0.5 P {X ≥0.5}=1‒F (0.5)=1‒0.25=0.753.设F 1(x),F 2(x)分别为随机变量X 1和X 2的分布函数,且F(x)=a F 1(x)-bF 2(x)也是某一随机变量的分布函数,证明a-b=1.证: F (+∞)=aF (+∞)‒bF (+∞)=1,即a ‒b =14.如下4个函数,哪个是随机变量的分布函数:(1)F 1(x )={0, x <‒212, ‒2≤x <02, x ≥0(2)F 2(x )={0, x <0sinx, 0≤x <π1, x ≥π(3)F 3(x )={0, x <0sinx, 0≤x <π21, x ≥π2(4)F 4(x )={0, x <0x +13, 0<x <121, x ≥125.设随机变量X 的分布函数为F(x) =a+b arctanx ,‒∞<x <+∞,求(1)常数a,b;(2) P {‒1<X ≤1}解: (1)由分布函数的基本性质 得:F (‒∞)=0,F (+∞)=1{a +b ∗(‒π2)=0a +b ∗(π2)=1of backbone backbone role; to full strengthening members youth work, full play youth employees in company development in the of force role; to improve independent Commission against corruption work level, strengthening on enterprise business key link of effectiveness monitored. , And maintain stability. To further strengthen publicity and education, improve the overall legal system. We must strengthen safety management, establish and improve the education, supervision, and evaluation as one of the traffic safety management mechanism. To conscientiously sum up the Olympic security controls, promoting integrated management to a higher level, higher standards, a higher level of development. Employees, today is lunar calendar on December 24, the ox Bell is about to ring, at this time of year, we clearly feel the pulse of the XX power generation company to flourish, to more clearly hear XX power generation companies mature and symmetry breathing. Recalling past one another across a railing, we are enthusiastic and full of confidence. Future development opportunities, we more exciting fight more spirited. Employees, let us together across 2013 full of challenges and opportunities, to create a green, low-cost operation, fullof humane care of a world-class power generation company and work hard! The occasion of the Spring Festival, my sincere wish that you and the families of the staff in the new year, good health, happy, happy5 OF 18解之a=, b=121π(2)P {‒1<X ≤1}=F (1)‒F (‒1)=a +b ∗π4‒(a +b ∗‒π4)=b ∗π2=12(将x=1带入F(x) =a+b arctanx )注: arctan 为反正切函数,值域(), arctan1=‒π2,π2 π46.设随机变量X 的分布函数为F (x )={0, x <1lnx, 1≤x <e1, x ≥e求P {X ≤2},P {0<X ≤3},P {2<X ≤2.5}解: 注: P {X ≤2}=F(2)=ln2 F(x)=P {X ≤x }P {0<X ≤3}=F (3)‒F (0)=1‒0=1;P {2<X ≤2.5}=F (2.5)‒F (2)=ln2.5‒ln2=ln2.52=ln1.25习题2.31.设随机变量X 的概率密度为:f (x )={acosx, |x |≤π20, 其他.求: (1)常数a; (2);(3)X 的分布函数F(x).P {0<X <π4}解:(1)由概率密度的性质∫+∞‒∞f (x )dx =1,∫π2‒π2acosxdx =a sinx |π2‒π2=asin π2‒asin (‒π2)=asin π2+asin π2=a +a =1A =12(2)P {0<X <π4}=(12)sin(π4)‒(12)sin (0)=12∗22+12∗0=24一些常用特殊角的三角函数值正弦余弦正切余切0010不存在π/61/2√3/2√3/3√3π/4√2/2√2/211of backbone backbone role; to full strengthening members youth work, full play youth employees in company development in the of force role; to improve independent Commission against corruption work level, strengthening on enterprise business key link of effectiveness monitored. , And maintain stability. To further strengthen publicity and education, improve the overall legal system. We must strengthen safety management, establish and improve the education, supervision, and evaluation as one of the traffic safety management mechanism. To conscientiously sum up the Olympic security controls, promoting integrated management to a higher level, higher standards, a higher level of development. Employees, today is lunar calendar on December 24, the ox Bell is about to ring, at this time of year, we clearly feel the pulse of the XX power generation company to flourish, to more clearly hear XX power generation companies mature and symmetry breathing. Recalling past one another across a railing, we are enthusiastic and full of confidence. Future development opportunities, we more exciting fight more spirited. Employees, let us together across 2013 full of challenges and opportunities, to create a green, low-cost operation, full of humane care of a world-class power generation company and work hard! The occasion of the Spring Festival, my sincere wish that you and the families of the staff in the new year, good health, happy, happy(3)X 的概率分布为:F (x )={0, x <‒π212(1+sinx ), ‒π2≤x <π21, x ≥π2 2.设随机变量X 的概率密度为f (x )=ae ‒|x |, ‒∞<x <+∞,求: (1)常数a; (2); (3)X 的分布函数. P {0≤X ≤1}解:(1),即a=∫+∞‒∞f(x)dx =∫0‒∞ae x dx +∫+∞ae ‒x dx =a +a =112(2)P {0≤X ≤1}=F (1)‒F (0)=12(1‒e ‒1)(3)X 的分布函数F (x )={12e x, x ≤01‒12e ‒x, x >03.求下列分布函数所对应的概率密度:(1)F 1(x )=12+1πarctanx , ‒∞<x <+∞;解:(柯西分布)f 1(x )=1π(1+x 2)(2)F 2(x )={1‒e ‒x 22, x >00, x ≤0π/3√3/21/2√3√3/3π/210不存在0π-1不存在7 OF 18解:(指数分布) f 2(x )={x e ‒x 22, x >00, x ≤0(3)F 3(x )={0, x <0sinx , 0≤ x ≤π21, x >π2解: (均匀分布)f 3(x )={cosx , 0≤ x ≤π20, 其他4.设随机变量X 的概率密度为f (x )={x, 0≤x <12‒x, 1≤ x <20, 其他.求: (1); (2)P {X ≥12} P {12<X <32}.解:(1)P {X ≥12}=1‒F (12)=1‒1222=1‒18=78(2)(2)P {12<X <32}=F(32)‒F(12)=(2∗32‒1‒3222)‒(3222)=345.设K 在(0,5)上服从均匀分布,求方程(利用二次式的判别式)4x 2+4Kx +K +2=0有实根的概率.解: K~U(0,5)f (K )={15 , 0≤x ≤50, 其他方程式有实数根,则Δ≥0,即(4K)2‒4∗4∗(K +2)=16K 2‒16(K +2)≥02≤K ≤‒1故方程有实根的概率为:P {K ≤‒1}+P {K ≥2}=∫5215dx =0.66.设X ~ U(2,5),现在对X 进行3次独立观测,求至少有两次观测值大于3的概率.解:P {K >3}=1‒F (3)=1‒3‒25‒2=23至少有两次观测值大于3的概率为:C 23(23)2(13)1+C 33(23)3(13)0=20277.设修理某机器所用的时间X 服从参数为λ=0.5(小时)指数分布,求在机器出现故障时,在一小时内可以修好的概率.解: P {X ≤1}=F (1)=1‒e‒0.58.设顾客在某银行的窗口等待服务的时间X(以分计)服从参数为λ=的指数分布,某顾客在窗口等待159 OF 18服务,若超过10分钟,他就离开.他一个月要到银行5次,以Y 表示他未等到服务而离开窗口的次数.写出Y 的分布律,并求P {Y ≥1}.解:“未等到服务而离开的概率”为P {X ≥10}=1‒F (10)=1‒(1‒e‒15∗10)=e ‒2P {Y =k }=C k 5(e ‒2)k(1‒e ‒2)5‒k , (k =0,1,2,3,4,5)Y 的分布律:Y 012345P0.4840.3780.1180.0180.0010.00004P {Y ≥1}=1‒P {Y =0}=1‒0.484=0.5169.设X ~ N(3,),求:22(1);P {2<X ≤5}, P {‒4<X ≤10}, P {|X |>2}, P {X >3}(2).常数c,使P {X >c }=P {X ≤c }解: (1)P {2<X ≤5}=Φ(5‒32)‒Φ(2‒32)=Φ(1)‒[1‒Φ(12)]=0.8413‒(1‒0.6915)=0.5328P {‒4<X ≤10}=Φ(10‒32)‒Φ(‒4‒32)=Φ(3.5)‒[1‒Φ(3.5)]=0.9998‒0.0002=0.9996 P {|X |>2}= 1‒P {‒2≤X ≤2}=1‒[Φ(2‒32)‒Φ(‒2‒32)]=1‒(0.3085‒0.0062)=0.6977P {X >3}= P {X ≥3}=1‒Φ(3‒32)=1‒Φ(0)=1‒0.5=0.5(2)P {X >c }=P {X ≤c }P {X >c }=1‒P {X ≥c }P {X >c }+P {X ≥c }=1Φ(c ‒32)+Φ(c ‒32)=1Φ(c ‒32)=0.5经查表,即C=3c ‒32=010.设X ~ N(0,1),设x 满足P {|X |>x }<0.1.求x 的取值范围.解:P {|X |>x }<0.12[1‒Φ(x )]<0.1‒Φ(x )<‒1920Φ(x )≥1920Φ(x )≥0.95经查表当 1.65时x ≥Φ(x )≥0.95即 1.65时x ≥P {|X |>x }<0.111.X ~ N(10,),求:22(1)P {7<X ≤15};(2)常数d,使P {|X ‒10|<d }<0.9.解: (1)P {7<X ≤15}=Φ(15‒102)‒Φ(7‒102)=Φ(2.5)‒[1‒Φ(1.5)]=0.9938‒0.0668=0.927(2)P {|X ‒10|<d }=P {10‒d <X <10+d }<0.9=Φ(10+d ‒102)‒Φ(10‒d ‒102)<0.9=Φ(d2)<0.95经查表,即d=3.3d2=1.6512.某机器生产的螺栓长度X(单位:cm)服从正态分布N(10.05,),规定长度在范围10.050.12内 0.062±为合格,求一螺栓不合格的概率.解:螺栓合格的概率为:P {10.05‒0.12<X <10.05+0.12}=P {9.93<X <10.17}=Φ(10.17‒10.050.06)‒Φ(9.93‒10.050.06)=Φ(2)‒[1‒Φ(2)]=0.9772∗2‒1=0.9544螺栓不合格的概率为1-0.9544=0.045613.测量距离时产生的随机误差X(单位:m)服从正态分布N(20,).进行3次独立测量.求:402(1)至少有一次误差绝对值不超过30m 的概率;(2)只有一次误差绝对值不超过30m的概率.解:(1)绝对值不超过30m的概率为:P{‒30<X<30}=Φ(30‒2040)‒Φ(‒30‒2040)=Φ(0.25)‒[1‒Φ(1.25)]=0.4931至少有一次误差绝对值不超过30m的概率为:1−C 03(0.4931)0(1‒0.4931)3=1‒0.1302=0.8698(2)只有一次误差绝对值不超过30m的概率为:C13(0.4931)1(1‒0.4931)2=0.3801习题2.41.设X的分布律为X-2023P0.20.20.30.3求(1)的分布律.Y1=‒2X+1的分布律; (2)Y2=|X|解: (1)的可能取值为5,1,-3,-5.Y1由于P{Y1=5}=P{‒2X+1=5}=P{X=‒2}=0.2P{Y1=1}=P{‒2X+1=1}=P{X=‒2}=0.2P{Y1=‒3}=P{‒2X+1=‒3}=P{X=2}=0.3P{Y1=‒5}=P{‒2X+1=‒5}=P{X=3}=0.3从而的分布律为:Y1X-5-315Y10.30.30.20.2(2)的可能取值为0,2,3.Y2由于P{Y2=0}=P{|X|=0}=P{X=0}=0.2P{Y2=2}=P{|X|=0}=P{X=‒2}+P{X=2}=0.2+0.3=0.5P{Y2=3}=P{|X|=3}=P{X=3}=0.3从而的分布律为:Y2X023Y20.20.50.32.设X的分布律为X-1012P0.20.30.10.411 OF 18求Y=(X‒1)2的分布律.解:Y的可能取值为0,1,4.由于P{Y=0}=P{(X‒1)2=0}=P{X=1}=0.1P{Y=1}=P{(X‒1)2=1}=P{X=0}+P{X=2}=0.7P{Y=4}=P{(X‒1)2=4}=P{X=‒1}=0.2从而的分布律为:YX014Y0.10.70.23.X~U(0,1),求以下Y的概率密度:(1)Y=‒2lnX; (2)Y=3X+1; (3)Y=e x.解: (1) Y=g(x)=‒2lnX, 值域為(0,+∞),X=ℎ(y)=e‒Y2, ℎ'(y)=12e‒Y2 f Y(y)=f x(ℎ(y))| ℎ'(y)|=1∗12e‒Y2=12e‒Y2.即f Y(y)={12e‒Y2, y>0,0, y≤0(2) Y=g(x)=3X+1,值域為(‒∞,+∞), X=ℎ(y)=Y‒13, ℎ'(y)=13f Y(y)=f x(ℎ(y))| ℎ'(y)|=1∗13=13即f Y(y)={13, 1< y<4,0, 其他注: 由X~U(0,1),,当X=0时,Y=3*0+1=1; ,当X=1时,Y=3*1+1=4 Y=3X+1(3) Y=g(x)=e x, X=ℎ(y)=lny, ℎ'(y)=1yf Y(y)=f x(ℎ(y))| ℎ'(y)|=1∗1y=1y即f Y(y)={1y, 0< y<e,0, 其他注: ,当X=0时,; ,当X=1时,Y=e0=0 Y=e1=e4.设随机变量X的概率密度为f X(x)={32x2, ‒1<x<00, 其他.of backbone backbone role; to full strengthening members youth work, full play youth employees in company development in the of force role; to improve independent Commission against corruption work level, strengthening on enterprise business key link of effectiveness monitored. , And maintain stability. To further strengthen publicity and education, improve the overall legal system. We must strengthen safety management, establish and improve the education, supervision, and evaluation as one of the traffic safety management mechanism. To conscientiously sum up the Olympic security controls, promoting integrated management to a higher level, higher standards, a higher level of development. Employees, today is lunar calendar on December 24, the ox Bell is about to ring, at this time of year, we clearly feel the pulse of the XX power generation company to flourish, to more clearly hear XX power generation companies mature and symmetry breathing. Recalling past one another across a railing, we are enthusiastic and full of confidence. Future development opportunities, we more exciting fight more spirited. Employees, let us together across 2013 full of challenges and opportunities, to create a green, low-cost operation, fullof humane care of a world-class power generation company and work hard! The occasion of the Spring Festival, my sincere wish that you and the families of the staff in the new year, good health, happy, happy13 OF 18求以下Y 的概率密度:(1)Y=3X; (2) Y=3-X; (3)Y =X 2.解: (1) Y=g(x)=3X,X =ℎ(y )=Y 3, ℎ'(y)=13f Y (y )=f x (ℎ(y ))| ℎ'(y)|=Y 26∗13=Y218即f Y (y )={Y 218, ‒3< y <0,0, 其他(2)Y=g(x) =3-X, X=h(y) =3-Y,-1ℎ'(y)=f Y (y )=f x (ℎ(y ))| ℎ'(y)|=32∗(3‒Y)2+1=3(3‒Y)22即f Y (y )={3(3‒Y)22, 3< y <4,0, 其他(3), X=h(y)=,Y =g(x)=X 2Y ℎ'(y)=12Y,即f Y (y )=f x (ℎ(y ))| ℎ'(y)|=3Y 22∗1 2Y=3Y4f Y (y )={3Y4, 0< y <1,0, 其他5.设X 服从参数为λ=1的指数分布,求以下Y 的概率密度:(1)Y=2X+1; (2)(3) Y =e x; Y =X 2.解: (1) Y=g(x)=2X+1,X =ℎ(y )=Y ‒12, ℎ'(y )=12X 的概率密度为:f X (x )={λe ‒λx, x >0,0, x ≤0f Y (y )=f x (ℎ(y ))| ℎ'(y)|=λe ‒λ∗Y ‒12∗12=12e ‒Y ‒12即f Y (y )={12e ‒Y ‒12, y >00, 其他(2)Y =g (x )=e x , X =ℎ(y )=lnY,ℎ'(y )= 1Y注意是绝对值 ℎ'(y)of backbone backbone role; to full strengthening members youth work, full play youth employees in company development in the of force role; to improve independent Commission against corruption work level, strengthening on enterprise business key link of effectiveness monitored. , And maintain stability. To further strengthen publicity and education, improve the overall legal system. We must strengthen safety management, establish and improve the education, supervision, and evaluation as one of the traffic safety management mechanism. To conscientiously sum up the Olympic security controls, promoting integrated management to a higher level, higher standards, a higher level of development. Employees, today is lunar calendar on December 24, the ox Bell is about to ring, at this time of year, we clearly feel the pulse of the XX power generation company to flourish, to more clearly hear XX power generation companies mature and symmetry breathing. Recalling past one another across a railing, we are enthusiastic and full of confidence. Future development opportunities, we more exciting fight more spirited. Employees, let us together across 2013 full of challenges and opportunities, to create a green, low-cost operation, full of humane care of a world-class power generation company and work hard! The occasion of the Spring Festival, my sincere wish that you and the families of the staff in the new year, good health, happy, happyf Y (y )=f x (ℎ(y ))| ℎ'(y)|=e‒lnY∗1Y =1e lnY ∗1Y =1Y ∗1Y =1Y 2即f Y (y )={1Y2, y >10, 其他(3)Y =g (x )=X 2,X =ℎ(y )=Y , ℎ'(y )=12Y,,f Y (y )=f x (ℎ(y ))| ℎ'(y)|=e ‒Y∗12Y=12Ye ‒Y即f Y (y )={12Ye ‒Y, y >00, 其他6.X~N(0,1),求以下Y 的概率密度:(1) Y =|X |; (2)Y =2X 2+1解: (1) Y =g (x )=|X |, X =ℎ(y )=±Y, ℎ'(y )=1f X (x )=12πσe‒(x ‒μ)22σ2‒∞<x <+∞当X=+Y 时:f Y (y )=f x (ℎ(y ))| ℎ'(y)|=12πe‒y 22当X=-Y 时: f Y (y )=f x (ℎ(y ))| ℎ'(y)|=12πe ‒y 22故f Y (y )=12πe ‒y 22+12πe‒y 22=22πe ‒y 22=42πe‒y 22=2πe ‒y 22f Y (y )={2πe ‒y 22, y >00, y ≤0(2)Y =g (x )=2X 2+1, X =ℎ(y )=Y ‒12,ℎ'(y )=12Y ‒12永远大于0.e x 当x>0是,>1e xof backbone backbone role; to full strengthening members youth work, full play youth employees in company development in the of force role; to improve independent Commission against corruption work level, strengthening on enterprise business key link of effectiveness monitored. , And maintain stability. To further strengthen publicity and education, improve the overall legal system. We must strengthen safety management, establish and improve the education, supervision, and evaluation as one of the traffic safety management mechanism. To conscientiously sum up the Olympic security controls, promoting integrated management to a higher level, higher standards, a higher level of development. Employees, today is lunar calendar on December 24, the ox Bell is about to ring, at this time of year, we clearly feel the pulse of the XX power generation company to flourish, to more clearly hear XX power generation companies mature and symmetry breathing. Recalling past one another across a railing, we are enthusiastic and full of confidence. Future development opportunities, we more exciting fight more spirited. Employees, let us together across 2013 full of challenges and opportunities, to create a green, low-cost operation, fullof humane care of a world-class power generation company and work hard! The occasion of the Spring Festival, my sincere wish that you and the families of the staff in the new year, good health, happy, happy15 OF 18f Y (y )=f x (ℎ(y ))| ℎ'(y)|=12πe‒(Y ‒12)22∗12Y ‒12=12π(y ‒1)e‒y ‒14即f Y (y )={12π(y ‒1)e ‒y ‒14, y >10, y ≤1自测题一,选择题1,设一批产品共有1000件,其中有50件次品,从中随机地,有放回地抽取500件产品,X 表示抽到次品的件数,则P{X=3}= C .A. B.C. D.C 350C 497950C 5001000A 350A 497950A 5001000C 3500(0.05)3(0.95)497 35002.设随机变量X~B(4,0.2),则P{X>3}= A .A. 0.0016B. 0.0272C. 0.4096D. 0.8192解:P{X>3}= P{X=4}= (二项分布)C 44(0.2)4(1‒0.2)03.设随机变量X 的分布函数为F(x),下列结论中不一定成立的是D .A. B. C. D. F(x) 为连续函数F (+∞)=1 F (‒∞)=00≤F (x )≤14.下列各函数中是随机变量分布函数的为 B .A. B.F 1(x )=11+x 2, ‒∞<x <+∞F 2(x )={0, x ≤0x 1+x , x >0C.D.F 3(x )=e ‒x, ‒∞<x <+∞F 4(x )=34+12πarctanx, ‒∞<x <+∞5.设随机变量X 的概率密度为 则常数a= A .f (x )={a x 2, x >100, x ≤10A. -10B.C.D. 10解: F(x) =‒15001500∫+∞‒∞a x2dx =‒ax =16.如果函数是某连续型随机变量X 的概率密度,则区间[a,b]可以是 C f (x )={x, a<x <b0, 其他A. [0, 1]B. [0, 2]C. D. [1, 2][0,2]不晓得为何课后答案为Dof backbone backbone role; to full strengthening members youth work, full play youth employees in company development in the of force role; to improve independent Commission against corruption work level, strengthening on enterprise business key link of effectiveness monitored. , And maintain stability. To further strengthen publicity and education, improve the overall legal system. We must strengthen safety management, establish and improve the education, supervision, and evaluation as one of the traffic safety management mechanism. To conscientiously sum up the Olympic security controls, promoting integrated management to a higher level, higher standards, a higher level of development. Employees, today is lunar calendar on December 24, the ox Bell is about to ring, at this time of year, we clearly feel the pulse of the XX power generation company to flourish, to more clearly hear XX power generation companies mature and symmetry breathing. Recalling past one another across a railing, we are enthusiastic and full of confidence. Future development opportunities, we more exciting fight more spirited. Employees, let us together across 2013 full of challenges and opportunities, to create a green, low-cost operation, fullof humane care of a world-class power generation company and work hard! The occasion of the Spring Festival, my sincere wish that you and the families of the staff in the new year, good health, happy, happy7.设随机变量X 的取值范围是[-1,1],以下函数可以作为X 的概率密度的是 A A. B. {12, ‒1< x <10, 其他{2, ‒1< x <10, 其他C.D. {x, ‒1< x <10, 其他{x 2, ‒1< x <10, 其他8.设连续型随机变量X 的概率密度为 则= B .f (x )={x2, 0< x <20, 其他P{‒1≤ X ≤1}A. 0 B. 0.25 C. 0.5 D. 1解:P {‒1≤ X ≤1}=∫1‒1x2dx =x 24|1‒1=149.设随机变量X~U(2,4),则= A . (需在区间2,4内)P{3< x <4}A. B. P{2.25< x <3.25}P{1.5< x <2.5}C. D. P{3.5< x <4.5}P{4.5< x <5.5}10. 设随机变量X 的概率密度为 则X~ A .f (x )=122πe ‒(x ‒1)28A. N (-1, 2)B. N (-1, 4)C. N (-1, 8)D. N (-1, 16)11.已知随机变量X 的概率密度为fx(x),令Y=-2X,则Y 的概率密度fy(y)为 D .A.B.C.D. 2f X (‒2y)f X (‒y2)12f X(‒y2)12f X (y 2)二,填空题1.已知随机变量X 的分布律为X 12345P2a0.10.3a0.3则常数a= 0.1 .解:2a+0.1+0.3+a+0.3=12.设随机变量X 的分布律为X 123P162636记X 的分布函数为F(x)则F(2)=.解: 1216+263.抛硬币5次,记其中正面向上的次数为X,则=.P{ X ≤4}3132解:P { X ≤4}=1‒P { X =5}=1‒C 55(12)5(12)自己算的结果是12f X(‒y2)17 OF 184.设X 服从参数为λ(λ>0)的泊松分布,且,则λ= 2 .P { X =0}=12P { X =2}解:分别将.P { X =0},P { X =2}帶入P k =P { X =k }=λk k!e ‒λ5.设随机变量X 的分布函数为F (x )={0, x <a0.4, a ≤x <b1, x ≥b其中0<a<b,则= 0.4.P {a2<X <a +b 2}解:P { a 2<X <a +b 2}=F (a +b 2)‒F (a 2)=0.4‒0=0.46.设X 为连续型随机变量,c 是一个常数,则= 0.P { X =c }7. 设连续型随机变量X 的分布函数为F (x )={13e x, x <013(x +1), 0≤x <21, x ≥2则X 的概率密度为f(x),则当x<0是f(x)=.13e x 8. 设连续型随机变量X 的分布函数为其中概率密度为f(x),F (x )={1‒e ‒2x , x >00, x ≤0则f(1)= .2e ‒29. 设连续型随机变量X 的概率密度为其中a>0.要使,则常数a=f (x )={12a, ‒a < x <a 0, 其他P { X >1}=13 3 .解:P { X >1}=1‒P { X ≤1}=13,P { X ≤1}=23=12a10.设随机变量X~N(0,1),为其分布函数,则= 1 .Φ(x)Φ(x )+Φ(‒x)11.设X~N ,其分布函数为为标准正态分布函数,则F(x)与之间的关系是(μ,σ2)F (x ),Φ(x)Φ(x)=.F (x )Φ(x ‒μσ)12.设X~N(2,4),则= 0.5 .P { X ≤2}13.设X~N(5,9),已知标准正态分布函数值,为使,则Φ(0.5)=0.6915P { X <a }<0.6915常数a< 6.5. 解:, F (a )=Φ(a ‒μσ)=a ‒53a ‒53<0.514. 设X~N(0,1),则Y=2X+1的概率密度= .f Y (y )122πe‒(Y ‒1)28解:Y =g (x )=2X +1, X =ℎ(y )=Y ‒12,ℎ'(y )=12f Y (y )=f x (ℎ(y ))| ℎ'(y)|=12πe‒(Y ‒12)22∗12=122πe‒(Y ‒1)28三.袋中有2个白球3个红球,现从袋中随机地抽取2个球,以X 表示取到红球的数,求X 的分布律.解: X=0,1,2当X=0时,P { X =0}=C 03∗C 22C 25=110当X=1时,P { X =1}=C 13∗C 12C 25=610当X=2时,P { X =2}=C 23∗C 02C 25=310X 的分布律为:X 012P110610310四.设X 的概率密度为求: (1)X 的分布函数F(x);(2).f (x )={|x|, ‒1≤ x ≤10, 其他 P { X <0.5},P { X >‒0.5}解: (1)当x <-1时. F(x)=0;;当‒1≤x <0时,F(x)=∫x‒1‒x dx =‒x 22|x ‒1=12‒x 22当0≤x <1时,F (x )=1‒ 1∫xx dx =1‒x 22|1x =12+x 22当x ≥1时. F(x)=1F (X )={0, X <‒112‒x22, ‒1≤X <012+x22, 0≤X <11, X ≥1(2)P { X <0.5}=F (0.5)=12+0.522=58;P { X >‒0.5}=1‒F (‒0.5)=1‒(12‒0.522)=58五.已知某种类型电子组件的寿命X(单位:小时)服从指数分布,它的概率密度为f (x )={12000e ‒x 2000, x >00, x ≤0We will continue to improve the company's internal control system, and steady improvement in ability to manage and control, optimize business processes, to ensure smooth processes, responsibilities in place; to further strengthen internal controls, play a control post independent oversight role of evaluation complying with third-party responsibility; to actively make use of internal audit tools detect potential management, streamline, standardize related transactions, strengthening operations in accordance with law. Deepening the information management to ensure full communication "zero resistance". To constantly perfect ERP, and BFS++, and PI, and MIS, and SCM, information system based construction, full integration information system, achieved information resources shared; to expand Portal system application of breadth and depth, play information system on enterprise of Assistant role; to perfect daily run maintenance operation of records, promote problem reasons analysis and system handover; to strengthening BFS++, and ERP, and SCM, technology application of training, improve employees application information system of capacity and level. Humanistic care to ensure "zero." To strengthening Humanities care,continues to foster company wind clear, and gas are, and heart Shun of culture atmosphere; strengthening love helped trapped, care difficult employees; carried out style activities, rich employees life; strengthening health and labour protection, organization career health medical, control career against; continues to implementation psychological warning prevention system, training employees health of character, and stable of mood and enterprising of attitude, created friendly fraternity of Humanities environment. To strengthen risk management, ensure that the business of "zero risk". To strengthened business plans management, will business business plans cover to all level, ensure the business can control in control; to close concern financial, and coal electric linkage, and energy-saving scheduling, national policy trends, strengthening track, active should; to implementation State-owned assets method, further specification business financial management; to perfect risk tube control system, achieved risk recognition, and measure, and assessment, and report, and control feedback of closed ring management, improve risk prevention capacity. To further standardize trading, and strive to achieve "according to law, standardize and fair." Innovation of performance management, to ensure that potential employees "zero fly". To strengthen performance management, process control, enhance employee evaluation and levels of effective communication to improve performance management. To further quantify and refine employee standards ... Work, full play party, and branch, and members in "five type Enterprise" construction in the of core role, and fighting fortress role and pioneer model role; to continues to strengthening "four good" leadership construction, full play levels cadres in enterprise development in theof backbone backbone role; to full strengthening members youth work, full play youth employees in company development in the of force role; to improve independent Commission against corruption work level, strengthening on enterprise business key link of effectiveness monitored. , And maintain stability. To further strengthen publicity and education, improve the overall legal system. We must strengthen safety management, establish and improve the education, supervision, and evaluation as one of the traffic safety management mechanism. To conscientiously sum up the Olympic security controls, promoting integrated management to a higher level, higher standards, a higher level of development. Employees, today is lunar calendar on December 24, the ox Bell is about to ring, at this time of year, we clearly feel the pulse of the XX power generation company to flourish, to more clearly hear XX power generation companies mature and symmetry breathing. Recalling past one another across a railing, we are enthusiastic and full of confidence. Future development opportunities, we more exciting fight more spirited. Employees, let us together across 2013 full of challenges and opportunities, to create a green, low-cost operation, fullof humane care of a world-class power generation company and work hard! The occasion of the Spring Festival, my sincere wish that you and the families of the staff in the new year, good health, happy, happy19 OF 18一台仪器装有4个此种类型的电子组件,其中任意一个损坏时仪器便不能正常工作,假设4个电子组件损坏与否相互独立.试求: (1)一个此种类型电子组件能工作2000小时以上的概率;(2)一台仪器能正p 1常工作2000小时以上的概率.p 2解: (1)P 1=P {X ≥2000}=∫+∞200012000e‒x 2000dx=12000∗‒2000∗e‒x2000|+∞2000=‒e‒x 2000|+∞2000=0‒(‒e ‒1)=e ‒1(2)因4个电子组件损坏与否相互独立,故:P 2=P 14=(e ‒1)4=e ‒4当+∞带入‒x2000时变成负无穷大,e ‒∞=0。

2012年10月全国自考概率论与数理统计(经管类)真题试卷(题后含答

2012年10月全国自考概率论与数理统计(经管类)真题试卷(题后含答案及解析)题型有:1. 单项选择题 2. 填空题 3. 计算题 4. 综合题 5. 应用题单项选择题在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.已知事件A,B,A∪B的概率分别为0.5,0.4,0.6,则P(AB)=( ) A.0.1B.0.2C.0.3D.0.5正确答案:B2.设F(x)为随机变量X的分布函数,则有( )A.F(一∞)=0,F(+∞)=0B.F(一∞)=1,F(+∞)=0C.F(-∞)=0,F(+∞)=1D.F(-∞)=1,F(+∞)=1正确答案:C解析:本题是分布函数的基本性质,应牢记.答案为C3.设二维随机变量(X,Y)服从区域D:x2+y2≤1上的均匀分布,则(X,Y)的概率密度为( )A.B.C.D.正确答案:D解析:本题是典型的利用区域面积来求其概率密度的题,在历年考题中出现多次,F(x,y)=答案为D4.设随机变量X服从参数为2的指数分布,则E(2X-1)=( )A.0B.1C.3D.4正确答案:A解析:指数分布的期望E(X)=,再根据期望的性质易知E(2X一1)=2E(X)一1=2×一1=0.答案为A5.设二维随机变量(X,Y)的分布律则D(3X)=( )A.B.2C.4D.6正确答案:B解析:本题可先求出随机变量X的边缘分布,,故EX=,再根据方差性质可知D(3X)=9D(X)=2.答案为B.6.设X1,X2,…,Xn…为相互独立同分布的随机变量序列,且E(X1)=0,D(X1)=1,则=( )A.0B.0.25C.0.5D.1正确答案:C解析:本题可由中心极限定理得答案为C7.设x1,x2,…,xn为来自总体N(μ,σ2)的样本,μ,σ2是未知参数,则下列样本函数为统计量的是( )A.B.C.D.正确答案:D解析:统计量中要求不含任何未知参数,故含μ,σ两参数的选项均被排除.答案为D.8.对总体参数进行区间估计,则下列结论正确的是( )A.置信度越大,置信区间越长B.置信度越大,置信区间越短C.置信度越小,置信区间越长D.置信度大小与置信区间长度无关正确答案:A解析:当置信度1-α增大,又样本容置n固定时,置信区间长度增大,区间估计精度减低。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年10月全国自考概率论与数理统计(经管类)真题试卷(题后
含答案及解析)
题型有:1. 单项选择题 2. 填空题 3. 计算题 4. 综合题 5. 应用题
单项选择题在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设A,B为随机事件,且B A,P(A)=0.4,P(B)=0.2,则P(B|A)=
【】
A.0.2
B.0.4
C.0.5
D.1
正确答案:C
解析:因B A,故P(AB)=P(B),则P(B|A)==0.5.2.设随机变量X~B(3,0.2),则P{X>2}= 【】
A.0.008
B.0.488
C.0.512
D.0.992
正确答案:A
解析:因为X~B(3,0.2),故P{X>2}=P{X=3}=C33×(0.2)3×(1-0.2)0=0.008.
3.设随机变量X的概率密度为f(x)=,则X~【】A.N(-2,2)
B.N(-2,4)
C.N(2,2)
D.N(2,4)
正确答案:B
4.设随机变量X的分布函数为F(x),则下列结论中不一定成立的是【】
A.F(-∞)=0
B.F(+∞)=1
C.0≤F(x)≤1
D.F(x)是连续函数
正确答案:D
5.设二维随机变量(X,Y)的分布律为
则P{X≤Y}= 【】A.0.25
B.0.45
C.0.55
D.0.75
正确答案:D
解析:P{X≤Y}=P{X=1,Y=1}+P{X=1,Y=2}+P{X=2,Y=2}=0.2+0.25+0.3=0.75.
6.设随机变量X服从参数为的指数分布,则E(2X-1)= 【】
A.0
B.1
C.3
D.4
正确答案:C
解析:X~,则E(X)=2.故E(2X-1)=2E(X)-1=3.
7.设随机变量X与Y相互独立,且D(X)=D(Y)=4,则D(3X-Y)= 【】A.8
B.16
C.32
D.40
正确答案:D
解析:因为X与Y相互独立,所以D(3X-Y)=9D(X)+D(Y)=9×4+4=40.
8.设总体X服从正态分布N(0,1),x1,x2,…,xn是来自X的样本,则x12+x22+…+xn2~【】
A.N(0,)
B.N(0,1)
C.χ2(n)
D.t(n)
正确答案:C
9.设x1,x2,x3,x4为来自总体X的样本,且E(X)=μ.记
,则μ的无偏估计是【】
A.
B.
C.
D.
正确答案:B
解析:
10.设总体X~N(μ,σ02),σ02已知,x1,x2,…,xn为来自X的样
本,为样本均值.假设H0:μ=μ0,H1:μ≠μ0,μ0已知,检验统计量u=,给定检验水平α,则拒绝H0的理由是【】
A.
B.
C.
D.
正确答案:B
填空题请在每小题的空格中填上正确答案。

错填、不填均无分。

11.设事件A与B相互独立,P(A)=0.3,P(B)=0.5,则P(AB)=________.
正确答案:0.15
12.设A,B为随机事件,且P(A)=0.6,P(B)=0.3,P(B|A)=0.2,则P(A∪B)=________.
正确答案:0.78
解析:P(AB)=P(B|A)P(A)=0.2×0.6=0.12,则P(A∪B)=P(A)+P(B)-P(AB)=0.6+0.3-0.12=0.78.
13.设某射手命中率为0.7,他向目标独立射击3次,则至少命中一次的概率为________.
正确答案:0.973
解析:设事件A表示“至少命中一次”,则表示“一次也没命中”,故P(A)=1-=1-C30×(0.7)0×(1-0.7)3=1-0.027=0.973.
14.设随机变量X的分布律为则常数c=________.
正确答案:0.6
解析:由分布律的性质知,0.1+c+0.3=1,故c=0.6.
15.设随机变量X~B(2,0.1),则P{X=1}=________.
正确答案:0.18
解析:X~B(2,0.1),故P{X=1}=C21×(0.1)1×(1-0.1)2-1=0.18.16.设随机变量X服从区间[a,b]上的均匀分布,则当a<x<b时,X的分布函数F(x)=________.
正确答案:
17.设随机变量X与Y相互独立,且P{X≤2}=,P{Y≤1)=,则P{X ≤2,Y≤1}=________.
正确答案:
18.设随机变量X与Y相互独立,X服从区间[-2,2]上的均匀分布,Y 服从参数为1的指数分布.则当-2<x<2,y>0时,(X,Y)的概率密度f(x,y)=________.
正确答案:
解析:X~U(-2,2),则fX(x)=Y~E(1),则fY(y)=因为X与Y相互独立,则f(x,y)=fX(x)fY(y)=
19.设随机变量X与Y的相关系数为0.4,且D(X)=D(Y)=9,则Cov(X,Y)=________.
正确答案:3.6
解析:Cov(X,Y)==0.4×3×3=3.6.
20.设随机变量X服从参数为λ的泊松分布,E(X)=5,则λ=________.正确答案:5
21.设随机变量X与Y相互独立,且X~N(2,4),Y~U(-1,3),则E(XY)=________.
正确答案:2
解析:X~N(2,4),则E(X)=2;Y~U(-1,3),则E(Y)==1.又X 与Y相互独立,故E(XY)=E(X)E(Y)=2.
22.设二维随机变量(X,Y)的分布律为则P{X+Y≤2}=________.
正确答案:0.6
解析:P{X+Y≤2}=P{X=0,Y=1}+P{X=0,Y=2}+P{X=1,Y=1}=0.1+0.3+0.2=0.6.
23.设随机变量X的方差D(X)存在,则对任意小正数ε,有P{|X-E(X)|<ε}≥________.
正确答案:
24.设x1,x2,…,xn为来自正态总体N(1,4)的样本,则=________.正确答案:N(0,1)
25.设总体X~N(μ,σ2),检验假设H0:μ=μ0,H1:μ≠μ0,μ0已知,给定检验水平α,则拒绝H0的可信度为________.
正确答案:1-α
计算题
26.盒中有4个白球,2个红球.从中连续不放同地取两次,每次取1个球.求第二次取到红球的概率.
正确答案:设A表示“第一次取到红球”,B表示“第二次取到红球”,
由全概率公式得
27.设连续型随机变量X的分布函数为F(x)=其概率密度为f(x).求:(1)f(5);(2)P{X>5}.
正确答案:(1)f(x)=F’(x)=f(5)=2e-10;(2)P{X>5}=1-P{X ≤5}=1-F(5)=1-(1-e-10)=e-10.
综合题
28.设随机变量X服从[0,1]上的均匀分布,随机变量Y的概率密度为
且X与Y相互独立.求:(1)X的概率密度fX(x);(2)(X,Y)的概率密度f(x,y);(3)P{X+Y≤1}.
正确答案:(1)fX(x)=(2)f(x,
y)=fX(x)fY(y)=(3)P{X+Y≤1}=∫01dx∫01-xe -ydy=e -1.
29.设二维随机变量(X,Y)的分布律为
求:(1)E(X),E(Y);(2)D(X),D(Y);(3)E(XY),Cov(X,Y).
正确答案:
(1)E( X)=0.4,E(Y)=0.1;(2)D(X)=E(X2)-[E(X)]2=0.24,D(Y)=E(Y2)-[E(Y)]2=0.69;
(3)E(XY)=-0.1,Cov(X,Y)=E(XY)-E(X)E(Y)=-0.14.
应用题
30.设随机变量X的概率密度为x1,x2,…,xn为来自总体X的样本,求未知参数θ的极大似然估计
正确答案:当0<xi<1(i=1,2,…,n)时,似然函数L(θ)=,。

相关文档
最新文档