齿轮动力学

齿轮动力学
齿轮动力学

(一) 直齿圆柱齿轮传动的扭转振动模型

若忽略传动轴的扭转变形,只考虑齿轮副处的变形,则得到最简单的扭转振动模型,如图1所示。其中r b1、r b2为主从动齿轮的基圆直径,k v 为齿轮副的综合啮合刚度,并且考虑齿轮副的啮合阻尼系数c v 以及齿廓误差e 的作用,主动轮上作用与转动方向相同的驱动力矩T 1,从动轮上作用与转动方向相反的阻力矩T 2

图1 齿轮副的扭转振动模型

啮合线上的综合变形δi 可写为:

1122i b b i r r e δθθ=--

(1)

设重合度小于2,啮合齿对为i ,法向啮合力可以表示为:

()()()

11221122i vi i vi i vi b b i vi b b i i

i

i

F F k c k r r e c r r e δδθθθθ??==+=--+--??∑∑∑&&&& (2)

式中:i 为参与啮合的齿对序号,i =1,2;k vi 、c vi 为齿对i 在啮合点位置的综合啮合刚度

和阻尼系数。

主、从动齿轮的力矩平衡方程为:

12111222

b b J T r F J T r F θθ=-=-&&&& (3)

将(2)带入(1)中得到:

()()

()()

111112211221222112211222

b vi b b i vi b b i i

b vi b b i vi b b i i

J r k r r e c r r e T

J r k r r e c r r e T θθθθθθθθθθ??+--+--=????---+--=-??∑∑&&&&&&&&&& (4)

由此式可看出,即使主动齿轮转速以及传动载荷恒定,由于时变综合刚度k v 的变化,

也会使从动轮的转动出现波动,即造成齿轮的圆周振动。为了方便讨论时变综合刚度k v 对振动方程(4)的影响,定义啮合线上两齿轮的相对位移x 为:

1122b b x r r θθ=- (5)

不考虑齿轮传动的效率,齿轮的静态啮合力为:

12

01

2

b b T T F r r =

=

(6)

将式(5)、(6)带入方程(4)中,则可将其简化为一元微分方程:

e v v d m x c x k x F ++=&&& (7)

式中,m e 称为系统的当量质量:

12

22

2112

e b b J J m J r J r =

+ (8)

激振力为:

0d vi i vi i i

i

F F c e k e =++∑∑&

(9)

根据方程(9)可以将一对齿轮的振动视为单自由度系统的振动,如图2所示。可以看出

时变综合刚度k v 和齿廓误差e i 都是随时间变化的量,也即是齿轮系统的刚度激励和误差激励。

图2 齿轮传动的单自由度模型

与方程(7)对应的系统的固有频率可以表示为:

n f =

= (10)

(二) 直齿圆柱齿轮副啮合耦合型振动分析

在不考虑齿面摩擦的情况下,典型的直齿圆柱齿轮副的啮合耦合型动力学模型如图4所示。

图4 直齿轮齿轮副耦合振动模型

齿轮的动态啮合力F p 为:

()()

p k c m p g p g g g m p g p g g g F F F k y R y R e c y R y R e θθθθ=+=+-+-++-+-&&&&&(12)

推出系统的分析模型为:

p p py p py p p p p P p p

g g gy g gy g g p g g g g g p g g

m y c y k y F I F R T m y c y k y F F I F R T F R T θθ++=-=--++=-=-=--=-&&&&&&&&&&

(三) 考虑摩擦直齿圆柱齿轮副啮合耦合型振动分析

考虑齿面摩擦时的分析模型,如图5所示。系统变成6自由度的二维平面振动系统。

图5 考虑齿面摩擦的直齿轮齿轮副振动模型

齿轮副的动态啮合力仍为式(12),而齿面摩擦力可近似表示为:

f p F fF λ=

式中,f 为等效摩擦系数;λ为轮齿摩擦力方向系数,F f 沿x 正方向时取为“+1”,反之取为“-1”。

6

根据图6可建立系统的分析模型为:

()()tan tan p p px p px p f p p py p py p p

p p P p p f p g g gx g gx g f g g gy g gy g p

g g g g g f g

m x c x k x F m y c y k y F I F R T F R H m x c x k x F m y c y k y F I F R T F R H θβθβ++=++=-=--+-++=-++==--++&&&&&&&&&&&&&&&&

(四) 直齿轮-转子系统扭转振动模型

在对一对齿轮副建模的基础上,再考虑到传动轴的扭转刚度以及原动机和负载的转动惯

量,从而形成了齿轮-转子系统扭转振动问题,其动力学模型如图3所示。

图3 齿轮转子系统扭振模型

对该力学模型所示的振动系统,如果不考虑传动轴的质量,将原动机、主被动齿轮和负载可分别处理为4个集中转动惯量的元件,因而是4自由度扭转振动系统,从而建立如下的振动微分方程:

()()()()()()()()001011011

11

1

1

1

1

122

3

2

3

3

2

3

2

333323323

00d

d I C K T I C K rT I C K r T I C K T θθθθθθ

θθθθθθθθθθ

θθθθ+-+-=+-+-+=+-+--=+-+-=-&&&&&&&&&&&&&&&&

式中,I 0、I 1、I 2、I 3分别为4个质量的转动惯量;C 1、C 2分别为主、被动连接轴的扭转

阻尼;K 1和K 3分别为主、被动连接轴的扭转刚度;T 1和T 2分别为原动机和负载上的扭矩;F 为轮齿动态啮合力。

根据式(2)可知T d 为:

()

()11221122d m m T C r r e K r r e θθθθ=--+--&&&

整理后可得齿轮转子扭转振动微分方程:

[]{}[]{}[]{}{}M C K P θθθ++=&&&

其中{}{}0123 T

θθθθθ=

[]01

2

3I I M I I ?????

?=?????

?

[]1121

11122

213233

3000000

m m m

m K K K

K K r r r K K r r K K K r K K K -????-+-?

?=??

-+-??-??

[]1

12111122213233

30

0000

0m

m m m

C C C C r C

r r C C r rC C r C C C C -????-+-?

?=??

-+-?

?-??

{}1112

23m m m m T C re r K e P C r e r K e T ????--??=??

+????-??&&

(五) 斜齿圆柱齿轮副弯—扭—轴耦合分析模型

在斜齿圆柱齿轮传动中,由于轮齿的啮合会产生轴向的动态啮合分力,因此系统除具有

扭转振动和横向振动外,还好引起轴向振动,从而形成齿轮系统的弯-扭-轴耦合振动,一对斜齿轮副的典型动力学模型如图7所示。

图7

如图5.7,设主动齿轮的螺旋角为右旋,螺旋角为β,则啮合点横向振动位移与轴向振动位移间的关系可以表示为:

tan z y β=

因此,P 、G 点的振动位移与主动轮广义位移间的关系分别为:

tan tan p p p p p p p g g g g g g g y y R z z y y y R z z y θβθβ

=+=-=-=-

已知齿轮啮合的法向刚度k m 、法向阻尼c m 和法向啮合误差e ,则相应的有:

sin cos sin cos sin sin mx m my m mz m my m z

y k k k k c c c c e c e e ββββββ

?==?

==??==? 因此,相应的切向动态齿合力F y 为:

(

)

()()

..

cos y my

y my y p g p g m p p p g g g y m p p p g g g y F k y y e c y y e k y R y R e c y R y R e βθθθθ??

=--+-- ?

??

??=+-+-++-+-?

?&&&&&&

轴向动态啮合力F z 为:

(

)

()()()

()()

(

)

..tan tan sin tan tan p g p g z mz

z mz z m p

p p p g g g g z

m p p p p g g g g z

F k z z e c z z e k z y R z y R e c z y R z y R e βθβθββθβθ??

=--+-- ?

??

????-+-+--????=??

??+-+-+--?????

?&&&&&&&& 可推出系统的分析模型为;

p p py p py p y p p pz p pz p z p p y p p

g g gy g gy g y g g gz g gz g z g g g g g

m y c y k y F m z c z k z F I F R T m y c y k y F m z c z k z F I F R T θθ++=-++==--++=++=-=--&&&&&&&&&&&&&&&&

(六) 斜齿圆柱齿轮副弯—扭—轴—摆耦合分析模型

在斜齿圆柱齿轮传动中,由于轮齿的啮合会产生轴向的动态啮合力,因此系统除具有扭

转和横向振动之外,还会引起轴向振动和绕 y 轴的扭摆振动,从而形成了斜齿轮系统的弯-扭-轴-摆耦合振动,在这种情况下,一对斜齿轮副的典型的动力学模型如图 8。这时,系统为一空间三维振动模型。

图8

如图8 所示,设主动齿轮的螺旋角为右旋,其大小为β,则啮合点的横向振动x 向和y 向,及横向振动y 向和轴向振动z 向的关系可表示为:

tan tan cos tan n t y x y z y ααββ

===

主动轮1中心点O 1在啮合点上振动位移与主动轮广义位移之间的关系为:

()()111111111111

111111tan tan tan tan t z t z z x x y x y R y y R z z y z y R αθαθβθβ

=-=-+=+=-=-+

被动轮2中心点O 2在啮合点上振动位移与被动轮广义位移之间的关系为:

()()22222222222

2222222tan tan tan tan t z t z z x x y x y R y y R z z y z y R αθαθβθβ

=+=+-=-=-=--

若已知齿轮啮合的端面刚度k t 、端面阻尼c t ,则相应的有:

tan tan tan tan mx t t my t mz t mx t t

my t

mz t k k k k k k c c c c c c αβαβ

======

因此,相应的各向动态啮合力为

:

()

()()()

()()

()()()()

(

)

121211112222111122221212112212121122tan tan tan tan tan tan tan tan x mx mx mx z t z t mx z t z t t t z z t t t z z t

F k x x c x x k x y R x y R c x y R x y R k x x y y R R c x x y y R R θαθαθαθααθθααθθα????

=-+- ?

??

=-+---+-+---=--++-+--++-&&&&&&&&&&&&

(

)

()(

)

()()

1212111222111222111222111222

y my

my my z z my z z t z z t z z F k y y c y y k y R y R c y R y R k y R y R c y R y R θθθθθθθθ????=-+- ?

??

=+-+++-+=+-+++-+&&&&&&&& ()

()()()

()()

()

()()()

(

)

121211112222111122221212112212121122tan tan tan tan tan tan tan tan z mz ma mz z z mz z z t z z t z z F k z z c z z k z y R z y R c z y R z y R k z z y y R R c z z y y R R θβθβθβθββθθββθθβ

????

=-+- ?

??

=-+-+-+-+-+-=---+++---++&&&&&&&&&&&& 因此,系统的分析模型为:

1111111111111111111111

111111122222221222222222222x x x x

y y y y z z z z z z y y y y y y y z x x x x y y y y z z z z z z m x c x k x F m y c y k y F m z c z k z F I F R T J c k F R m x c x k x F m y c y k y F m z c z k z F I θθθθθθθ++=-++=-++==--++=-++=-++=-++==-&&&&&&&&&&&&&&&&&&&&&&&&&22

2222222

y y y y y y y z F R T J c k F R θθθθθ-++=-&&&

(七) 具有质量偏心的齿轮副分析模型

设某一级齿轮传动系统可简化为图9所示的力学模型,不考虑齿面摩擦,该系统是一个4自由度的弯扭耦合振动系统。

图9

这样,啮合线与主、被动齿轮的切点P 和G 的y 方向位移p y 和g y 可以表示为:

1122

12sin sin p g p p p g g g p p g g

y y e R y y e R w t w t θθθθθθθθ=--=--=-=-

根据轮齿啮合的基本原理,轮齿啮合的动态啮合力可表示为:

()

cy m p g m p g W c y y e k y y e ??

??

=--+-- ???

&

带入得:

()()()()

(){

}

()

{}

121122cos cos sin sin cy m p p p p p p p g g g g g g g m p p p g g g W c y e R y e R e t k y e R y e R e t ?θθ?θ?θθ?θθθθθ????=----------????????+------????&&&&&&&

由于齿轮的质量偏心,在齿轮旋转过程中将产生离心力,经推导主、被动齿轮的离心

力在y 方向的分量W mpy 和W mgy 分别为:

()()2

1

2

2

sin sin mpy p p p p mgy g g

g

g

W m e W m e θ?θ

θ?θ

=+=+&&

由于扭转振动位移加速度引起的质心沿y 的平移加速度,会使齿轮产生沿y

方向的惯性

力mpy W 和mgy W 分别为:

1122

cos cos mpy p p mgy

g g W m e W m e θθθθ==&&&&

因此,对主、从动齿轮的受力分析如图10所示,这里不考虑支撑系统和轮齿啮合的阻

尼。

系统的动力学方程为:

()()111222

cos cos cos cos cos cos p g mpy p p py mpy cy

mpy p p mpy p p cy p p mgy g g gy mgy cy

mgy g g mgy g g cy g g m y k y W W W I W e W e W R e m y k y W W W I W e W e W R e θθθθθθθθ+=--=--++=--=---&&&&&&&&

齿轮机械传动动力学研究文献综述完整版

基于齿轮传动的机械动力学研究文献综述 摘要:本文结合相关文献对机械动力学中齿轮传动动力学部分的研究进行了综述。综合文献对齿轮传动动力学研究现状和发展趋势有了整体把握。 关键词:动力学;齿轮传动;综述; The Literature Review of Mechanical Dynamics based on gear transmission Abstract:In this paper, the studies of mechanical dynamics of gear transmission were reviewed. On the whole, we grasp the studies status and development trend of gear transmission. Keywords: Dynamics;Gear transmission;Review 1.前言 随着机械向高效、高速、精密、多功能方向发展,对传动机械的功能和性能的要求也越来越高,机械的工作性能、使用寿命、能源消耗、振动噪声等在很大程度上取决于传动系统的性能。因此必须重视对传动系统的研究。机械系统中的传动主要分为机械传动、流体传动(液压传动、液力传动、气压传动、液体粘性传动和高等优点机械传动的形式也有多种,如各种齿轮传动、带(链)传动、摩擦传动等。 齿轮传动是机械传动中的主要形式之一。在机械传动中占有主导地位。由于它具有速比范围大、功率范围广、结构紧凑可靠等优点,已广泛应用于各种机械设备和仪器仪表中。成为现有机械产品中所占比重最大的一种传动。齿轮从发明到现在经历了无数次更新换代,主要向高速、重载、平稳性、体积小、低噪等方向发展。 2. 齿轮动力学的发展概述 齿轮的发展要追溯到公元前,迄今已有3000年的历史。虽然自古代人们就使用了齿轮传动,但由于动力限制了机器的速度。因此齿轮传动的研究迟迟未发展到动力学研究的阶段。 第一次工业革命推动了机器速度的提高,Euler提出的渐开线齿廓被广泛运用,这属于从齿轮机构的几何设计角度来适应速度的提高。

机械系统动力学

机械系统动力学报告 题目:电梯机械系统的动态特性分析 姓名: 专业: 学号:

电梯机械系统的动态特性分析 一、课题背景介绍 随着社会的快速发展,城市人口密度越来越大,高层建筑不断涌现,因此,现在对电梯的提出了更高的要求,随着科技的进步,在满足客观需求的基础上,电梯向着舒适性,高速,高效的方向发展。在电梯的发展过程中,安全性和功能性一直是电梯公司首要考虑的因素,其中舒适性也要包含在电梯的设计中,避免出现速度或者加速度出现突变,或者电梯运行过程中的振动引起人们的不适。因此,在电梯的设计过程中,对电梯进行动态特性分析是十分必要的。 二、在MATLAB中编程、绘图。 通过同组小伙伴的努力,已经得到了该系统的简化模型与运动方程。因此进行编程: 该系统的微分方程:[][][]{}[]Q x k x c x M= + ? ? ? ? ? ? + ? ? ? ? ? ?? ? ? ,其中矩阵[M]、 [C]、[K]、[Q]都已知。 该系统的微分方程是一个二阶一元微分方程,在MATLAB中,提供有求解常微分方程数值解的函数,其中在MATLAB中常用的求微分方程数值解的有7个:ode45,ode23,ode113,ode15s,ode23s,ode23t,ode23tb 。 ode是MATLAB专门用于解微分方程的功能函数。该求解器有变步长(variable-step)和定步长(fixed-step)两种类型。不同类型有着不同的求解器,其中ode45求解器属于变步长的一种,采用Runge-Kutta

算法;和他采用相同算法的变步长求解器还有ode23。 ode45表示采用四阶,五阶Runge-Kutta单步算法,截断误差为(Δx)^3。解决的是Nonstiff(非刚性)常微分方程。 ode45是解决数值解问题的首选方法,若长时间没结果,应该就是刚性的,可换用ode23试试。 Ode45函数调用形式如下:[T,Y]=ode45(odefun,tspan,y0) 相关参数介绍如下: 通过以上的了解,并对该微分方程进行变换与降阶,得出程序。MATLAB程序: (1)建立M函数文件来定义方程组如下: function dy=func(t,y) dy=zeros(10,1); dy(1)=y(2); dy(2)=1/1660*(-0.006*y(2)+0.003*y(4)-0.0006*y(10)-1.27*10^7*y(1)+1.27*10^7*y (3)+2.54*10^6*y(9)); dy(3)=y(4); dy(4)=1/1600*(+0.03*y(2)-0.007*y(4)+0.003*y(6)+1.27*10^7*y(1)-7.274*10^8*y(3 )+1.27*10^7*y(5)); dy(5)=y(6);

基于ADAMS的驱动桥齿轮啮合动力学仿真研究

文章编号:1003-1251(2010)01-0028-04 基于ADA M S 的驱动桥齿轮啮合动力学仿真研究 陈 克1 ,高 洁1 ,张闯英2 ,孙文周3 ,李家永 1 (1.沈阳理工大学汽车与交通学院,辽宁沈阳110159;2.三一重型装备有限公司,辽宁沈阳110027; 3.曙光车桥有限责任公司,山东诸城262233)摘 要:运用C AT I A 软件建立驱动桥主减速器和差速器齿轮传动系统的三维实体模 型,基于ADAM S 软件建立了主减速器和差速器齿轮传动的虚拟样机模型.将H ertz 接触理论嵌入仿真模型,在齿轮之间施加接触力,实现了齿轮啮合的动态实时仿真.通过在主减速器主动齿轮施加转速驱动,差速器半轴齿轮施加不同的负载转矩,模拟了汽车在转弯工况下驱动桥主减速器和差速器的齿轮传动,得到了主减速器齿轮、差速器齿轮的转速以及啮合力曲线,为深入研究齿轮传动系统动态特性提供了理论参考依据.关 键 词:驱动桥;主减速器;差速器;齿轮啮合;动力学;ADAM S 中图分类号:TH 132.41 文献标识码:A Dyna m ic Si m ulation St udy of Driving Axle G earM es hing Based on ADA M S CHEN K e 1 ,GAO Jie 1 ,Z HANG Chuang -y i n g 2 (1.Sh enyang L i gong Un i versity ,Shenyang 110159,Ch i na ;2.Sany H eavy Equ i pm ent C o .,Ltd .Shenyang 110027,Ch i na) A bstract :Three -di m ensionalm odels o f dri v e ax le fi n al drive and d ifferential gears m esh i n g trans m ission are created by C ATI A .The dri v ing m ode l and v irtua l pr o totype of gear m esh i n g trans m ission are estab lished based on ADAMS. B ased on the H ertz elasticity i m pact t h eory ,the contact forces bet w een gears are buil.t The rea-l ti m e dyna m ic si m u lations of gearing m esh are achieved .By i m posing speed drive on the dri v i n g gear of fi n al drive and d ifferent load torque on the ha lf ax le gear of differentia,l the process of gear trans m ission of fi n al drive and d ifferential is si m ulated under the tur n i n g cond itions .The curves of angular speed and m es -h i n g f o rce on t h e gears trans m issi o n o f fi n a l drive and d ifferenti a l are obta i n ed ,w h i c h pro -v ides references to research on dyna m ic character i s tics of gear dri v i n g dev ice . K ey words :dri v ing axle ;fina l dri v e ;d ifferentia;l gearing m esh ;dyna m ic si m ulation;ADAM S 收稿日期:2009-10-13 作者简介:陈克(1965)),男,教授,博士,研究方向:车辆计算机 辅助工程分析. 驱动桥由主减速器、差速器、半轴及桥壳等几部分组成.其基本功用是增大由传动轴或变速器 传来的转矩,并将动力合理分配给左、右驱动轮, 使左、右驱动车轮具有汽车行驶运动学所要求的差速功能.在驱动桥传动系统中,主减速器、差速 器齿轮传动的性能是决定该传动系统性能的关键.有关齿轮传动的早期研究大都局限于系统的静态性能,近年来,才对齿轮传动动态特性进行了 较多的研究[1-2] .本文利用C AT I A (Co m puter A-i ded T r-i D i m ensi o na l I n terface A pplicati o n)软件建 第29卷第1期 沈阳理工大学学报 Vo.l 29No .1 2010年2月 J OURNA L O F S HENYANG L I GONG UN I V ERSITY Feb .2010

第三章 瞬态动力学分析

§3.1瞬态动力学分析的定义 瞬态动力学分析(亦称时间历程分析)是用于确定承受任意的随时间变化载荷结构的动力学响应的一种方法。可以用瞬态动力学分析确定结构在稳态载荷、瞬态载荷和简谐载荷的随意组合作用下的随时间变化的位移、应变、应力及力。载荷和时间的相关性使得惯性力和阻尼作用比较重要。如果惯性力和阻尼作用不重要,就可以用静力学分析代替瞬态分析。 瞬态动力学的基本运动方程是: 其中: [M] =质量矩阵 [C] =阻尼矩阵 [K] =刚度矩阵 {}=节点加速度向量 {}=节点速度向量 {u} =节点位移向量 在任意给定的时间,这些方程可看作是一系列考虑了惯性力([M]{})和 阻尼力([C]{})的静力学平衡方程。ANSYS程序使用Newmark时间积分方法在离散的时间点上求解这些方程。两个连续时间点间的时间增量称为积分时间步长(integration time step)。 §3.2学习瞬态动力学的预备工作 瞬态动力学分析比静力学分析更复杂,因为按“工程”时间计算,瞬态动力学分析通常要占用更多的计算机资源和更多的人力。可以先做一些预备工作以理解问题的物理意义,从而节省大量资源。例如,可以做以下预备工作:

1.首先分析一个较简单模型。创建梁、质量体和弹簧组成的模型,以最小的代价深入的理解动力学认识,简单模型更有利于全面了解所有的动力学响应所需要的。 2.如果分析包括非线性特性,建议首先利用静力学分析掌握非线性特性对结构响应的影响规律。在某些场合,动力学分析中是没必要包括非线性特性的。 3.掌握结构动力学特性。通过做模态分析计算结构的固有频率和振型,了解这些模态被激活时结构的响应状态。同时,固有频率对计算正确的积分时间步长十分有用。 4.对于非线性问题,考虑将模型的线性部分子结构化以降低分析代价。<<高级技术分指南>>中将讲述子结构。 §3.3三种求解方法 瞬态动力学分析可采用三种方法:完全(Full)法、缩减(Reduced)法及模态叠加法。ANSYS/Professional产品中只允许用模态叠加法。在研究如何实现这些方法之前,让我们先探讨一下各种方法的优点和缺点。 §3.3.1完全法 完全法采用完整的系统矩阵计算瞬态响应(没有矩阵缩减)。它是三种方法中功能最强的,允许包括各类非线性特性(塑性、大变形、大应变等)。 注─如果并不想包括任何非线性,应当考虑使用另外两种方法中的一种。这是因为完全法是三种方法中开销最大的一种。 完全法的优点是: ·容易使用,不必关心选择主自由度或振型。 ·允许各种类型的非线性特性。 ·采用完整矩阵,不涉及质量矩阵近似。 ·在一次分析就能得到所有的位移和应力。 ·允许施加所有类型的载荷:节点力、外加的(非零)位移(不建议采用)和单元载荷(压力和温度),还允许通过TABLE数组参数指定表边界条件。 ·允许在实体模型上施加的载荷。 完全法的主要缺点是它比其它方法开销大。

齿轮传动系统的动力学仿真分析

齿轮传动系统的动力学仿真分析 摘要:本文对建立好的整体机械系统的虚拟样机模型进行运动学和动力学的仿真分析,通过仿真分析,可以方便地得出齿轮传动系统在特定负载和特定工况下的转矩,速度,加速度,接触力等,仿真分析后,可以确定各个齿轮之间传递的力和力矩,为零件的有限元分析提供基础。 关键词:传动系统动力学仿真 adams 虚拟样机 中图分类号:th132 文献标识码:a 文章编号: 1007-9416(2011)12-0207-01 随着计算机图形学技术的迅速发展,系统仿真方法论和计算机仿真软件设计技术在交互性、生动性、直观性等方面取得了较大进展,它是以计算机和仿真系统软件为工具,对现实系统或未来系统进行动态实验仿真研究的理论和方法。 运动学仿真就是对已经添加了拓扑关系的运动系统,定义其驱动方式和驱动参数的数值,分析其系统其他零部件在驱动条件下的运动参数,如速度,加速度,角速度,角加速度等。对仿真结果进行分析的基础上,验证所建立模型的正确性,并得出结论。 本文中所用的动力学仿真软件是adams软件。adams软件使用交互式图形环境和零件库、约束库、力库,创建完全参数化的机械系统几何模型,其求解器采用多刚体系统动力学理论中的拉格郎日方程方法,建立系统动力学方程,对虚拟机械系统进行静力学、运动学和动力学分析,输出位移、速度、加速度和反作用力曲线。adams

软件的仿真可用于预测机械系统的性能、运动范围、碰撞检测、峰值载荷以及计算有限元的输入载荷等。虚拟样机就是在adams软件中建的样机模型。 1、运动参数的设置 先在造型软件ug中将齿轮传动系统造型好,如下图所示。在已经设置好运动副的齿轮传动系统的第一级齿轮轴上绕地的旋转副上 给传动系统添加一个角速度驱动。然后进行仿真。在进行仿真的过程中,单位时间内仿真步数越多,步长越短,越能真实反映系统的真实结果,但缺点是仿真时间也随之变长,占用的系统空间也就越大。所以应该在兼顾仿真真实性与所需物理资源和仿真时间的基础上,选择一个合适的仿真时间和仿真的步长。 在仿真之前先设置系统所用到的物理量的单位,在工程实际中,角速度一般使用的单位是r/min,所以在系统的基本单位中把时间的单位设为min,角度的单位设成rad,而在adams中转速单位为 rad/min。本过程仿真的运动过程为:系统从加速运动到额定转速,平稳运动一段时间后,再减速运动直到停止。运动过程用函数来模拟,输入的角速度驱动的函数表达式为: step( time ,0 ,0 ,2.5 ,9168.8)+ step(time ,7.5 ,0 ,10 ,-9168.8),此函数表达式的含义为:系统从开始加速运动一直到2.5s时达到了系统的额定转速 9168.8rad/min(1460r/min),从2.5s到7.5s的时间段内,系统以额定转速运动,在7.5s到10s的时间段内,系统从额定转速减速

综述 齿轮系统动力学的理论体系_王建军

齿轮系统动力学的理论体系 * 王建军 副教授 王建军 李润方 摘要 根据对国内外齿轮系统动力学研究成果的系统总结,阐述齿轮 系统动力学理论的基本结构体系。说明齿轮动力学的发展过程;围绕动态激 励、模型类型、建模和求解方法以及齿轮系统的固有特性、动态响应和动力稳定性等介绍齿轮系统动力学所涉及的基本问题,讨论该理论的主要工程应用的基础上,提出应进一步研究的方向与重点。 关键词 齿轮系统 动力学性能 理论体系 正问题 反问题 中国图书资料分类法分类号 T G132.41 1 齿轮系统动力学基本理论体系 齿轮系统动力学[1]是研究齿轮系统在传递运动和动力过程中的动力学行为的一门科学。它以齿轮系统为对象,以齿轮副啮合过程的动力学特性为核心,以提高和改善齿轮系统的动力学行为为目的,在充分考虑系统各零部件动态特性的基础上,利用振动力学理论和方法,研究齿轮系统在传递动力和运动中振动、冲击、噪声的基本规律, 为设计制造小振动、低噪声、高可靠性、高传动性能的齿轮系统提供理论依据。 齿轮系统是机器最主要的动力和运动传递装置,其力学行为和工作性能对整个机器有重要影响。因此,齿轮系统动力学近百年来一直受到人们的广泛关注,尤其是近20年来,由于相关力学的理论与实验技术的发展,促进了齿轮系统动力学的深入研究。迄今,已经形成了较为完整的齿轮系统动力学的基本理论体系(见图1),系统总结齿 图1齿轮系统动力学的基本理论体系 ?动载系统的计算方法?振动噪声的评价与防治?状态监测与故障诊断 ?系统参数与动态性能的关系?载荷识别与动态设计 齿轮动力学理论的应用 动态响应 (系统的输出)系统模型 (系统的力学、数学描述)动态激励(系统的输入)?稳定性指标?稳定性区域?稳定性性能?系统参数对稳定性的影响 动力稳定性?动载荷系统振动?系统参数的影响 动态响应?固有频率?固有振型?参数对固有特性的影响 固有特性?时变刚度?传递误差?齿侧间隙?支承弹性与间隙?系统阻尼 考虑因素?齿轮副纯扭模型?齿轮传动系统模型 模型类型?集中参数法 ?传递矩阵法 ?有限元法?动态子结构综合法 建模方法?时变啮合刚度?轮齿传递误差?啮入啮出冲击 内部激励?原动机的扭矩 ?负载的反作用力矩 外部激励求解方法 ?时域法 ?频域法?解析法?数值法?实验法 *国家自然科学基金资助项目(59575006),机械传动国家重点实验室开放基金资助项目 收稿日期:1997—01—03 修回日期:1998—11—20 轮系统动力学理论与方法的时机已经成熟。 2 齿轮系统动力学的发展 2.1 分析理论 (1)在本世纪50年代以前,以啮合冲击作为描述和解释齿轮动态激励、动态响应的基础,将齿轮系统简化为单自由度系统,以冲击作用下的单自由度系统的动态响应来表达齿轮系统的动力学行为。 50年代以后,将齿轮系统作为弹性的机械振动系 统,以振动理论为基础,分析在啮合刚度、传递误差和啮合冲击作用下,系统的动力学行为。这一发展奠定了现代齿轮系统动力学的基础。 (2)在振动理论的框架内,齿轮系统动力学经历了由线性振动理论向非线性振动理论的发展。在线性振动理论范畴内,人们以平均啮合刚度替代时变啮合刚度,并由此计算齿轮副的固有频率和振型,利用数值积分法计算系统的动态响应,不考虑因时变啮合刚度引起的动态稳定问题,且避免研究由齿侧间隙引起的非线性以及多对齿轮副、齿轮副 ? 55?齿轮系统动力学的理论体系——王建军 李润方

ansys齿轮模态分析

基于ANSYS 的齿轮模态分析 齿轮传动是机械传动中最重要的传动部件,被广泛的应用在各个生产领域中,经常用在重要的场合;传动齿轮在工作过程中受到周期性载荷力的作用,有可能在标定转速内发生强烈的共振,动应力急剧增加,致使齿轮过早出现扭转疲劳和弯曲疲劳。静力学计算不能完全满足设计要求,因此有必要对齿轮进行模态分析,研究其振动特性,得到固有频率和主振型(自由振动特性)。同时,模态分析也是其它动力学分析如谐响应分析、瞬态动力学分析和谱分析的基础。 本文运用UG 对齿轮建模并用有限元软件ANSYS 对齿轮进行模态分析,为齿轮动态设计提供了有效的方法。 1.模态分析简介 由弹性力学有限元法,可得齿轮系统的运动微分方程为: []{}[]{}[]{}{()}M X C X K X F t ++= (1) 式中,[]M ,[]C ,[]K 分别为齿轮质量矩阵、阻尼矩阵和刚度矩阵;分别为齿轮振动加速度向量、速度向量和位移向量,{}X 、{}X 、{}X 分别为齿轮振动加速度向量、速度向量和位移向量,12{}{,, ,}T n X x x x =;{()}F t 为齿轮所受外界激振力向量,{}12{()},,T n F t f f f =。若无外力作用,即{}{()}0F t =,则得 到系统的自由振动方程。在求齿轮自由振动的频率和振型即求齿轮的固有频率和固有振型时,阻尼对它们影响不大,因此,可以作为无阻尼自由振动问题来处理 [2]。无阻尼项自由振动的运动方程为: []{}[]{}0M X K X += (2) 如果令 {}{}sin()X t φωφ=+ 则有 2{}{}sin()X t ωφωφ=+ 代入运动方程,可得 2([][]){}0i i K M ωφ-= (3) 式中i ω为第I 阶模态的固有频率,i φ为第I 阶振型,1,2, ,i n =。 2.齿轮建模 在ANSYS 中直接建模有一定的难度,考虑到其与多数绘图软件具有良好的数据接口,可以方便的转化,而UG 软件以其参数化、全相关的特点在零件造型方面表现突出,可以通过参数控制模型尺寸的变化,因此本文采用通过UG 软件对齿轮进行参数化建模,保存为IGES 格式,然后将模型导入到ANSYS 软件中的方法。设有模数m=2.5mm ,齿数z=20,压力角β=20°,齿宽b=14mm ,孔径为¢20mm 的标准齿轮模型。如图1

第四章 斜齿行星齿轮传动系统动力学分析精选

第四章斜齿行星齿轮传动系统动力学分析 4.1 引言 行星齿轮传动由于具有重量轻、结构紧凑、传动比大、效率高等优点,在民用、国防领域中都得到了广泛的应用,行星齿轮传动的振动和噪声是影响传动系统寿命和可靠性的重要因素。近年来,国内外学者对行星齿轮传动的动态特性进行了大量研究:J.Lin、R.G.Parker、宋轶民等分析了行星齿轮传动的固有特性[42-49]; A.Kahraman等研究了行星齿轮传动的均载特性 [50-52],并分析了加工误差对动态响应的影响[53-54];R.G.Parker等还提出了通过控制啮合相位差抑制系统振动的方法[55-57];潜波、罗玉涛、D.R.Kiracofe等探讨了复杂行星齿轮传动的动力学建模与分析[59-65];沈允文、孙涛、孙智民等对星型齿轮传动和行星齿轮传动的非线性动力学特性进行了深入研究[66-70]。 目前,关于行星齿轮传动的研究多针对直齿行星轮系,而对斜齿行星传动的研究还很少,所建立的模型也有待进一步完善。建立精确的动力学模型,是研究动态特性的首要工作,本章针对斜齿行星齿轮传动,以变形协调分析为基础,建立了其耦合非线性动力学模型,推导了其运动微分方程,最后分析了斜齿行星轮系的自由振动特性,对固有频率和固有振型的特点进行了总结。 4.2 系统的动力学模型及方程 4.2.1 传动系统的动力学模型 行星齿轮传动平移-扭转耦合动力学模型考虑的自由度非常多,因此其动力学方程也非常复杂。为方便动力学方程的推导,建立各个集中质量的坐标系如下:OXY为静坐标系,其原点在行星轮系的几何中心,坐标系不随行星轮系运动;Oxy 为行星架随动坐标系,其原点在行星架回转中心,固连在行星架上随行星架的运 O x y为行动而等速运动,其x轴正向通过第一个行星轮中心平衡位置;坐标系n n n 星轮坐标系,也固连在行星架上随之等速旋转,其原点位于行星轮的中心平衡位置,x轴通过太阳轮中心与行星轮中心的连线指向内齿圈,y轴与行星架相切指

齿轮动力学

(一) 直齿圆柱齿轮传动的扭转振动模型 若忽略传动轴的扭转变形,只考虑齿轮副处的变形,则得到最简单的扭转振动模型,如图1所示。其中r b1、r b2为主从动齿轮的基圆直径,k v 为齿轮副的综合啮合刚度,并且考虑齿轮副的啮合阻尼系数c v 以及齿廓误差e 的作用,主动轮上作用与转动方向相同的驱动力矩T 1,从动轮上作用与转动方向相反的阻力矩T 2 图1 齿轮副的扭转振动模型 啮合线上的综合变形δi 可写为: 1122i b b i r r e δθθ=-- (1) 设重合度小于2,啮合齿对为i ,法向啮合力可以表示为: ()()() 11221122i vi i vi i vi b b i vi b b i i i i F F k c k r r e c r r e δδθθθθ??==+=--+--??∑∑∑&&&& (2) 式中:i 为参与啮合的齿对序号,i =1,2;k vi 、c vi 为齿对i 在啮合点位置的综合啮合刚度和阻尼系数。 主、从动齿轮的力矩平衡方程为: 12111222 b b J T r F J T r F θθ=-=-&&&& (3) 将(2)带入(1)中得到: ()() ()() 111112211221222112211222 b vi b b i vi b b i i b vi b b i vi b b i i J r k r r e c r r e T J r k r r e c r r e T θθθθθθθθθθ??+--+--=????---+--=-??∑∑&&&&&&&&&& (4)

由此式可看出,即使主动齿轮转速以及传动载荷恒定,由于时变综合刚度k v 的变化,也会使从动轮的转动出现波动,即造成齿轮的圆周振动。为了方便讨论时变综合刚度k v 对振动方程(4)的影响,定义啮合线上两齿轮的相对位移x 为: 1122b b x r r θθ=- (5) 不考虑齿轮传动的效率,齿轮的静态啮合力为: 12 01 2 b b T T F r r = = (6) 将式(5)、(6)带入方程(4)中,则可将其简化为一元微分方程: e v v d m x c x k x F ++=&&& (7) 式中,m e 称为系统的当量质量: 12 22 2112 e b b J J m J r J r = + (8) 激振力为: 0d vi i vi i i i F F c e k e =++∑∑& (9) 根据方程(9)可以将一对齿轮的振动视为单自由度系统的振动,如图2所示。可以看出时变综合刚度k v 和齿廓误差e i 都是随时间变化的量,也即是齿轮系统的刚度激励和误差激励。 图2 齿轮传动的单自由度模型 与方程(7)对应的系统的固有频率可以表示为: n f = = (10) (二) 直齿圆柱齿轮副啮合耦合型振动分析 在不考虑齿面摩擦的情况下,典型的直齿圆柱齿轮副的啮合耦合型动力学模型如图4所示。

汽车变速器齿轮系统动力学行为分析

1’5[ 爿n02『 . 葺》.魁。, 无量纲位移j。 m-=1.2 图3 无量纠位移m ∞=1.8 激励频率改变时系统庞加莱映射无量纲位移,, F=0.5 0.4r 墓0.2} 霎4.. ■ 瞅.o.2h ‘ -0AI-?--—---—??-----?--------—----——-I------—?-—?-一 -2 .1.5 一1 .o.5 无量纲位移& F—1.0 的变化 无量纲托移J mm2 0 图4载荷比改变时系统庞加莱映射的变化 结构的变化情况,相关方法和结论对于更好地掌握变速器齿轮动态特性,以及更好地对变速器进行NVH控制有指导意义。 参考文献 I 卢剑伟.沈博.钱立军.基于非线性动力学的变速器异响 分析[J】.汽车1:程,2007.29(6):533-536. 2李润方,王建军.齿轮系统动力学——振动、冲击、噪声 [M】.北京:科学jij版杜,1997. 3李骊强非线性振动系统的定性理论与定量方法[M].天津:天津科学}l{版社.1997. 4刘延柱.陈立群.非线性振动[M】.北京:高等教育出版社.2004. 5陈予恕.非线性振动[M】.北京:高等教育出版社.2002. 上海汽车2011.Ol 无量纲位移5 F=I.5 6刘梦军.单对齿轮系统间隙非线性动力学研究:【学位论文】西安:西北丁业大学.2002. 7薛定宇.基于MATLAB/SIMULINK的系统仿真技术与应用[M】.北京:清华大学出版杜.2002. ?3l? 营嘲j睁 蛐限

汽车变速器齿轮系统动力学行为分析 作者:钱锋, Qian Feng 作者单位:泛亚汽车技术中心有限公司,上海,201201 刊名: 上海汽车 英文刊名:SHANGHAI AUTO 年,卷(期):2011(1) 参考文献(14条) 1.薛定宇基于MATLAB/SIMULINK的系统仿真技术与应用 2002 2.卢剑伟.沈博.钱立军基于齿轮非线性动力学的变速器异响分析 2007(6) 3.刘梦军单对齿轮系统间隙非线性动力学研究 2002 4.李润方.王建军齿轮系统动力学--振动、冲击、噪声 1997 5.陈予恕非线性振动 2002 6.李骊强非线性振动系统的定性理论与定量方法 1997 7.刘延柱;陈立群非线性振动 2004 8.刘延柱.陈立群非线性振动 2004 9.李骊强非线性振动系统的定性理论与定量方法 1997 10.陈予恕非线性振动 2002 11.李润方;王建军齿轮系统动力学--振动、冲击、噪声 1997 12.刘梦军单对齿轮系统间隙非线性动力学研究 2002 13.卢剑伟;沈博;钱立军基于非线性动力学的变速器异响分析[期刊论文]-汽车工程 2007(06) 14.薛定宇基于MATLAB/SIMULINK的系统仿真技术与应用 2002 本文链接:https://www.360docs.net/doc/ef9718546.html,/Periodical_shqc201101008.aspx

瞬态动力学分析

第16章瞬态动力学分析 第1节基本知识 瞬态动力学分析,亦称时间历程分析,是确定随时间变化载荷作用下结构响应的技术。它的输入数据是作为时间函数的载荷,可以是静载荷、瞬态载荷和简谐载荷的随意组合作用。输出数据是随时间变化的位移及其它导出量,如:应力、应变、力等。 用于瞬态动力分析的运动方程为: []{}[]{}[]{}() {}t F M= u + + C K u u 其中:式中[M]为质量矩阵;[C]为阻尼矩阵;[K]为刚度矩阵。 所以在瞬态动力分析中密度或质点质量、弹性模量及泊松比、阻尼等因素均应考虑,在ANSYS分析过程中密度或质量、弹性模量是必须输入的,忽略阻尼时可以选忽略选项。 瞬态动力学分析可以应用于承受各种冲击载荷的结构,如:炮塔、汽车车门等,应用于承受各种随时间变化载荷的结构,如:混凝土泵车臂架、起重机吊臂、桥梁等,应用于承受撞击和颠簸的办公设备,如:移动电话、笔记本电脑等,同时ANSYS在瞬态动力学分析中可以使用线性和非线性单元(仅在完全瞬态动力学中使用)。材料性质可以是线性或非线性、各向同性或正交各项异性、温度恒定的或温度相关的。分析结果写入jobname.RST文件中。可以用POST1和POST26观察分析结果。 ANSYS在进行瞬态动力学分析中可以采用三种方法,即Full(完全)法、Reduced(缩减)法和Mode Superposition(模态叠加)法。ANSYS提供了各种分析类型和分析选项,使用不同方法ANSYS软件会自动配置相应选择项目,常用的分析类型和分析选项如表16-1所示。

在瞬态分析中,时间总是计算的跟踪参数,在整个时间历程中,同样载荷也是时间的函数,有两种变化方式: Ramped :如图16-1(a )所示,载荷按照线性渐变方式变化。 Stepped :如图16-1(b )所示,载荷按照解体突变方式变化。 图16-1 载荷增加方式 渐变与突变 依据载荷变化方式可以将整个时间历程划分成多个载荷步(LoadStep ),每个载荷步代表载荷发生一次突变或一次渐变阶段。在每个载荷步时间内,载荷增量又可以划分多个子步(Substep ),在子步载荷增量的条件下程序进行迭代计算即Iteriation ,经过多个子步的求解实现一个载荷步的求解,进而求出多个载荷步的求解实现整个载荷时间历程的求解。 利用ANSYS 进行瞬态动力学分析时可以在实体模型或有限元模型上施加下列载荷:约束(Displacement )、集中力(Force )、力矩(Moment )、面载荷(Pressure )、体载荷(Temperature 、Fluence )、惯性力(Gravity ,Spinning ,ect.)。 在ANSYS 中,进行多载荷步加载的基本方法常用有三种:(1)连续多载荷步加载法。 (2)定义载荷步文件批加载法。(3)定义表载荷加载法。 第2节 瞬态动力学分析实例 案例1——自由度弹簧质量系统瞬态分析 LOAD (a) Ramped (b ) Stepped

研究生《机械系统动力学》试卷及答案

太原理工大学研究生试题 姓名: 学号: 专业班级: 机械工程2014级 课程名称: 《机械系统动力学》 考试时间: 120分钟 考试日期: 题号 一 二 三 四 五 六 七 八 总分 分数 1 圆柱型仪表悬浮在液体中,如图1所示。仪表质量为m ,液体的比重为ρ,液体的粘性阻尼系数为r ,试导出仪表在液体中竖直方向自由振动方程式,并求固有频率。(10分) 2 系统如图2所示,试计算系统微幅摆动的固有频率,假定OA 是均质刚性杆,质量为m 。(10分) 3 图3所示的悬臂梁,单位长度质量为ρ,试用雷利法计算横向振动的周期。假定梁的 变形曲线为?? ? ?? -=x L y y M 2cos 1π(y M 为自由端的挠度)。(10分) 4 如图4所示的系统,试推导质量m 微幅振动的方程式并求解θ(t)。(10分) 5 一简支梁如图5所示,在跨中央有重量W 为4900N 电机,在W 的作用下,梁的静挠度δst=,粘性阻尼使自由振动10周后振幅减小为初始值的一半,电机n=600rpm 时,转子不平衡质量产生的离心惯性力Q=1960N ,梁的分布质量略去不计,试求系统稳态受迫振动的振幅。(15分) 6 如图6所示的扭转摆,弹簧杆的刚度系数为K ,圆盘的转动惯量为J ,试求系统的固有频率。(15分) 7如图7一提升机,通过刚度系数m N K /1057823?=的钢丝绳和天轮(定滑轮)提升货载。货载重量N W 147000=,以s m v /025.0=的速度等速下降。求提升机突然制动时的钢丝绳最大张力。(15分) 8某振动系统如图8所示,试用拉个朗日法写出动能、势能和能量散失函数。(15分) 太原理工大学研究生试题纸

机械系统动力学试题

机械系统动力学试题 一、 简答题: 1.机械振动系统的固有频率与哪些因素有关?关系如何? 2.简述机械振动系统的实际阻尼、临界阻尼、阻尼比的联系与区别。 3.简述无阻尼单自由度系统共振的能量集聚过程。 4. 简述线性多自由度系统动力响应分析方法。 5. 如何设计参数,使减振器效果最佳? 二、 计算题: 1、 单自由度系统质量Kg m 10=, m s N c /20?=, m N k /4000=, m x 01.00=, 00=? x ,根据下列条件求系统的总响应。 (a ) 作用在系统的外激励为t F t F ωcos )(0=,其中N F 1000=, s rad /10=ω。 (b ) 0)(=t F 时的自由振动。 2、 质量为m 的发电转子,它的转动惯量J 0的确定采用试验方法:在转子径向R 1的地方附加一小质量m 1。试验装置如图2所示,记录其振动周期。 a )求发电机转子J 0。 b )并证明R 的微小变化在R 1=(m/m 1+1)·R 时有最小影响。 3、 如图3所示扭转振动系统,忽略阻尼的影响 J J J J ===321,K K K ==21 (1)写出其刚度矩阵; (2)写出系统自由振动运动微分方程; (2)求出系统的固有频率; (3)在图示运动平面上,绘出与固有频率对应的振型图。 1 θ(图2)

(图3) 4、求汽车俯仰振动(角运动)和跳振(上下垂直振动)的频率以及振 动中心(节点)的位置(如图4)。参数如下:质量m=1000kg,回转半径r=0.9m,前轴距重心的距离l1=0.1m,后轴距重心的距离l2=1.5m,前弹簧刚度k1=18kN/m,后弹簧刚度k2=22kN/m (图4) 5、如5图所示锻锤作用在工件上的冲击力可以近似为矩形脉冲。已知 工件,铁锤与框架的质量为m1=200 Mg,基础质量为m2=250Mg,弹簧垫的刚度为k1=150MN/m,土壤的刚度为k2=75MN/m.假定各质量的初始位移与速度均为零,求系统的振动规律。

齿轮动力学国内外研究现状

1.2.1 齿轮系统动力学研究 从齿轮动力学的研究发展来看,先后进行了基于解析方法的非线性齿轮动力学研究、基于数值方法的齿轮非线性动力学研究、基于实验方法的齿轮系统的非线性动力学研究和考虑齿面摩擦及齿轮故障的齿轮系统的非线性动力学研究。其中,解析方法包括谐波平衡法、分段技术法和增量谐波平衡法等;数值方法则不胜枚举,包括Ritz法、Parametric Continuation Technique方法等。[1]齿轮系统间隙非线性动力学的研究起始于1967年K.Nakamura的研究。[2]在1987年,H. Nevzat ?zgüven等人对齿轮系统动力学的数学建模方法进行了详细的总结。他分别从简化的动力学因子模型、轮齿柔性模型、齿轮动力学模型、扭转振动模型等几个方面分类,详细总述了齿轮动力学的发展进程。[3]1990年,A. Kaharman等人分析了一对含间隙直齿轮副的非线性动态特性,考虑了啮合刚度、齿侧间隙和静态传递误差等内部激励的影响,考察了啮合刚度与齿侧间隙对动力学的共同影响。[4] 1997年,Kaharaman和Blankenship对具有时变啮合刚度、齿侧间隙和外部激励的齿轮系统进行了实验研究,利用时域图、频域图、相位图和彭家莱曲线等揭示了齿轮系统的各种非线性现象。[5]同年,M. Amabili和A. Rivola研究了低重合度单自由度的直齿轮系统的稳态响应及其系统的稳定性。 [6]2004年,A. Al-shyyab等人用集中质量参数法建立了含齿侧间隙的直齿齿轮副的非线性动力学模型,利用谐波平衡阀求解了方程组的稳态响应,并研究了啮合刚度、啮合阻尼、静态力矩和啮合频率对齿轮系统振动的影响。[7]2008年,Lassaad Walha等人建立了两级齿轮系统的非线性动力学模型,考虑了时变刚度、齿侧间隙和轴承刚度对动力学的影响。对非线性系统分段线性化并用Newmark迭代法进行求解,研究了齿轮脱啮造成的齿轮运动的不连续性。[8]2010年,T. Osman 和Ph. Velex在齿轮轻微磨损的情况下,建立了动力学模型,通过数值模拟揭示了齿轮磨损的非对称性。[9]2011年,Marcello Faggioni等人通过分析直齿轮的非线性动力学特性及其响应,建立了以齿轮振动幅值的目标函数,利用Random–Simplex优化算法优化了齿廓形状。[10]2013年,Omar D. Mohammed等人对时变啮合刚度的齿轮系统动力学进行了研究,对于裂纹过长所带来的有限元误差问题,提出了一种新的时变啮合刚度模型。通过时域方面的故障诊断数据和FEM结果对比,证明了新模型能够更好地解长裂纹问题。[11] 国内研究齿轮系统动力学也进行了大量的研究。2001年,李润芳等人建立了具有误差激励和时变刚度激励的齿轮系统非线性微分方程,利用有限元法求得齿轮的时变啮合刚度和啮合冲击力,研究了齿轮系统在激励作用下的动态响应。 [12]2006年,杨绍普等人研究了考虑时变刚度、齿轮侧隙、啮合阻尼和静态传递误差影响下的直齿轮副的非线性动力学特性,利用增量谐波平衡法对系统方程进行了求解,研究了系统的分岔特性以及阻尼比和外激励大小对系统幅频曲线的影响。[13]2010年,刘国华等人建立了考虑齿轮轴的弹性、齿侧间隙、油膜挤压刚度和时变啮合刚度等因素的多体弹性非线性动力学模型,研究了齿廓修形和轴的扭转刚度对动力学特性的影响。[14] 2013年,王晓笋,巫世晶等人建立了含有非线性齿侧间隙、内部误差激励和含磨损故障的时变啮合刚度的三自由度齿轮传动系统平移—扭转耦合动力学方程。采用变步长Gill积分、GRAM—SCHMIDT方法,得到了系统对应的分岔图和李雅普诺夫指数谱,研究发现了系统内部丰富的非线性现象,而系统进入混沌运动的途径也是多样的。[15]

齿轮机械动力学发展史

齿轮动力学研究综述 齿轮传动作为机械传动的主要形式,尤其是在高速的传动中扮演着更为重要的角色,故而对齿轮的动力学研究便显得十分必要。 虽然齿轮在远古时期便已经得到了应用,但是由于动力限制了极其的速度,所以此刻的齿轮根本谈不上动力学的问题。即便是时间推至到工业革命时期,有关齿轮传动的动力学研究也未正式提上议事日程。在第一次工业革命之后,由Euler所提出的渐开线齿廓齿轮逐渐地得到广泛的应用。时至今日,齿轮传动的速度最高已达300。齿轮传动速度的提高使得动力学分析成为必要的环节,但是其并不是唯一的原因。齿轮强度计算方法的不断探索和完善也是促进齿轮动力学分析的重要推力。1893年,美国学者W.Lewis提出了基于断臂梁的轮齿弯曲应力计算公式。1908年,德国学者E.Videky基于Hertz理论建立了齿面接触应力的计算公式。这些理论的建立和不断完善使得人们注意到:速度提高以后齿轮传动中的动载荷是至关重要的。基于此,在20世纪上半叶,不同国家的学者开始了以估算齿轮传动中的动载荷为目的的动力学研究,但是该阶段的研究是初步的,很不完善的。随着机械设备速度的不断提高,对齿轮的传动速度也提出了更高的要求,而此时齿轮传动的降噪及减振成为十分迫切的任务,所以以振动模型为标志的齿轮动力学研究成为了主流。20世纪50——60年代的研究以线性振动理论为基础[1-2],80年代以后,以非线性振动理论为基础的研究发展起来[2]。 齿轮传动作为一个振动系统,其输入、输出和系统模型、求解方法覆盖了诸多的方面。随着研究的不断深入和研究条件的不断改善,用于研究的模型也有着很大的区别。起初,常常采用简单的模型研究某一项内部激励产生的动态响应,但是随着研究的不断加深,外部激励也被考虑进来,这使得其对激励的表达也越来越精确。 1、齿轮动力学的起步 齿轮的动力学起步直接来源于应用领域,由于强度计算的需要而估算动载荷[]。在齿轮设计的早期阶段,由于对齿轮传动存在着一定的盲区,在计算时仅仅根据齿轮的功率计算出轮齿间的载荷,此即为静载荷。但是齿轮在实际的传动过程当中,存在着冲击、振动等动力学效应,轮齿间的实际载荷要比静载荷大,此时的载荷称之为动载荷。为了在计算时将动载荷的因素考虑进来,1868年, H.Walker提出了动载荷系数的概念; F d=L S L D 式中,F d—动载系数; L S 、L D--静载荷和动载荷。 但是由于科技条件的不成熟,在早期的研究中,经常会采用经验性的方法来决定动载系数。 在齿轮动载荷的研究过程中,Buckingham做出了巨大的贡献,他认为,由 于误差的存在,轮齿会发生瞬时的分离和随后的碰撞。早期的动载荷分析便是以这种冲击理论为基础的。其在自己的研究结果中指出影响齿轮动载荷的三个主要因素:系统惯性、轮齿误差和齿轮速度。在计算时将这些因素考虑进公式当中,被称为Buckingham公式。对于该公式的研究大约持续了二十多年,随后这方面研究的工作量便逐渐减少了。到了上世纪50年代,齿轮动力学的研究便进入了新时期——开始建立齿轮动力学的分析模型。其核心思想是将齿轮系统视为弹性

相关文档
最新文档