概率习题课一

合集下载

随机事件及其概率习题

随机事件及其概率习题

第一章随机事件及其概率习题一 、填空题当A , B 互不相容时,P (A U B)=亠卩(AB )= 0_^ 当 B A 时,P(A+B = _;_RAB = 若 P(A) ,P(B) ,P(AB) , P(A B) 1P(A B)= 119 9.事件 A,B,C 两两独立,满足 ABC , P (A) P (B) P (C)-,且 P ( A+B+C )=—216则 P(A)=??10.已知随机事件 A 的概率P(A) 0.5,随机事件 B 的概率P(B) 0.6,及条件概率P(B | A) 0.8,则和事件 A B 的概率P(A B)1.设样本空间 {x|0x 2}, 事件A {x|l1x 1}, B {x|-4{x|0 x ^} U{x|-4 2x 2},- 1 AB{x|-4x 1} U{x|1 x 2.连续射击一目标,A i 表示第i 次射中,直到射中为止的试验样本空间,则=A ; A I A 2; L ; A 1 A 2 L A n 1A n ; L.3.—部四卷的文集,按任意次序放在书架上,各卷自左向右,或自右向左顺序恰好为 1、2、3、4概率为 — 124. 一批(N 个)产品中有M 个次品、从这批产品中任取n 个,其中恰有个m 个次品的概 率是 c m c nm /c N5.某地铁车站,每5分钟有一趟列车到站, 乘客到达车站的时刻是任意的, 则乘客侯 车时间不超过3分钟的概率为 6•在区间(0, 1 )中随机地取两个数,则事件“两数之和小于 6”的概率为57. 已知 RA)= P(B)=(1) ;P(AB)12.假设一批产品中一、二、三等品各占60% 30% 10%从中随机取一件结果不是三等品,则取到一等品的概率为13. 已知 P(A) a,P (B|A) b,则卩(AB )14. 一批产品共10个正品,2个次品,任取两次,每次取一件(取后不放回),则第2次抽取为次品的概率162 1 215.甲、乙、丙三人入学考试合格的概率分别是 -,1,-,三人中恰好有两人合格的概3 2 5率为2/5 .16. 一次试验中事件 A 发生的概率为 p ,现进行n 次独立试验,则A 至少发生一次的概率为 1 (1 p)n; A 至多发生一次的概率为17.甲、乙两人独立地对同一目标射击一次,其命中率分别为和,现已知目标被击中,则它是甲中的概率为二、选择题3.如果事件A, B 有B A,则下述结论正确的是(C ).产品不全是合格品”,则下述结论正确的是(B ).5. 若二事件A 和B 同时出现的概率 P( AB )=0则(C ).(C ) AB 未必是不可能事件;(D ) P( A )=0或P( B )=0.a ab .(1 P)n np(1 p)n 11.以A 表示事件“甲种产品畅销,乙种产品滞销” 则其对立事件 A 为(D ).(A ) “甲种产品畅销,乙种产品滞销” (B ) “甲、乙两种产品均畅销” (C ) “甲种产品滞销”(D ) “甲种产品滞销或乙种产品畅销”2.对于任意二事件 A 和 B,与A BB 不等价的是(D ).(A) A B;(B) B A;(C) AB(D) AB(A ) A 与B 同时发生; (B) A 发生,B 必发生; (C) A 不发生B 必不发生; (D B 不发生A 必不发生.4. A 表示“五个产品全是合格品”,B 表示“五个产品恰有一个废品”,C 表示“五个(A) A B;(B) A C;(C) B C;(D) A B C.(A ) A 和B 不相容;(B ) AB 是不可能事件;6.对于任意二事件A和B有P(A B) (C ).(D) P(A) P (B) P(B) P(AB).8.设A , B 是任意两个概率不为 0的不相容的事件,则下列事件肯定正确的(D ).(A) A 与 B 不相容;(B) A 与 B 相容;(C) P( AB = P( A )P( B); (D) P( A-护P( A ). 9.当事件A B 同时发生时,事件C 必发生则(B ).(C) 事件A 和 B 互不独立;13 .设A, B 是任意二事件,且P(B) 0, P(A|B) 1 ,则必有(C ).(A) P(A B) P(A); (B) P(A B) P(B); (C) P(A B) P(A);(D)P(AB) P(B).14. 袋中有 5个球,其中2个白球和 3个黑球,又有5个人依次从袋中任取一球,取后不放回,则第二人取到白球的概率为(D .(C ) P (A) P( AB); (A) P(C) P(A) P(B) 1;(C) P(C) P(AB);(B) P(C) P(A) P(B) 1; (D) P(C) P(A B).10.设A,B 为两随机事件,且 A ,则下列式子正确的是 (A ).(A ) P(A B) P(A);(B) P(AB) P(A); (C) P(B|A) P(B);(D)P(B A) P(B) P(A).11.设A 、B 、C 是二随机事件,且 P(C) 0,则下列等式成立的是 (B).(A) P(A|C) P(A|C) (C) P(A|C) P(A|C)1; 1;(B) P(AUB|C) P(A|C) P(B|C) P (AB|C); (D) P(AUB|C) P(A|C) P(B|C).12.设A, B 是任意两事件B,P(B) 0,则下列选项必然成立的是(B ).(A) P (A) P(A|B); (C) P(A) P(A|B);(B) P(A) P(A|B); (D) P(A) P(A| B). 1(A)1;(B) |;4(C) 1;(D) I515.设 0 P(A) 1, 0 P(B) 1, P(A|B) P(A|B) 1,则(D ).(A) 事件A 和 B 互不相容;(B)事件A 和B 互相对立;事件A 和B 相互独立.p (0 p 1),则此人第4 (D)16.某人向同一目标重复射击,每次射击命中目标的概率为次射击恰好第2次命中目标的概率为(C).三、解答题1.写出下列随机实验样本空间:(1)同时掷出三颗骰子,记录三只骰子总数之和;(2) 10只产品中有3次产品,每次从中取一只(取出后不放回) ,直到将3只次品都取 出,记录抽取的次数;⑶对某工厂出厂的产品进行检查,合格的盖上“正品” ,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。

《概率论及数理统计》习题一课后答案

《概率论及数理统计》习题一课后答案

C83

36 65
1.29设一批产品中一、二、三等品各占60%、30%、10%, 从中随意取出一件,结果不是三等品,求取到的是一 等品的概率.
解 Ai={取到的是i等品}i=1,2,3.
则所求概率为
P( A1 A3)
0.6
P( A1A3) P( A3)
2

P( A1) 1 P( A3)
即为求在2红2黑四个球中,取到1红1黑的概率.
(用条件概率的本来含义)
P( X
1Y
0)

C21 C21 C42

2 3
1.31已知P(A)=0.5,P(B)=0.6,P(B|A)=0.8,求P(A∪B).
解 P(AU B) P(A) P(B) P(AB) P(A) P(B) P(A) P(B A) 0.5 0.6 0.50.8 0.7
P(AB) 0 即P(AB) 0
∴A与B相容
1.11 试问下列命题是否成立?若正确给出其证明.
(3)若P(A)=1,P(B)=1,则 P(A∪B)=1
(√)
解 Q A AUB
P(A) P(AU B)
1 P(A) P(A UB) 1
P(AUB) 1
1.11 试问下列命题是否成立?若正确给出其证明.
1.8 设A与B互不相容,且P(A)=0.2,P(A+B)=0.6,求 P(B)
解 ∵A与B互不相容
∴P(AB)=0 又P(A+B)=P(A)+P(B)P(AB) ∴P(B)=P(A+B)-P(A)
=0.6-0.2
=0.4
1.9设P(A) 0.7, P(A B) 0.2,求P(A B)

(整理)概率论与数理统计 许承德 习 题 一 课后 答案

(整理)概率论与数理统计 许承德   习 题 一  课后   答案

习 题 一1.写出下列随机试验的样本空间及下列事件中的样本点: (1)掷一颗骰子,记录出现的点数. A =‘出现奇数点’;(2)将一颗骰子掷两次,记录出现点数. A =‘两次点数之和为10’,B =‘第一次的点数,比第二次的点数大2’;(3)一个口袋中有5只外形完全相同的球,编号分别为1,2,3,4,5;从中同时取出3只球,观察其结果,A =‘球的最小号码为1’;(4)将,a b 两个球,随机地放入到甲、乙、丙三个盒子中去,观察放球情况,A =‘甲盒中至少有一球’; (5)记录在一段时间内,通过某桥的汽车流量,A =‘通过汽车不足5台’,B =‘通过的汽车不少于3台’。

解 (1)123456{,,,,,}S e e e e e e =其中i e =‘出现i 点’1,2,,6i =,135{,,}A e e e =。

(2){(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)S = (2,1),(2,2),(2,3),(2,4),(2,5),(2,6) (3,1),(3,2),(3,3),(3,4),(3,5),(3,6) (4,1),(4,2),(4,3),(4,4),(4,5),(4,6) (5,1),(5,2),(5,3),(5,4),(5,5),(5,6) (6,1),(6,2),(6,3),(6,4),(6,5),(6,6)}; {(4,6),(5,5),(6,4)}A =; {(3,1),(4,2),(5,3),(6,4)}B =。

(3){(1,2,3),(2,3,4),(3,4,5),(1,3,4),(1,4,5),(1,2,4),(1,2,5)S = (2,3,5),(2,4,5),(1,3,5)}{(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)}A = (4){(,,),(,,),(,,),(,,),(,,),(,,),S ab ab ab a b a b b a =--------- (,,),(,,,),(,,)}b a a b b a ---,其中‘-’表示空盒; {(,,),(,,),(,,),(,,),(,,)}A ab a b a b b a b a =------。

概率论1至7章课后答案

概率论1至7章课后答案

一、习题详解:1.1 写出下列随机试验的样本空间:(1) 某篮球运动员投篮时, 连续5 次都命中, 观察其投篮次数;解:连续5 次都命中,至少要投5次以上,故}{ ,7,6,51=Ω;(2) 掷一颗匀称的骰子两次, 观察前后两次出现的点数之和;解:}{12,11,4,3,22 =Ω;(3) 观察某医院一天内前来就诊的人数;解:医院一天内前来就诊的人数理论上可以从0到无穷,所以}{,2,1,03=Ω; (4) 从编号为1,2,3,4,5 的5 件产品中任意取出两件, 观察取出哪两件产品; 解:属于不放回抽样,故两件产品不会相同,编号必是一大一小,故:()}{;51,4≤≤=Ωj i j i(5) 检查两件产品是否合格;解:用0 表示合格, 1 表示不合格,则()()()()}{1,1,0,1,1,0,0,05=Ω;(6) 观察某地一天内的最高气温和最低气温(假设最低气温不低于T1, 最高气温不高于T2); 解:用x 表示最低气温, y 表示最高气温;考虑到这是一个二维的样本空间,故: ()}{216,T y x T y x ≤≤=Ω ;(7) 在单位圆内任取两点, 观察这两点的距离;解:}{207 x x =Ω;(8) 在长为l 的线段上任取一点, 该点将线段分成两段, 观察两线段的长度.解:()}{l y x y x y x =+=Ω,0,0,8 ;1.2 设A ,B ,C 为三事件, 用A;B;C 的运算关系表示下列各事件:(1) A 与B 都发生, 但C 不发生; C AB ;(2) A 发生, 且B 与C 至少有一个发生;)(C B A ⋃;(3) A,B,C 中至少有一个发生; C B A ⋃⋃;(4) A,B,C 中恰有一个发生;C B A C B A C B A ⋃⋃;(5) A,B,C 中至少有两个发生; BC AC AB ⋃⋃;(6) A,B,C 中至多有一个发生;C B C A B A ⋃⋃; (7) A;B;C 中至多有两个发生;ABC ;(8) A,B,C 中恰有两个发生.C AB C B A BC A ⋃⋃ ;注意:此类题目答案一般不唯一,有不同的表示方式。

概率统计课后习题解答第1章

概率统计课后习题解答第1章

21.某车间有 5 台车床,每台车床由于种种原因,时常需要停车,设各台车 床停车或开车是相互独立的, 若每台车床在任一时刻处于停车状态的概率为 1/3, 试分别求在任一时刻车间里有 0,3,5 台车床处于停车状态的概率. 解:此题为 5 重伯努利概型。 22.设甲、乙两个篮球运动员投篮命中率分别为 0.7 和 0.6,现每人投篮三次, 试求: (1)两人进球数相等的概率。 (2)甲比乙进球数多的概率。 解:设甲、乙两人的进球数分别为 x 和 y,则 ( 1) 1 1 P( X Y ) 0.330.43 C3 0.7 0.32 C3 0.6 0.42 C32 0.7 2 0.3 C32 0.62 0.4 0.730.63 0.321 ( 2) 1 1 P( X Y ) C3 0.7 0.32 0.43 C32 0.7 2 0.3(0.43 C3 0.6 0.42 ) 3 3 1 2 2 2 0.7 (0.4 C3 0.6 0.4 C3 0.6 0.4) 0.436 23.一商店出售的某种型号的晶体管是甲、乙、丙三家工厂生产的,其中乙 厂产品占总数的 50%,另两家工厂的产品各占 25%,已知甲、乙、丙各厂产品 合格率分别为 0.90、0.80、0.70,试求随意取出一只晶体管是合格品的概率。 解:设 A 表示随意取出一只晶体管是合格品,Bi(i=1,2,3)分别表示取出的 产品由甲、乙、丙厂家生产,则由全概率公式有
P ( A B ) 1 P ( A B ) 1 P ( A B ) 1 r.
12.已知 P(A)=0.7; P( A B )=0.3,试求 P( AB )。 解:由 P( AB ) P( A AB) P( A) P( AB) 0.7 P( AB) 得 P( AB) 0.7 0.3 0.4 ,从而 P( AB )=10.4 = 0.6。 注意:教材上题目印刷错误 13.盒中有 10 小球,其中有 4 个是红色,从中任取两球,已知取出的两球至 少有一个是红色,求另一球也是红色的概率。 解:设取出的两球至少有一个是红色用 A 表示,则 P( A) P( A1 ) P( A2 )

2.2.1条件概率课后练习题

2.2.1条件概率课后练习题

( )一、选择题条件概率课后练习题1. 小明早上步行从家到学校要经过有红绿灯的两个路口,根据经验,在第一个路口遇到红灯的概率为 0.4,在第二个路口遇到红灯的概率为 0.5,在两个路口连续遇到红灯的概率是 0.2. 某天早上小明在第一个路口遇到了红灯,则他在第二个路口也遇到红灯的概率是( )A. 0.2B. 0.3C. 0.4D. 0.52. 甲乙两人从 1,2,3, ……15 这 15 个数中,依次任取一个数(不放回),则在已知甲取到的数是 5 的倍数的情况下,甲所取的数大于乙所取的数的概率是( )A.1 2B.15C.14 D.153. 小赵、小钱、小孙、小李到 4 个景点旅游,每人只去一个景点,设事件 A =“4 个人去的景P A B =点不相同”,事件 B = “小赵独自去一个景点”,则 ( )A.29B.13 C.4 9 2D.5 94. 已知甲、乙、丙三名同学同时独立地解答一道导数试题,每人均有 3 的概率解答正确,且三个人解答正确与否相互独立,在三人中至少有两人解答正确的条件下,甲解答不正确的概 率 ( ) A. 1320B.9 20C. 1 5D.1 205. 将三枚骰子各掷一次,设事件 A 为“三个点数都不相同”,事件 B 为“至少出现一个 6 点”,则概率 P (A | B) 的值为( ) A. 6091二、填空题B. 1 2C.5 18D.2166. 一个家庭中有两个小孩.假定生男、生女是等可能的,已知这个家庭有一个是女孩,则这时另一个小孩是男孩的概率是 .7. 某校高三年级要从 5 名男生和 2 名女生中任选 3 名代表参加数学竞赛(每人被选中的机会均等),则在男生甲被选中的情况下,男生乙和女生丙至少一个被选中的概率是 . 8.篮子里装有 2 个红球,3 个白球和 4 个黑球。

某人从篮子中随机取出两个球,记事件A =“取 出的两个球颜色不同”,事件B =“取出一个红球,一个白球”, P (B A )= .三、解答题9.高考数学考试中有 12 道选择题,每道选择题有 4 个选项,其中有且仅有一个是正确的.评分标准规定:“在每小题中给出的四个选项中,只有一项是符合题目要求的,答对得 5 分,不答或答错得 0 分”.某考生每道选择题都选出一个答案,能确定其中有 8 道题的答案是正确的,而其余题中,有两道题都可判断出两个选项是错误的,有一道题能判断出一个选项是错误的,还有一道题因不理解题意只能乱猜.试求出该考生的选择题:(Ⅰ)得 60 分的概率;(Ⅱ)得多少分的概率最大?10.在盒子里有大小相同,仅颜色不同的乒乓球共10 个,其中红球5 个,白球3 个,蓝球2 个。

随机事件与概率习题

课题:第一章随机事件与概率总复习教学目的:使学生系统的掌握第一章得重点内容重点:知识点的回顾难点:应用混合知识点做题基本能力:可以分清楚不同类型概率的计算方法课的类型:复习课教学过程一、组织教学检查出席,相互问好二、讲新课第一章习题课一、知识点归纳1、事件之间的关系与事件的运算(包含、并、交、差、互斥、互逆)2、事件的运算法则2、古典概型的概率定义及计算3、概率的性质4、条件概率及其计算公式5、与条件概率有关的三个公式:乘法公式、全概率公式、贝叶斯公式。

6、事件的独立性7、贝努力概型详细讲解:1、事件之间的关系有7种:(1)包含关系--如果事件A的发生必然导致事件B的发生,则称事件B包含事件A,或称事件A是事件B的子事件,记作A⊂B或B⊃A。

(2)相等关系—如果A B=。

⊂同时成立,则称事件A与B相等,记为A B⊂和B A(3)事件的和(并)--“二事件A与B中至少有一个事件发生”,这样的一个事件称为事件A与B的和(或并),记作A B(或A+B)。

(4)事件的积(交)--“二事件A与B同时发生”这样的事件称为事件A与B的积(或交),记作A B(或AB)。

AB是由既包含在A中又包含在B中的试验结果构成。

(5)事件的差—“事件A发生而事件B不发生”这样的事件称为事件A与B的差,记作A-B 。

A-B 是由所有包含在A 中而不包含在B 中的试验结果构成,即A-B=A-AB 。

(6)事件的互不相容(互斥)--如果事件A 与事件B 不能同时发生,即AB=φ,则称事件A 与B 互不相容(或互斥)。

互不相容事件A 与B 没有公共的样本点。

(7)事件的对立(互逆)--若A 是一个事件,令A A -Ω=,称A 是A 的逆事件(或对立事件)。

这说明A 与A 中必然有一个发生,且仅有一个发生,即事件A 与A 满足条件:A A =φ,A ⋃A =Ω。

2、(a )交换率:A ⋃B=B ⋃A ,AB=BA ;(b )结合率:(A ⋃B )⋃C=A ⋃(B ⋃C ),(AB )C=A (BC ) (c )分配率:A (B ⋃C )=AB ⋃AC ,A ⋃(BC )=(A ⋃B )(A ⋃C ) (d )德·摩根(De Morgan )律:B A ⋃ =A B ,AB =A ⋃B3、古典概型:具有(1)全部基本事件的个数是有限的;(2)每个基本事件发生的可能性是相等的。

概率论与数理统计随机变量及其分布习题课

2
01 排列及其逆序数
解 以X表示此人外出时电话铃响的次数, 由题意知X~π(2t), t表示外出的总时间,则X的的分布律为
当t=10/60=1/6时, (1)
,故所求概率为
(2)设外出最长时间为t(单位:h), 因为X~π(2t),
3
01 排列及其逆序数
因此无电话打进的概率为

要使


解之得
0.3466小时约为21分钟,因此,某人应控制外出时间小
16
01 排列及其逆序数
ꢀ例8 设随机变量
,记
, 则A. p随着 μ的增加而增加
C. p随着μ的增加而减少
B. p随着 σ的增加而增加 D. p随着σ的增加而减少

因为 为单调增函数, p σ
,
所以 随着 的增加而增加
应选B.
17
01 排列及其逆序数
ꢀ例9 测量某距离时,随机误差X(单位:cm)具有密度函数:
则性。
6
01 排列及其逆序数 ꢀ例3 设随机变量X的概率密度为 为X的分布函数, 求 解 由题意知,X的分布函数为
因此,
F(x)
7
01 排列及其逆序数 ꢀ例4 设某加油站每周补给一次油,如果这个加油站每 周的销售量(单位:千升)为一随机变量,其密度函数为
试问该加油站的储油罐需要多大,才能把一周内断油的概 率控制在5%以下?
,求
解 当y≤0时,Y的密度函数为 当y>0时,Y的分布函数为
的分布. ;
对上式两边关于y求导,得
20
01 排列及其逆序数 即
这是伽玛分布
的概率密度函数.
21
01 排列及其逆序数
ꢀ例11 设电流I是一个随机变量,它均匀分布在9A~11A 之间.若此电流通过2Ω的电阻,在其上消耗的功率W=2I2, 求W的概率密度.

概率课外练习题1

第一章 概率论的基本概念 课外练习题一、 填空题1. 已知事件A B 、相互独立,且()0.3P A =,()0.6P B =,则__()P A B = , ()P A B ∪= ; 2. 已知()0.3P A =,()0.15P AB =,则条件概率()P B A = ;3. 随机事件,,A B C 两两相互独立,且ABC =Φ,1()()()2P A P B P C ==<,9()16P A B C ∪∪=,则()P A = ; 4. 已知()0.2P AB =,()0.4P A B −=,则()P A = ,(|)P B A = ;5. 设()0.6,()0.5P A P B ==,则()P AB 的最大值为 ,此时事件A 与B 的关系为 ; 6. 已知()04P A =.,()05P B =.,()05P AB =.,()P B A B =∪ ;7. 三人独立地破译密码,他们能单独译出的概率分别为111,,345,则此密码被译出的概率是 ;8. 掷两颗骰子,已知两颗点数之和是7,则其中有一颗为一点的概率是 ; 9.有5条线段,它们的长度分别为1、3、5、7、9,从中任取三条,则这三条线段能构成三角形的概率为 ;10. 一个盒子里有3个红球,5个白球,从中任取两个,则恰好为1红球1白球的概率为 ,球的颜色相同的概率为 .二、 判断题 1. 设A B 、为两个事件,则()()()P A B P A P B −=−;2. 事件A 与B 相互独立,则()()+()P A B P A P B =∪;3. 设A B 、为两个事件,则A B AB B =∪∪;4. 设()0.7P A =,()0.8P B =,()0.8P B A =,则事件A 与B 一定相互独立;5. 若事件A 与B 相互独立,则A 与B 也相互独立;6. 设A B 、为两事件,若()0>A P 且()()B P A B P =,则事件A 与B 相互独立;7. 若1)()(=+B P A P ,则A B 、是互逆的;8. 事件A 发生必然导致事件B 发生,则B A ⊂;9. 必然事件概率为1,反之概率为1的事件一定是必然事件;10. 事件A B 、互斥,则,A B 相互独立 .三、 计算题1. 一个盒子里有10件产品,其中有2件次品,从中任取2件,求(1)取到的两件产品都是正品的概率;(2)至少取到一件正品的概率;(3)已知取到的产品中有一件是正品,求另一件也是正品的概率.2. 将4个球随机放入标号为1、2、3、4的四个杯子中去,求(1)1号杯子空的概率;(2)2号杯子不空的概率;(3)1号杯子空且2号杯子不空的概率.3. 某工厂由甲、乙、丙三台机器生产同一型号的产品,它们的产量各占30%,35%,35%,废品率分别为5%,4%,3%,产品混在一起.(1)从该厂的产品中任取一件,求它是废品的概率;(2)若取出的产品是废品,求它是由甲机器生产的概率.4. 一个机床有1/3的时间加工零件A,其余时间加工零件B.已知加工零件A 时停机的概率是0.3,加工零件B 时停机的概率是0.4.(1)求该机床停机的概率;(2)若该机床已停机,求它是在加工零件A 时发生停机的概率.5. 设三个箱子中,第一个有4个黑球和3个白球,第二个箱子中有3个黑球和3个白球,第三个箱子中有3个黑球和5个白球,从这三个箱子中随机取一箱,再从该箱子中取任意抽取1球.求(1)抽到的球是白球的概率(2)若已知抽到的是白球,求该球恰好是来自第三箱的概率.四、 证明题1. 设事件,A B 相互独立,且0()()1P A P B 、<< 证明:(|)(|)1P A B P A B +=.2. 设1)(0<<B P ,求证:事件A 与B 相互独立的充要条件是)|()|(B A P B A P =.3. 已知事件A、B、C 相互独立,求证:事件A∪B 与C 也相互独立.。

同济大学第章概率论与数理统计习题课

4.贝叶斯公式.
P ( A B P ( B P ( B ) i) i) iA P ( B ) n ,i 1 , 2 , ,n iA P ( A ) P ( A B P ( B j) j)

j 1
独立性
定义1 设A,B是两事件,如果具有等式 P(AB)=P(A)P(B), 则称事件A,B为相互独立的随机事件.
答案:B 解析:由题设知:AB C,且P(AB) ≤P(C) 又由P(A∪B)=P(A)+P(B)-P(AB) ≤1,知 P(AB)=P(A)+P(B)-P(A∪B) ≥P(A)+P(B)-1
即P(C) ≥P(AB) ≥P(A)+P(B)-1
6. 假设 P(A)=0.4, P(AB)= 0.7, (1)若A与B互不相容, 则P(B)= 0.3 (2)若A与B相互独立, 则P(B)= 0.5
等可能概型(古典概型)
1.定义: 设E是试验,S是E的样本空间,若 (1) 试验的样本空间的元素只有有限个; (2) 试验中每个基本事件发生的可能性相同.
这种试验称为等可能概型或古典概型.
2.古典概型中事件A的概率的计算公式
k A包含的基本事件数 P(A) n S中基本事件的总数
几个重要公式n nFra bibliotekn n

A i= A i ;
i1 i1
Ai
i1
=
A. i
i1
5. 对必然事件的运算法则:A∪S=S, A∩S=A
6.对不可能事件的运算法则:A∪Φ =A,A∩Φ =Φ .
概率定义 设E ---随机试验,S-----样本空间.
事件A P(A), 称为事件A的概率,
如果P(• )满足下列条件: 1 °非负性: 对于每一个事件A,有 P(A)≥0 ; 2 ° 规范性: 对于必然事件S , 有P(S)=1; 3 °可列可加性: 设A1,A2,… 是两两互不相容
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档