山东省高密市第三中学高中数学 2.1函数的表示方法教案 新人教B版必修1

合集下载

人教B版高中数学必修一【学案8】函数的表示方法

人教B版高中数学必修一【学案8】函数的表示方法

学案八 函数的表示方法一、三维目标:知识与技能:进一步理解函数的概念;使学生掌握函数的三种表示方法;使学生掌握分段函数及其简单应用。

过程与方法:通过实例,使学生会根据具体问题选择合适的方法来表示两个变量之间的函数关系,并初步感知处理函数问题的方法。

情感态度与价值观:通过学习,让学生体会到生活离不开数学,激发学习兴趣,培养学生学数学用数学的意识。

二、学习重、难点:重点:函数的表示方法,根据具体问题选择合适的方法来表示两个变量之间的函数关系。

难点:函数三种表示方法的选择及分段函数的表达和性质。

学法指导:在回顾初中所学函数的有关知识的基础上,认真阅读教材P38--P43,通过对教材中的例题的研究,完成学习目标 。

学习过程:1、函数的三种表示方法(1)列表法:__________________________________________________。

举例: 如:人口普查表(见课本P38) 优点:___________________________________________________________________. (2)解析法:___________________________________________________________。

举例:___________________________________________________________。

优点: ⎩⎨⎧函数值;意一个自变量所对应的可以通过解析式求出任量间的关系;简明,全面地概括了变(3)图象法:__________________________________________________________。

优点:___________________________________________________________。

说出函数y=f(x)与其图像间的关系:__________________________________________ ___________________________________________________________________________ ___________________________________________________________________________. 这是“数形结合”思想和方法的依据。

(新课程)高中数学 《2.2.1 一次函数的性质与图像》教案 新人教B版必修1

(新课程)高中数学 《2.2.1 一次函数的性质与图像》教案 新人教B版必修1

2.2.1一次函数的性质与图像
教学目标:研究一次函数的性质与图像
教学重点:研究函数和利用函数的方法
教学过程:
1、 复习一次函数b kx y +=的定义
2、 通过以下几方面研究函数
(1)、函数的改变量
(2)、斜率k 的符号与函数单调性的关系
(3)、b 的取值对函数的奇偶性的影响
(4)、函数的图像与坐标轴的交点坐标
3、课内练习
1. 函数Y=2x 3n -2,当n=____时,Y 是x 的正比例函数。

2. 试验表明小树原高为1.5米,在成长期间,每月增长20厘米,试写出小树高度Y(米)与
月份x 之间的函数关系式。

问半年后小树的高度是多少?
3. 某电信局收取网费如下:163网费为每小时3元,169网费为每小时2元,但要
收取15元月租费。

设网费为Y元,上网时间为x小时,
(1) 分别写出Y与x的函数关系式。

(2) 某网民每月上网19小时,他应选择哪种上网方式。

4、函数Y=2mx+3-m是 正比例函数,则m=____。

5、已知蜡烛燃掉的长度与点燃的时间成正比例。

一只蜡烛点燃6分钟,剩下的烛长为12厘米,点燃16分钟,剩下的烛长为7厘米,假设蜡烛点燃x分钟,剩下的烛长为Y厘米,求Y与x之间的函数关系式。

问这只蜡烛点完需要多少时间?
课堂练习:教材第60页 练习A 、B
小结:通过本节课的学习应明确应该从那几个方面研究函数.
课后作业:(略)。

函数的概念和函数的表示法教案-人教版数学高一上必修1第一章1.2.1-1.2.2

函数的概念和函数的表示法教案-人教版数学高一上必修1第一章1.2.1-1.2.2

第一章集合与函数概念1.2 函数及其表示1.2.1 函数的概念和函数的表示法1 教学目标1.1 知识与技能:[1]理解函数的概念,了解构成函数的三要素.[2]会判断给出的两个函数是否是同一函数.[3]能正确使用区间表示数集.[4]函数的三种表示方法,并会求简单函数的定义域和值域.[5]通过实例体会分段函数的概念.[6]了解映射的概念及表示方法,并会判断一个对应关系是否是映射.1.2过程与方法:[1]通过具体实例,体会函数的概念和函数三要素,会求简单函数的定义域和值域。

[2]通过观察、画图等具体动手,体会分段函数的概念。

[3]通过具体习题,了解映射的概念,并会判断一个对应关系是否是映射.1.3 情感态度与价值观:[1]通过学习函数的概念及其表示法以及相关练习,培养学生逻辑思维。

[2]通过细致作图,培养学生的动手能力和识图能力。

2 教学重点/难点/易考点2.1 教学重点[1]函数的三种表示方法。

[2]分段函数的概念。

2.2 教学难点[1]根据不同的需要选择恰当的方法表示函数,什么才算“恰当”?分段函数的表示及其图象.[2]会求函数的定义域和值域。

3 专家建议此节为高中数学函数的第一节内容,一定要让学生充分理解函数的概念,结合具体习题提升学生的逻辑思维和数学素养。

4 教学方法实例探究——归纳总结,提炼概念——补充讲解——练习提高5 教学用具多媒体,教学用直尺、三角板。

6 教学过程6.1 引入新课【师】同学们好。

初中的时候我们就接触过函数,并掌握了一次函数,二次函数和反比例函数。

这节课我们来继续进一步学习和函数有关的内容。

【板书】第一章集合与函数概念 1.2 函数及其表示6.2 新知介绍[1]函数的概念【师】下面请同学们看三个实例,看有什么不同点和相同点。

【板演/PPT】PPT演示三个实例。

【师】那我们现在可以发现不同点是三个实例分别用解析式,图像和表格刻画变量之间的对应关系。

相同点是都有两个非空数集,并且两个数集之间都有一种确定的对应关系。

高中数学2.1.3函数的单调性教学设计新人教B版必修1

高中数学2.1.3函数的单调性教学设计新人教B版必修1

函数的单调性(教学设计)一、教材分析:《函数的单调性》系人教版高中数学必修一的内容,该内容包括函数的单调性的定义与判断及其证明。

在初中学习函数时,借助图像的直观性研究了一些函数的增减性.这节通过对具体函数图像的归纳和抽象,概括出函数在某个区间上是增函数或减函数的准确含义,明确指出函数的增减性是相对于某个区间来说的.教材中判断函数的增减性,既有从图像上进行观察的直观方法,又有根据其定义进行逻辑推理的严格方法,最后将两种方法统一起来,形成根据观察图像得出猜想结论,进而用推理证明猜想的体系.函数的单调性是函数众多性质中的重要性质之一,函数的单调性一节中的知识是前一节内容函数的概念和图像知识的延续,它和后面的函数奇偶性,合称为函数的简单性质,是今后研究指数函数、对数函数、幂函数及其他函数单调性的理论基础;在解决函数值域、定义域、不等式、比较两数大小等具体问题中均需用到函数的单调性;同时在这一节中利用函数图象来研究函数性质的数形结合思想将贯穿于我们整个高中数学教学。

二、学情分析:按现行新教材结构体系,学生只学过一次函数、二次函数、反比例函数,所以对函数的单调性研究也只能限于这几种函数。

依据现有认知结构,学生只能根据函数的图象观察出“随着自变量的增大,函数值增大”的变化趋势,而不能用符号语言进行严密的代数证明,只能依据形的直观性进行感性判断而不能进行“思辩”的理性认识。

所以在教学中要找准学生学习思维的“最近发展区”进行有意义的建构教学。

在教学过程中,要注意学生第一次接触代数形式的证明,为使学生能迅速掌握代数证明的格式,要注意让学生在内容上紧扣定义贯穿整个学习过程,在形式上要从有意识的模仿逐渐过渡到独立的证明。

三、教学目标依据课程标准的具体要求以及基于教材内容的具体分析,制定本节课的教学目标为:1.通过函数单调性的学习,让学生通过自主探究活动,体会数学概念的形成过程的真谛,学会运用函数图像理解和研究函数的性质。

高中数学必修1(人教B版)第二章函数2.1知识点总结含同步练习题及答案

高中数学必修1(人教B版)第二章函数2.1知识点总结含同步练习题及答案

描述:高中数学必修1(人教B版)知识点总结含同步练习题及答案第二章 函数 2.1 函数一、学习任务1. 通过同一过程中的变量关系理解函数的概念;了解构成函数的要素(定义域、值域、对应法则),会求一些简单函数的定义域和值域;初步掌握换元法的简单应用.2. 了解映射的概念,能判断一些简单的对应是不是映射.3. 理解函数的三种表示方法(图象法、列表法、解析法),会选择恰当的方法表示简单情境中的函数.了解简单的分段函数,能写出简单情境中的分段函数,并能求出给定自变量所对应的函数值,会画函数的图象.4. 理解函数的单调性及其几何意义,会判断一些简单函数的单调性;理解函数最大(小)值的概念及其几何意义;了解函数奇偶性的含义.二、知识清单函数的相关概念函数的表示方法 映射函数的定义域的概念与求法函数的值域的概念与求法 函数的解析式的概念与求法分段函数复合函数 函数的单调性函数的最大(小)值 函数的奇偶性三、知识讲解1.函数的相关概念函数的概念设 , 是非空数集,如果按照某种确定的对应关系 ,使对于集合 中的任意一个数 ,在集合 中都有唯一确定的数 和它对应,那么就称 为从集合 到集合 的一个函数(function).记作:其中, 叫做自变量,自变量取值的范围(数集 )叫做这个函数的定义域. 叫做因变量,与 的值相对应的 值叫做函数在 处的函数值,所有函数值构成的集合叫做这个函数的值域.相同函数的概念A B f Ax B f (x )f :A →B A By =f (x ),x ∈A .x A y x y x {y | y =f (x ),x ∈A }N集合 的函数关系的有( )012.数轴表示为(2){x | 2⩽x⩽8 且8](3)函数 的图象是由 t 的映射的是( )N(2)函数图象如图所示:y的距离 与点y=f(x)如图为函数 的图象,试写出函数解: [1,2]2(5)(图象法)画出。

高中数学 2.1.3 函数的单调性教学设计 新人教B版必修1

高中数学 2.1.3 函数的单调性教学设计 新人教B版必修1

函数的单调性教学设计一、教材分析函数的单调性是函数的重要性质.从知识的网络结构上看,函数的单调性既是函数概念的延续和拓展,又是后续研究指数函数、对数函数、三角函数的单调性等内容的基础,在研究各种具体函数的性质和应用、解决各种问题中都有着广泛的应用.函数单调性概念的建立过程中蕴涵诸多数学思想方法,对于进一步探索、研究函数的其他性质有很强的启发与示X作用。

二、学情分析根据上述教材结构与内容分析,立足学生的认知水平,制定如下教学目标和重、难点三、教学目标1.知识与技能:使学生理解函数单调性的概念,初步掌握判别函数单调性的方法;2.过程与方法:引导学生通过观察、归纳、抽象、概括,自主建构单调增函数、单调减函数等概念;能运用函数单调性概念解决简单的问题;使学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力.3.情感、态度与价值观:在函数单调性的学习过程中,使学生体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度.根据上述教学目标,本节课的教学重点是函数单调性的概念形成和初步运用.虽然高一学生已经有一定的抽象思维能力,但函数单调性概念对他们来说还是比较抽象的.因此,本节课的学习难点是函数单调性的概念形成.四、教学重点、难点教学重点:函数单调性的概念;判断、证明函数的单调性教学难点:归纳并抽象函数单调性定义;用定义判断单调性的基本步骤五、学法与教法学法:〔1〕合作学习:引导学生分组讨论,合作交流,共同探讨问题〔2〕自主学习:引导学生通过亲身经历,动口、动脑、动手参与数学活动〔3〕探究学习:引导学生发挥主观能动性,主动探索新知〔如例题的处理〕。

教学用具:电脑、多媒体。

教法:整堂课围绕“一切为了学生发展〞的教学原那么突出:①动——师生互动、共同探索;②导——教师指导、循序渐进。

〔1〕新课引入——提出问题, 激发学生的求知欲。

〔2〕理解导数的内涵——数形结合,动手计算,组织学生自主探索,获得函数单调性的定义。

人教版高中数学必修1函数的解析式教案

§2.2.2 函数(二)--函数的解析式[教学目的]使学生进一步巩固函数的概念,能根据函数所具有的某些性质或它所满足的一些关系,求出它的解析式,并掌握解析式的一些形式的变换.[重点难点]重点、难点:函数解析式的求法.[教学过程]一、复习引入⒈用映射刻划的函数的定义是什么?函数符号的含义是什么?函数的表示方法常用的有哪些?答:函数是两个非空数集A到B的特殊映射f:x→y=f(x),x∈R,y∈C⊆B;定义域A、值域C和定义域到值域的对应法则f称为函数的三要素;符号y=f(x)表示y是x的函数,不是f与x的乘积;函数的表示方法常用的有解析法、列表法和图象法,而中学阶段所研究的函数主要是能用解析式表示的函数..⒉引入:我们已经了解了函数的概念和表示方法.在此基础上,今天我们来学习确定函数解析式的几种常见方法.二、学习、讲解新课我们知道,把两个变量的函数关系用一个等式表示,这个等式就叫做函数的解析表达式,简称解析式.下面我们通过例题来说明求函数解析式的几种常用方法例1⑴已知f(x)是一次函数,且满足3f(x+1)-2f(x-1)=2x+17,求f(x);⑵已知f(x+1)=x+2x,求f(x+1);⑶已知f(x)满足2f(x)+f(1/x)=3x,求f(x);⑷设二次函数f(x)满足f(x+2)=f(2-x)且f(x)=0的两实根平方和为10,图象过点(0,3),求f(x)的解析式.解:⑴设f(x)=ax+b,则3f(x+1)-2f(x-1)=3[a(x+1)+b]-2[a(x-1)+b]=ax+(5a+b)=2x+17,比较系数得a=2且5a+b=17, ∴a=2,b=7,∴f(x)=2x+7.⑵设u=x+1≥1,则x=u-1,x=(u-1)2,于是f(u)=(u-1)2+2(u-1)=u2-1(u≥1),即f(u)=u2-1(u≥1), ∴f(x+1)=(x+1)2-1=x2+2x(x+1≥1),即f(x+1)=x2+2x(x≥0).⑶∵已知2f(x)+f(1/x)=3x ---①,将①中x换成1/x得2f(1/x)+f(x)=3/x ---②,①×2-②得3f(x)=6x-3/x,∴f(x)=2x-1/x.⑷设f(x)的解析式是f(x)=ax2+bx+c(a≠0), ∵图象过点(0,3),∴有f(0)=c=3,故c=3;又∵f(x)满足f(x+2)=f(2-x)且f(x)=0的两实根平方和为10,∴得对称轴x=2且x12+x22=(x1+x2)2-2x1x2=10,即(-b/2a)=2且(b2/a2)-(6/a)=10,∴a=1,b=-4,∴f(x)=x2-4x+3.说明:求函数解析式常用的方法有:待定系数法(如⑴⑷)、换元法(如⑵)、构造方程法(如⑶)等.例2 高为h ,底面半径为r 的圆柱形容器内,以单位时间内体积为a 的速度充水,试求出水面高y 与时间t 的函数关系式,并求其定义域.(提示:圆柱的体积=底面积×高)解:由题意有at=πr 2y ,即y=(a/πr 2)t,∵0≤y ≤h,即0≤(a/πr 2)≤h, ∴0≤t ≤πr 2h/a ,即定义域是[0,πr 2h/a]. 说明:这是函数知识在实际问题中的应用,其定义域是由实际问题所决定的.练习:⑴若f(1/x)=1/(1+x),则f(x)= ;⑵已知f(x)是二次函数,且满足f(0)=1,f(x+1)-f(x)=2x ,则f(x)= ;⑶已知g(x)=1-2x ,f[g(x)]=(1-x 2)/x 2(x ≠0),则f(1/2)= ; ⑷将长为a 的铁丝折成矩形,面积y 关于边长x 的函数关系是 ,其定义域是 ; ⑸已知f(x)=⎩⎨⎧>-≤+)0(2)0(12x x x x ,若f(x)=10,则x= ;⑹已知函数f(x)满足f(ab)=f(a)+f(b)且f(2)=p ,f(3)=q ,则f(36)= .解:⑴令u=1/x ,则x=1/u ,f(u)=u/(1+u),∴f(x)=x/(1+x);⑵设f(x)=ax 2+bx+c(a ≠0),∵f(0)=1,∴c=1,又f(x+1)-f(x)=2x , ∴a(x+1)2+b(x+1)+1-ax 2-ba-1=2x ,即2ax+a+b=2x ,比较系数得2a=2且a+b=0,∴a=1,b=-1,∴f(x)=x 2-x+1.⑶由g(x)=1-2x=1/2,得x=1/4,∴f(1/2)=[1-(1/4)2]/(1/4)2=15.⑷设矩形的长为x ,则宽为(a-2x)/2,∴y=x[(a-2x)/2]=ax/2-x 2,定义域是(0,a/2). ⑸由已知-2x<0,∴f(x)=x 2+1=10,即x=±3,又x ≤0,∴x=-3. ⑹f(36)=f(6×6)=f(6)+f(6)=2f(6)=2f(2×3)=2[f(2)+f(3)]=2(p+q).三、小 结⒈解析式表示函数与自变量之间的一种对应关系,是函数与自变量之间建立联系的桥梁; ⒉解析式只表示一种对应关系,与所取的字母无关,如y=2x-1与u=2t-1是同一个函数; ⒊求函数解析式的方法一般有待定系数法和换元法,若已知函数的构造模式,可用待定系数法;若已知复合函数f[f(x)]的表达式来求f(x),常用换元法;当已知表达式较简单时,甚至可直接用凑合法求解.⒋用赋值法(特殊值法)求函数式中的参数,是一种比较常用的方法.⒌根据实际问题求函数的表达式,是应用函数知识解决实际问题的基础,在设定或选定自变量后去寻找等量关系,以求得表达式,要注意函数定义域应由实际问题确定.四、布置作业(一)复习:课本和课堂上的有关内容.(二)书面:⒈填空:⑴若f(x)=2x+1,则f[f(2)]= ;f(-x)= ;f[f(x)]= .⑵若f(x+1)=x2-2x+5,则f(x)= .⑶若f(x)=2x+3,g(x+2)=f(x),则g(x)= .⑷若3f(x)+2f(1/x)=4x ,则f(x)= .⑸若f(x)=x2-mx+n ,f(n)=m ,f(1)=-1,则f(-5)= .⒉设函数f(x)=x2-4x-4的定义域为[t-2,t-1],对任意t ∈R ,求函数f(x)的最小值ϕ(t)的解析式,并画出图象.(练习册P26B 组第2题)答案与提示:⒈⑴f[f(2)]=f(5)=11,f(-x)=-2x+1,f[f(x)]=2f(x)+1=4x+3;⑵f(x)=x 2-4x+8;⑶g(x)=2x-1;⑷f(x)=(12x 2-8)/5x(x ≠0);⑸将f(n)=m 与f(1)=-1并成方程组,解得m=1,n=-1,可知f(x)=x 2-x-1,∴f(-5)=29. ⒉由f(x)=x 2-4x-4=(x-2)2-8知,对称轴为x=2,若t-1<2即t<3时,ϕ(t)=f min (x)=(t-1-2)2-8=t 2-6t+1;若t-2≤2≤t-1即3≤t ≤4时,ϕ(t)=f min (x)=-8;若t-2>2即t>4时,ϕ(t)=f min (x)=(t-2-2)2-8=t 2-8t+8;∴⎪⎩⎪⎨⎧>+-≤≤-<+-=)4(88)43(8)3(16)(22t t t t t t t x ϕ.(三)思考题:(四)预习:课本P 53-552.2区间概念、函数定义域的求法.。

人教B版数学必修1

人教B版数学必修1第二章函数2.1.2 函数的表示方法(第1课时)教案及说课稿新宾县朝鲜族中学李锦玉2018年10月11日2.1.2 函数的表示方法(第1课时)教案教学目标:知识与技能掌握函数的三种表示方法:列表法、图象法、解析法,体会表示方法的特点。

过程与方法能根据实际情景选择恰当的方法表示一个函数以获取有用的信息,培养学生灵活运用知识的能力;初步体会用函数知识解决实际问题的方法。

情感态度与价值观体会数形结合思想在理解函数概念中的重要作用,在图形的变化中感受数学的直观性。

重点函数的三种表示方法的简单运用。

难点根据不同的需要选择恰当的表示方法表示一个函数。

教学准备2.1.2 函数的表示方法(第1课时)说课稿根据本节教材的特点和教学内容的结构特征,依据学生的认知规律,结合学生的实际水平,制定本节课的教学设计说明如下:一、说教材《函数的表示方法》是高中新教材人教B版必修1第二章第一节第二部分的内容。

学生在初中已经接触过较简单函数的一些不同表示方法,在高中阶段继函数的概念、定义域、值域之后学习函数的表示方法,这部分属于函数三要素之一,即对应关系的表达方式。

学习函数的表示法,不仅是研究函数本身和应用函数解决实际问题所必须涉及的问题,也是加深对函数概念理解所必须的,同时,基于高中阶段所接触的许多函数均可用几种不同的方法表示,因而学习函数的表示也是领悟数学思想方法(如数形结合、化归等)、学会根据问题需要选择表示方法的重要过程。

二、说学情本人所教的高一学生(16人)课堂纪律较好,但数学基础不够扎实,思维不够活跃,逻辑推理和分析概括的能力较弱。

因此在教学中会放慢进程,更加注重启发学生,让学生自主回答。

函数这一模块内容最多,比较抽象,学生学习确有许多困难。

基于高中阶段所接触的许多函数都可用不同的方法表示,因此教师通过设置问题去帮助学生积极主动地感受、分析、归纳三种方法的各自优点及不足,逐步过渡到能合理选用和灵活转换函数的各种表示形式,这也是向学生渗透数形结合思想方法的重要过程,同时也为后述内容-----函数的性质(单调性、奇偶性、周期性)的学习打下良好的基础。

人教新课标高中数学B版必修1《2.1.3 函数的单调性》教学设计(表格式)

§2.1.3函数的单调性
一、教学目标
1.知识与技能目标
使学生理解函数单调性的概念,初步掌握判别函数单调性的方法;
2.过程与方法目标
引导学生通过观察、归纳、抽象、概括,自主建构单调增函数、单调减函数等概念;能运用函数单调性概念解决简单的问题;使学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力.
3.情感态度与价值观目标
在函数单调性的学习过程中,使学生体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度.
二、教学重点与难点
重点:函数单调性的概念形成和初步运用.
难点:函数单调性的概念形成.
三、教法与学法
(一)教法
在教学中以问题为核心,采取“导引体验式”教学方法,通过“提出问题、思考问题、解决问题”的教学过程,借助实物试验、多媒体课件引导学生进行试验探究、观察类比、概括归纳出增函数和减函数的定义,再通过具体问题的提出和解决,来激发学生的学习兴趣,调动学生的主体能动性,让每一个学生充分地参与到学习活动中来。

(二)学法
学生通过“试验观察、思考探究、归纳总结”的自主学习解惑过程,体验从特殊到一般的数学思维过程,体会学以致用和数学的严谨之美,增强学习的兴趣和信心。

四、教学教具
多媒体课件
五、教学过程设计。

山东省高密市第三中学高中数学 3.2对数函数教案 新人教B版必修1

§3.2.2对数函数及与指数函数的关系(课前预习案)一、新知导学1、函数_____________________________叫做对数函数,其中_______是自变量.2、对数函数log (0,1,0)a y x a a x =>≠>的图象和性质底数 a >10<a <1 图象性质 定义域值域定点单调性函数值的特点当x >1时,_________,当0<x <1时, ______. 当x >1时,_________,当0<x <1时, _ _.奇偶性 3、反函数:当一个函数是一一映射时,可以把这个函数的 作为一个新的函数的 ,而把这个函数的 作为一个新的函数的 ,我们称这两个函数互为反函数。

4、指数函数)1,0(≠>=a a a y x 与对数函数)1,0(log ≠>=a a x y a 互为反函数,其图象关于直线 对称。

二、课前自测1、下列函数中是对数函数的是( )A 、14log y x =B 、14log (1)y x =+C 、142log y x =⋅D 、14log 1y x =+2、函数5log (1)y x =+的定义域是( )A 、(1,)-+∞B 、(,1)-∞-C 、(,1)(1,)-∞-⋃-+∞D 、(,)-∞+∞重点处理的问题(预习存在的问题):3、不用计算器比较下列各组数的大小:(1)0.5l g 2.7o ____0.5l g 2.8o ;(2)5l g 1.9o ____5l g 2.1o .4、根据下列各式的值,确定a 的取值范围:(1)若22log log 5a >,则_________;(2)若log 1.7log 2.2a a >,则_________;(3)若12log 1a ≥,则_________.§3.2.2对数函数及与指数函数的关系(课堂探究案)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§2.1.2函数的表示方法(课前预习案)
一、新知导学
1.列表法:通过列出____________与____________的表来表示函数的方法,
叫做列表法.
2. 图象法:以x为横坐标,对应的y为纵坐标的点(x,y)的集合,叫做函数y=f(x)的图
象,这种用“图形”表示函数的方法叫做图象法.
3.解析法:用_______________来表达函数y=f(x),x∈A中的f(x),这种表达函数的方法
叫做解析式,也称公式法.
4.分段函数:在函数的定义域内,对于自变量x的不同取值区间,有着______,这
样的函数通常叫做分段函数.

二、课前自测

1.设集合{|02},{|12}AxxByy剟剟,下列图形中表示集合A到集合B的函数图

形的是( )

A. B. C. D.
2.将不超过x的最大整数记为x,设()1fxx,则(0)f ,(3.1)f ,
(2.4)f
.

§2.1.2函数的表示方法(课堂探究案)

xoy122xoy122xoy122xo
y
1
2

2

重点处理的问题(预习存在的问题):

学习目标
1.理解函数的三种表示方法;
2.了解简单的分段函数,并能简单应用.
二.典例分析

备课札记
学习笔记
例2.已知函数y=f(n),满足f(0)=1,且f(n)=nf(n-1),n∈N+.
求f(1),f(2),f(3),f(4).
备课札记

学习笔记

0
1
2

2
1

1
1
x

y
§2.1.2函数的表示方法(课后
拓展案)

A组:
1.设函数1()1xfxx,当0,x且1x时, )(xf的表达式为( )
1111

备课札记
学习笔记

相关文档
最新文档