第十七章定积分及其应用
最新人教版高中数学选修1.7.1定积分在几何中的应用ppt课件

由此可得,抛物线y=x-x2与y=kx两交点的横坐标为x3= 0,x4=1-k,所以,
20x2 dx=2
2×23x32
|
2 0
=136,
方法二:选y作为积分变量,
8
S2=2
[4-x- 将 则曲S=(线-2-方4程4-写2y为x-)x]=y2d2y2dx2y及=x=44-xy.-12x2+2 3 2x32| 82=338,
于是 S=136+=3348y-=y22-1y863.| 2-4
=18.
由两条或两条以上的曲线围成的较为复杂的图形,
在不同的区段内位于上方和下方的函数有所变化,通过解方程 组求出曲线的不同的交点坐标,可以将积分区间进行细化分段, 然后根据图象对各个区段分别求面积进而求和,在每个区段上 被积函数均是由上减下;若积分变量选取x运算较为复杂,可 以选y为积分变量,同时更改积分的上下限.
=12x2+2x| 0-2+2sin x| =0-12×-22+2×-2+2sin π2-2sin 0 =2+2=4.
用定积分求平面图形的面积
一般地,设由曲线 y=f(x),y=g(x)以及直线 x=a,x=b 所
b
围成的平面图形(如图所示)的面积为 S,则 S=___a[_f_(x_)_-__g_(x_)_]_d_x.
=13x3+2x-32x2|
10+32x2-13x3-2x|
2 1
=56+16=1.
定积分的综合应用
例 3.在曲线 y=x2(x≥0)上某一点 A 处作一切线使之与曲线以及
第17章多变量积分学

多变量积分学前言正如定积分源于平面几何图形的面积计算一样,多元函数的积分学产生背景也是人类在认识自然的活动过程中所遇到的各种几何或物理问题。
例1:质量分布问题1)平面图形上质量的分布:设平面区域σ上分布有质量(密度非均匀),计算其质量。
首先将其抽象为数学问题,即进行数学化处理:将平面区域σ放在二维坐标系中,对应区域仍记为σ,设已知密度函数σ∈),(),,(y x y x f ,求质量m 。
我们从最简单的情况出发,逐步得到一般情况下的公式。
这是解决实际问题的一般程序。
i)、特殊情况 最简单、特殊的情形是均匀密度的质量分布,此时ρ≡),(y x f ,故σρS m ⋅=(σS 为σ之面积)。
ii)、一般情况 现在设考虑非均匀密度的质量分布。
设密度函数为),(y x f ,如何求质量?常规的思路:将一般、复杂的情形转化为简单、特殊的情形来处理。
方法:分割近似求和法。
具体过程:1、n 分割σ:n σσσ∆∆∆ ,,21,则当分割很细时,),(y x f (密度)在i σ∆上变化不大,因而,可在i σ∆上视为常密度的均匀质量分布,对应的质量块可由i)中的公式近似计算。
2、近似计算:任取()∈i i ηξ,i σ∆,则i i i i f m σηξ∆≈∆),(,(这里iσ∆也代表i σ∆的面积),因而∑∑∆≈∆=i i i i f m m σηξ),(。
3:取极限:采用定积分思想,可设想:∑∆=→i i i f m σηξλ),(lim 0,λ为分割细度。
这样,平面上质量分布问题在数学上就是上述形式的二元函数的和式极限问题。
2)、空间区域的质量分布:类似,在一个空间区域上密度非均匀的质量分布问题,也可表示为类似的上述极限问题:∑∆=→i i i i v f m ),,(lim 0ξηξλ,其中,V 是对应于3D 坐标系下的空间区域,),,(z y x f 定义在V 上为已知的密度函数,i v ∆为分割后的第i 个小区域,i i i i v f ∆∈),,(ξηξ,d 为分割细度。
高考数学大一轮复习第二章函数导数及其应用第17讲定积分与微积分基本定理课件理新人教A版

【例 1】 计算下列定积分.
(1)1(-x2+2x)dx;(2)π(sin x-cos x)dx;
0
0
(3)12e2x+1xdx;(4)20π 1-sin 2x dx.
【例 2】 (1)由曲线 y= x,直线 y=x-2 及 y 轴所围成
的图形的面积为( )
A.130
B.4
C.136
D.6
(2)(2019·湖南雅礼中学质检)在曲线 y=x2(x≥0)上某一
点 A 处作一切线使之与曲线以及 x 轴所围成图形的面积为112.
试求:切点 A 的坐标和过切点 A 的切线方程.
a
叫做微积分基本定理,又叫做牛顿-莱布尼兹公式.
4.定积分与曲边梯形面积的关系
设阴影部分的面积为 S. (1)S=bf(x)dx.
a -bf(x)dx (2)S=_______a_____________.
cf(x)dx-bf(x)dx (3)S=__a________c________________________.
则
S=S
-S 曲边△AOB
△ABC.
S 曲边△AOB=0x0x2dx=13x30x0 =13x30,
S△ABC=12|BC|·|AB|=12x0-x20·x20=14x30,
即 S=13x30-14x30=112x30=112,所以 x0=1.
从而切点为 A(1,1),切线方程为 y=2x-1.
解析 (1)1(-x2+2x)dx=1(-x2)dx+12x dx
0
0
0
=-13x3∣10+(x2)∣10=-13+1=23.
《定积分及其应用》讲义

第六章 定积分及其应用积分学的另一个基本概念是定积分.本章我们将阐明定积分的定义,它的基本性质以及它的应用.此外,我们要重点讲述沟通微分法与积分法之间关系的微积分学基本定理,它把过去一直分开研究的微分和积分彼此互逆地联系起来,成为一个有机的整体.最后,我们把定积分的概念加以推广,简要讨论两类广义积分.§ 6.1 定积分的概念与性质1. 定积分的定义我们先来研究两个实际问题. 例1 计算曲边梯形的面积设)(x f y =为闭区间],[b a 上的连续函数,且0)(≥x f .由曲线)(x f y =,直线b x a x == ,及x 轴所围成的平面图形(图6—1)称为)(x f 在],[b a 上的曲边梯形,试求这图6—1我们先来分析计算会遇到的困难.由于曲边梯形的高)(x f 是随x 而变化的,所以不能直接按矩形或直角梯形的面积公式去计算它的面积.但我们可以用平行于y 轴的直线将曲边梯形细分为许多小曲边梯形如图6—1所示.在每个小曲边梯形以其底边一点的函数值为高,得到相应的小矩形,把所有这些小矩形的面积加起来,就得到原曲边梯形面积的近似值.容易想象,把曲边梯形分得越细,所得到的近似值就愈接近原曲边梯形的面积,从而运用极限的思想就为曲边梯形面积的计算提供了一种方法.下面我们分三步进行具体讨论:(1) 分割 在],[b a 中任意插入1-n 个分点b x x x x x a n n =<<<<<=-1210把],[b a 分成n 个子区间],[10x x ,],[21x x ,…,],[1n n x x -,每个子区间的长度为1--=∆i i i x x x ),,2,1( n i =.(2) 近似求和 在每个子区间],[1i i x x -),,2,1( n i =上任取一点i ξ,作和式ini ixf ∆∑=1)(ξ(1.1)(3) 取极限 当上述分割越来越细(即分点越来越多,同时各个子区间的长度越来越小)时,和式(1.1)的值就越来越接近曲边梯形的面积(记作A ).因此当最长的子区间的长度趋于零时,就有A xf ini i→∆∑=1)(ξ.例2 求变速直线运动的路程设某物体作直线运动,其速度v 是时间t 的连续函数)(t v v =.试求该物体从时刻a t =到时刻b t =一段时间内所经过的路程s .因为)(t v v =是变量,我们不能直接用时间乘速度来计算路程.但我们仍可以用类似于计算曲边梯形面积的方法与步骤来解决所述问题.(1) 用分点b t t t t t a n n =<<<<<=-1210把时间区间],[b a 任意分成n 个子区间(图6—2): ],[10t t ,],[21t t ,…,],[1n n t t -. 每个子区间的长度为1--=∆i i i t t t (n i ,2,1=).图6—2(2) 在每个子区间],[1i i t t - (n i ,2,1=)上任取一点i τ,作和式i ni it v ∆∑=1)(τ.(3) 当分点的个数无限地增加,最长的子区间的长度趋于零时就有s t v i ni i→∆∑=1)(τ.以上两个问题分别来自于几何与物理中,两者的性质截然不同,但是确定它们的量所使用的数学方法是一样的,即归结为对某个量进行“分割、近似求和、取极限”,或者说都转化为具有特定结构的和式(1.1)的极限问题,在自然科学和工程技术中有很多问题,如变力沿直线作功,物质曲线的质量、平均值、弧长等,都需要用类似的方法去解决,从而促使人们对这种和式的极限问题加以抽象的研究,由此产生了定积分的概念.定义6.1.1 设函数)(x f 在],[b a 上有定义,在),(b a 内任取1-n 个分点b x x x x x a n n =<<<<<=-1210把],[b a 分成n 个子区间],[10x x ,],[21x x ,…,],[1n n x x -,每个子区间的长度为1--=∆i i i x x x ),,2,1( n i =.在每个子区间],[1i i x x -),,2,1( n i =上任取一点i ξ(称为介点),作和式i ni i x f ∆∑=1)(ξ,并记{}i ni x ∆=≤≤1max λ.如果不论对],[b a 怎样划分成子区间,也不论在子区间],[1i i x x -上怎样取介点i ξ,只要当0→λ时,和式(1.1)总趋于确定的值I ,则称这极限值I 为函数)(x f 在区间],[b a 上的定积分,记作⎰ba dx x f )(,即i ni i bax f I dx x f ∆==∑⎰=→1)(lim )(ξλ (1.2)其中)(x f 称为被积函数,x 称为积分变量,],[b a 称为积分区间,b a ,分别称为积分的下限和上限.关于定积分的定义,再强调说明几点:(1) 区间],[b a 划分的细密程度不能仅由分点个数的多少或n 的大小来确定.因为尽管n 很大,但每一个子区间的长度却不一定都很小.所以在求和式的极限时,必须要求最长的子区间的长度0→λ,这时必然有∞→n .(2) 定义中的两个“任取”意味着这是一种具有特定结构的极限,它不同于第二章讲述的函数极限.尽管和式(1.1)随着区间的不同划分及介点的不同选取而不断变化着,但当0→λ时却都以唯一确定的值为极限.只有这时,我们才说定积分存在.(3) 从定义可以推出定积分(1.2)存在的必要条件是被积函数)(x f 在],[b a 上有界.因为如果不然,当把],[b a 任意划分成n 个子区间后,)(x f 至少在其中某一个子区间上无界.于是适当选取介点i ξ,能使)(i f ξ的绝对值任意地大,也就是能使和式(1.1)的绝对值任意大,从而不可能趋于某个确定的值.(4) 由定义可知,当)(x f 在区间],[b a 上的定积分存在时,它的值只与被积函数)(x f 以及积分区间],[b a 有关,而与积分变量x 无关,所以定积分的值不会因积分变量的改变而改变,即有⎰⎰⎰===b aba badu u f dt t f dx x f )()()( .(5) 我们仅对b a <的情形定义了积分⎰b adx x f )(,为了今后使用方便,对b a =与b a >的情况作如下补充规定:当b a =时,规定0)(=⎰ba dx x f ;当b a >时,规定⎰⎰-=abb adx x f dx x f )()(.根据定积分的定义,我们说:例1中)(x f 在],[b a 上的曲边梯形的面积就是曲线的纵坐标)(x f 从a 到b 的定积分⎰=ba dx x f A )(.它就是定积分的几何意义.注意到若0)(≤x f ,则由0)(≤i f ξ及0>∆i x 可知⎰≤badx x f 0)(.这时曲边梯形位于x 轴的下方,我们就认为它的面积是负的.因此当)(x f 在区间],[b a 上的值有正有负时,定积分⎰b adx x f )(的值就是各个曲边梯形面积的代数和,如图6—3所示.例2中物体从时刻a 到时刻b 所经过的路程就是速度)(t v 在时间区间],[b a 上的定积分⎰=ba dt t v s )(.对应于导数的力学意义,我们也说它是定积分的力学意义.当)(x f 在区间],[b a 上的定积分存在时,就称)(x f 在],[b a 上可积,说明(3)表明:)(x f 在],[b a 上可积的必要条件是)(x f 在],[b a 上有界.下面是函数可积的两个充分条件,证明从略.定理6.1.1(1) 若)(x f 在],[b a 上连续,则)(x f 在],[b a 上可积.(2) 若)(x f 在],[b a 上有界,且只有有限个间断点,则)(x f 在],[b a 上可积.2. 定积分的基本性质定理6.1.2 (积分的线性性质)(1) 若)(x f 在],[b a 上可积,k 为常数,则)(x kf 在],[b a 上可积,且⎰⎰=babadx x f k dx x kf )()( (1.3)(2) 若)(x f ,)(x g 在],[b a 上可积,则)()(x g x f ±在],[b a 上也可积,且⎰⎰⎰±=±babab adx x g dx x f dx x g x f )()()]()([. (1.4)证 根据定义,有⎰∑∑⎰=∆=∆==→=→bani i i ni i i badx x f k x f k x kf dx x kf )()(lim )(lim )(11ξξλλ.所以(1.3)式成立.类似可证(1.4)式成立.定理6.1.2的更一般的结论是⎰∑⎰∑===baj j nj b a nj j jdx x f k dx x f k)( )(11.其中)(x f j ),,2,1( n j =在],[b a 上可积,)(x k j ),,2,1( n j =为常数.定理6.1.3 (积分对区间的可加性) 设)(x f 是可积函数,则⎰⎰⎰+=bcc abadx x f dx x f dx x f )()()( (1.5)对c b a , ,任何顺序都成立.证 先考虑b c a << 的情形.由于)(x f 在],[b a 上可积,所以不论将区间],[b a 如何划分,介点i ξ如何选取,和式的极限总是存在的.因此,我们把c 始终作为一个分点,并将和式分成两部分:i i i i iix f x f x f ∆+∆=∆∑∑∑21)()()(ξξξ,其中∑∑21,分别为区间],[c a 与],[b c 上的和式.令最长的小区间的长度0→λ,上式两边取极限,即得(1.5)式.对于其它顺序,例如c b a << ,有⎰⎰⎰+=cbb acadx x f dx x f dx x f )()()(,所以⎰⎰⎰-=cbc abadx x f dx x f dx x f )()()(⎰⎰+=bccadx x f dx x f )()(.(1.5)式仍成立.定理6.1.4 (积分的不等式性质) 若)(x f ,)(x g 在],[b a 上可积,且)()(x g x f ≤,则⎰⎰≤ba badx x g dx x f )()(. (1.6)证⎰⎰⎰-=-b ababadx x f x g dx x f dx x g )]()([)()(i ni i i x f g ∆-=∑=→1)]()([lim ξξλ.由假设知0)()(≥-i i f g ξξ,且0>∆i x ),,2,1( n i =,所以上式右边的极限值为非负,从而有⎰⎰≥babadx x f dx x g )()(.(1.6)式成立.从定理6.1.4立刻推出推论6.1.1 若)(x f 在],[b a 上可积,且0)(≥x f ,则0)(≥⎰badx x f .推论 6.1.2 (积分估值) 若)(x f 在],[b a 上可积,且存在常数m 和M ,使对一切],[b a x ∈有M x f m ≤≤)(,则)()()(a b M dx x f a b m ba-≤≤-⎰.推论6.1.3 若)(x f 在],[b a 上可积,则 )( x f 在],[b a 上也可积,且dx x f f(x)dx bab a)( ⎰⎰≤.这里 )( x f 在],[b a 上的可积性可由)(x f 的可积性推出,其证明省略.推论 6.1.4 (严格不等式) 设)(x f 是],[b a 上的连续函数,若在],[b a 上0)(≥x f 且0)(≡x f ,则0)(>⎰badx x f .证 由假设知,存在),(0b a x ∈使0)(0>x f ,根据)(x f 的连续性,必存在0x 的邻域],[),(00b a x x ⊂+-δδ,使在其中2)()(0x f x f >,从而有⎰⎰⎰⎰++--++=b x x x x abadx x f dx x f dx x f dx x f δδδδ0000)()()()(0)( 22)()(0000>=⋅>≥⎰+-x f x f dx x f x x δδδδ, 所以结论成立.定理6.1.5 (积分中值定理) 若)(x f 在],[b a 上连续,则在],[b a 上至少存在一点ξ,使得))(()(a b f dx x f ba-=⎰ξ. (1.7)证 因为)(x f 在],[b a 上连续,所以)(x f 在],[b a 上可积,且有最小值m 和最大值M .于是在],[b a 上,)()()(a b M dx x f a b m ba -≤≤-⎰,或M ab dx x f m ba≤-≤⎰)(.根据连续函数的介值定理可知,在],[b a 上至少存在一点ξ,使)()(ξf ab dx x f ba=-⎰所以(1.7)式成立.若)(x f 在],[b a 上连续且非负,则)(x f 在],[b a 上的曲边梯形面积等于与该曲边梯形同底,以ab dx x f f ba-=⎰)()(ξ为高的矩形面积.通常把)(ξf ,即ab dx x f ba-⎰)(称为函数)(x f 在],[b a 上的积分均值,而这正是算术平均值概念的推广.定理6.1.6 (推广的积分中值定理) 若)(x f ,)(x g 在],[b a 上连续,且)(x g 在],[b a 上不变号,则在],[b a 上至少存在一点ξ,使得⎰⎰=ba badx x g f dx x g x f )()()()(ξ (1.8)证 不妨设在],[b a 上有0)(≥x g ,则0)(≥⎰b adx x g ,且在],[b a 上 )()()()(x Mg x g x f x mg ≤≤,其中M m ,分别为)(x f 在],[b a 上的最小值与最大值.由此推出⎰⎰⎰≤≤bababadx x g M dx x g x f dx x g m )()()()(.若⎰=badx x g 0)(,则由上式知0)()(=⎰badx x g x f .从而在],[b a 上任取一点作为ξ,(1.8)式都成立.若0)(>⎰b adx x g ,则得M dxx g dxx g x f m baba≤≤⎰⎰)()()(.按连续函数的介值定理推出,在],[b a 上至少存在一点ξ,使)()()()(ξf dxx g dxx g x f baba=⎰⎰所以(1.8)式也成立.§ 6.2 微积分学的基本定理与基本公式若已知)(x f 在] ,[b a 上的定积分存在,怎样计算这个积分值呢?如果利用定积分的定义,由于需要计算一个和式的极限,可以想象,即使是很简单的被积函数,那也是十分困难的.本节将通过揭示微分和积分的关系,引出一个简捷的定积分的计算公式.1. 微积分学基本定理设函数)(x f 在区间] ,[b a 上可积,则对] ,[b a 中的每个x ,)(x f 在] ,[x a 上的定积分dx t f xa)(⎰都存在,也就是说有唯一确定的积分值与x 对应,从而在] ,[b a 上定义了一个新的函数,它是上限x 的函数,记作)(x Φ,即dt t f x xa )()(⎰=Φ, ] ,[b a x ∈.这个积分通常称为变上限积分.定理6.2.1 设)(x f 在] ,[b a 上可积,则dt t f x xa )()(⎰=Φ是] ,[b a 上的连续函数.证 任取] ,[b a x ∈及0≠∆x ,使] ,[b a x x ∈∆+.根据积分对区间的可加性, dt t f dt t f dt t f x x x xx xx axx a)( )( )()()(⎰⎰⎰∆+∆+=-=Φ-∆+Φ=∆Φ.由于)(x f 在] ,[b a 上连续,从而有界,即存在0>M ,使对一切] ,[b a x ∈有M x f ≤ )( ,于是)( )( x M dt t f x xx x∆≤=Φ⎰∆+.故当0→∆x 时有0)(→∆Φx .所以)(x Φ在x 连续,由] ,[b a x ∈的任意性即知)(x Φ是] ,[b a 上的连续函数.定理6.2.2 (原函数存在定理) 设)(x f 在] ,[b a 上连续,则dt t f x xa)()(⎰=Φ在],[b a 上可导,且)()(x f x =Φ', ] ,[b a x ∈, 也就是说)(x Φ是)(x f 在] ,[b a 上的一个原函数.证 任取] ,[b a x ∈及0≠∆x ,使] ,[b a x x ∈∆+.应用积分对区间的可加性及积分中值定理,有 x x x f dt t f x x x x x x∆∆+==Φ-∆+Φ=∆Φ⎰∆+) ( )()()(θ,或) (x x f x∆+=∆∆Φθ, )10(≤≤θ. (2.1) 由于)(x f 在] ,[b a 上连续,)() (lim 0x f x x f x =∆+→∆θ.故在(2.1)中令0→∆x 取极限,得)(lim 0x f xx =∆∆Φ→∆.所以)(x Φ在] ,[b a 上可导,且)()(x f x =Φ'.由] ,[b a x ∈的任意性推知)(x Φ就是)(x f 在] ,[b a 上的一个原函数.本定理回答了我们自第五章以来一直关心的原函数的存在问题.它明确地告诉我们:连续函数必有原函数,并以变上限积分的形式具体地给出了连续函数)(x f 的一个原函数.回顾微分与不定积分先后作用的结果可能相差一个常数.这里若把)()(x f x =Φ'写成)( )(x f dt t f dx d xa=⎰, 或从 dx x f x d )()(=Φ推得)()( )(x dt t f t d xaxaΦ==Φ⎰⎰,就明显看出微分和变上限积分确为一对互逆的运算.从而使得微分和积分这两个看似互不相干的概念彼此互逆地联系起来,组成一个有机的整体.因此定理6.2.2也被称为微积分学基本定理.推论6.2.1 设)(x f 为连续函数,且存在复合)]([x f ϕ与)]([x f ψ,其中)(x ϕ,)(x ψ皆为可导函数,则)()]([)()]([ )()()(x x f x x f dt t f dxd x x ψψϕϕϕψ'-'=⎰ (2.2) 证 令⎰=Φxadt t f x )()(,a 为)(x f 的连续区间内取定的点.根据积分对区间的可加性,有dt t f dt t f dt t f x ax ax x )( )( )()()()()(⎰⎰⎰-=ψϕϕψ)]([)]([x x ψϕΦ-Φ=.由于)(x f 连续,所以)(x Φ为可导函数,而)(x ϕ和)(x ψ皆可导,故按复合函数导数的链式法则,就有)()]([)()]([ )()()(x x x x dt t f dxd x x ψψϕϕϕψ'Φ'-'Φ'=⎰ )()]([)()]([x x f x x f ψψϕϕ'-'=.所以(2.2)式成立.例1. 证明:若)(x f 在),(+∞-∞内连续,且满足dt t f x f x)()(0⎰=,则0)(≡x f .证 由假设知dt t f x f x)()(0⎰=在),(+∞-∞内可导,且)()(x f x f ='.令x e x f x F -=)()(, ),(+∞-∞∈x ,则0)()()(=-'='--x x e x f e x f x F .所以c x F ≡)(,),(+∞-∞∈x .由于0)0()0(==f F ,可得0)(≡x F .从而有0)()(≡=x e x F x f ,),(+∞-∞∈x .例2. 求21cos 02limxdt e xt x ⎰-→.解 应用洛比达法则,原式1cos 0cos 02121sin lim 2)(cos lim22--→-→=⋅='-=e e x x xx e x x x x . 2. 牛顿——莱布尼兹公式定理6.2.3 设)(x f 在] ,[b a 上连续,若)(x F 是)(x f 在] ,[b a 上的一个原函数,则)()( )(a F b F dx x f ba-=⎰(2.3)证 根据微积分学基本定理,dt t f x a)(⎰是)(x f 在] ,[b a 上的一个原函数.因为两个原函数之差是一个常数,所以C x F dt t f xa+=⎰)( )(, ] ,[b a x ∈.上式中令a x =,得)(a F C -=,于是)()( )(a F x F dt t f xa-=⎰.再令b x =,即得(2.3)式.在使用上,公式(2.3)也常写作 b a bax F dx x f )]([ )(=⎰,或b a bax F dx x f )( )(=⎰.公式(2.3)就是著名的牛顿——莱布尼兹公式,简称N —L 公式.它进一步揭示了定积分与原函数之间的联系:)(x f 在] ,[b a 上的定积分等于它的任一原函数)(x F 在] ,[b a 上的增量,从而为我们计算定积分开辟了一条新的途径.它把定积分的计算转化为求它的被积函数)(x f 的任意一个原函数,或者说转化为求)(x f 的不定积分.在这之前,我们只会从定积分的定义去求定积分的值,那是十分困难的,甚至是不可能的.因此 N —L 公式也被称为微积分学基本公式.例3 计算下列定积分 (1) dx x x 422-⎰; (2))0( 3022≠+⎰a x a dxa;(3)dx x 112⎰-; (4)⎰π20sin dx x .解 (1) 原式38)4(3120223=--=x . (2) 原式aa axa a33arctan 1arctan130π===. (3) 原式1022)]1ln(2112[x x x x ++++= )]21ln(2[21++=. (4) 原式⎰⎰-+=πππ20)sin ( sin dx x dx x4cos cos 20=+-=πππxx.例4 设⎩⎨⎧≤<-≤≤+=31,310 ,1)(2x x x x x f ,求⎰30)(dx x f .解 ⎰⎰⎰-++=311023)3( )1( )(dx x dx x dx x f313)23()3(312103=+++=x x x x .§ 6.3 定积分的换元积分法与部分积分法有了牛顿——莱布尼兹公式,使人感到有关定积分的计算问题已经完全解决.但是能计算与计算是否简便相比,后者则提出更高的要求.在定积分的计算中,除了应用N —L 公式,我们还可以利用它的一些特有性质,如定积分的值与积分变量无关,积分对区间的可加性等,所以与不定积分相比,使用定积分的换元积分法与分布积分法会更加方便.1. 定积分的换元积分法定理6.3.1 设函数)(x f 在] ,[b a 上连续,函数)(t x ϕ=在I (] ,[βα=I 或] ,[αβ)上有连续的导数,并且a =)(αϕ,b =)(βϕ,)( )(I t b t a ∈≤≤ϕ,则⎰⎰'=badt t t f dx x f βαϕϕ)()]([)( (3.1)证 由于)(x f 与)()]([t t f ϕϕ'皆为连续函数,所以它们存在原函数,设)(x F 是)(x f 在[]b a ,上的一个原函数,由复合函数导数的链式法则有)()]([)()()()())]([(t t f t x f t x F t F ϕϕϕϕϕ'='=''=',可见)]([t F ϕ是)()]([t t f ϕϕ'的一个原函数.利用N —L 公式,即得⎰⎰=-=-=='badx x f a F b F F F t F t t f )()()()]([)]([)]([ )()]([αϕβϕϕϕϕβαβα.所以(3.1)式成立.公式(3.1)称为定积分的换元公式.若从左到右使用公式(代入换元),换元时应注意同时换积分限.还要求换元)(t x ϕ=应在单调区间上进行.当找到新变量的原函数后不必代回原变量而直接用N —L 公式,这正是定积分换元法的简便之处.若从右到左使用公式(凑微分换元),则如同不定积分第一换元法,可以不必换元,当然也就不必换积分限.例1 计算下列定积分 (1) ⎰--14311x dx ; (2)dx xx 121022⎰-;(3)dx x x sin cos 25⎰π; (4) dx x x sin sin 053⎰-π.解 (1) 令t x =-1,则21t x -=,dt t dx 2-=,且当t 从0变到21时,x 从1减到43.于是 原式⎰⎰-+=--=021021)111(212dt t t dt t []2ln 21 1 ln 2210-=-+=t t .(2) 令t x sin =,则dt t dx cos =,且当t 从0变到21时,x 从0增到6π.于是 原式⎰⎰==660202 sin cos cos sin ππdt t dt t tt831242sin 260-=⎥⎦⎤⎢⎣⎡-=ππt t .(3) 原式616cos cos cos 2265=-=-=⎰ππx x d x . (4) 原式⎰⎰⎰-+==ππππ22322323 )cos (sin cos sin cos sin 0dx x x dx x x dx x x⎰⎰-=πππ223223sin sin sin sin 0x d x x d x54sin 52sin 522252250==πππx x .例 2 设)(x f 在],[a a -上连续,证明:⎰⎰=-aaadx x f dx x f 0)(2)(.特别当)(x f 为奇函数时,0)(=⎰-aadx x f ;当)(x f 为偶函数时,⎰⎰=-aaadx x f dx x f 0)(2)(.证: 因为⎰⎰⎰+=--aaaadx x f dx x f dx x f 00)()()(,在⎰-0)(adx x f 中,令t x -=,得⎰⎰⎰-=--=-aaadx x f dt t f dx x f 000)()()(.所以⎰⎰-+=-aaadx x f x f dx x f 0)]()([)(.当)(x f 为奇函数时,)()(x f x f -=-,故0)()(=-+x f x f ,从而有0)(=⎰-aadx x f .当)(x f 为偶函数时,)()(x f x f =-,故)(2)()(x f x f x f =-+,从而有⎰⎰=-aaadx x f dx x f 0)(2)(.例3 设)(x f 为]1 ,0[上的连续函数,证明: (1) dx x f dx x f ⎰⎰=22)(cos )(sin ππ;(2) dx x f dx x f ⎰⎰=20)(sin 2)(sin ππ(3)dx x f dx x xf ⎰⎰=20)(sin )(sin πππ.证: (1) 令t x -=2π,则dt dx -=,且当t 从0 变到2π时,x 从2π减到0.于是dt t f dt t f dx x f ⎰⎰⎰=--=2220020)(cos ])[(sin )(sin ππππdx x f ⎰=2)(cos π.(2)dx x f dx x f dx x f ⎰⎰⎰+=ππππ22)(sin )(sin )(sin 0,在dx x f ⎰ππ2)(sin 中,令t x -=π,得dt t f dt t f dx x f ⎰⎰⎰=--=222)(sin ])[(sin )(sin πππππdx x f ⎰=20)(sin π.所以dx x f dx x f ⎰⎰=20)(sin 2)(sin ππ.(3) 令t x -=π,则dt t f t dx x xf )][sin()()(sin 00---=⎰⎰ππππdt t f t )(sin )(0⎰-=ππdx x xf dx x f ⎰⎰-=πππ0)(sin )(sin .所以dx x f dx x xf ⎰⎰=πππ)(sin 2)(sindx x f ⎰=2)(sin ππ (利用(2)的结果).例2和例3的结果今后经常作为公式使用.例如我们可以直接写出 ⎰-=ππ0c o s 3x d x x,ππππ==⎰⎰dx x dx x x 20sin sin .2. 定积分的分部积分法定理6.3.2 若)(x u ,)(x v 在] ,[b a 上有连续的导数,则 ⎰⎰'-='babab a dx x u x v x v x u dx x v x u )()()()()()(. (3.2)证 因为)()()()(])()([x v x u x v x u x v x u '+'=', b x a ≤≤.所以)()(x v x u 是)()()()(x v x u x v x u '+'在],[b a 上的一个原函数,应用N —L 公式,得⎰='+'bab a x v x u dx x v x u x v x u )()()]()()()([,利用积分的线性性质并移项即得(3.2)式.公式(3.2)称为定积分的分部积分公式,且简单地写作⎰⎰-=babab av d u uv udv(3.3)例4 计算下列定积分:(1) ⎰210arcsin xdx ; (2)⎰eedx x 1 ln ;(3)⎰2sin πxdx e x; (4)⎰-1dx ex.解 (1) 原式dx xx x x ⎰--=21210201arcsin12312121arcsin 21212-+=-+=πx (2) 原式⎰⎰+-=ee xdx dx x e1ln )ln (1⎰⎰-++-=ee dx x dx x x ee1111ln ln 11)11(2e-=.(3)⎰⎰⎰-==2222000cos sin sin sin ππππxdx e x e xde xdx e x xx xx d x e x e e de x e x xxsin cos cos 2222200⎰⎰--=-=πππππxdx e e x sin 122⎰-+=ππ.所以)1(21s i n 22+=⎰ππe x d x e x.(4) 令t x =,则⎰⎰⎰----=⋅=11122t txt d e t d t e dx et d e te tt ⎰--+-=10102 2ee et422211-=--=--. 例5 (1) 证明⎰⎰=22cos sin ππxdx xdx n n(∈x N +);(2) 求)cos ( sin 220⎰⎰==ππxdx xdx I n nn 的值.解 由例3(1)即知(1)成立. (2) 当3≥n 时dx x x n x x x xd I n n n n ⎰⎰----+-=-=22222011cos sin )1(cos sincos sinπππdx x x n n ⎰--=-222)sin 1(sin )1(πn n I n I n )1()1(2---=-所以2)1(--=n n I nn I . 于是当3≥n 为奇数时有13254231I n n n n I n ⋅⋅--⋅-=; 当3≥n 为偶数时有243231I n n n n I n ⋅--⋅-= . 容易得出1sin 201==⎰πxdx I ,442sin 2sin 220022πππ=⎥⎦⎤⎢⎣⎡-==⎰x x xdx I . 所以⎪⎪⎩⎪⎪⎨⎧⋅--⋅-⋅--⋅-=为正偶数.为正奇数;n n n n n n n n n n I n ,443231 ,3254231π (3.4) 公式(3.4)称为沃利斯(Wallis)积分公式,它在定积分的计算中经常被应用.例 6 求⎰=π1010sin xdx x J 的值.解 4436587109sin 201010ππππ⋅⋅⋅⋅⋅==⎰xdx J 22560315π=.§ 6.4 广义积分我们在前面讨论定积分时,总假定积分区间是有限的,被积函数是有界的.但在理论上或实际问题中往往需要讨论积分区间无限或被积函数为无界函数的情形.因此我们有必要把积分概念就这两种情形加以推广,这种推广后的积分称为广义积分.1. 无穷限的广义积分定义6.4.1 设函数)(x f 在) ,[∞+a 上有定义,且对任何实数a b >,)(x f 在] ,[b a 上可积,则称形式⎰+∞adx x f )( (4.1)为函数)(x f 在) ,[∞+a 上的广义积分.若极限⎰+∞→bab dx x f )(lim)(a b > (4.2)存在,则称广义积分(4.1)收敛,并以这极限值为(4.1)的值,即⎰⎰+∞→+∞=bab adx x f dx x f )(lim)(.若极限(4.2)不存在,则称广义积分(4.1)发散.由定义可知,我们讨论广义积分(4.1)的敛散性,其含义就是考察变上限积分⎰=ba dx x fb F )()( )(a b >当+∞→b 时的极限是否存在.例1 讨论广义积分⎰∞+π2 1sin 12dx x x 的敛散性.解 任取π2>b ,有⎰⎰-==b bx d x dx x x b F ππ2211sin 1sin 1)(22 b x b1cos 1cos 2=⎥⎦⎤⎢⎣⎡=π,因为11cos lim )(lim ==+∞→+∞→bb F b b , 所以这广义积分收敛,且1 1sin 122=⎰∞+πdx x x .若)(x f 在) ,[∞+a 上非负,且广义积分(4.1)收敛,则积分(4.1)的值从几何上解释为由曲线(f y =(图6—5中阴影部分).图6—5类似地利用极限⎰-∞→baa dx x f )(lim)(b a <定义广义积分⎰∞-b dx x f )(的敛散性.广义积分⎰+∞∞-dx x f )(定义为⎰⎰⎰+∞∞-+∞∞-+=aadx x f dx x f dx x f )( )( )( (4.3)其中a 为任一有限实数.它当且仅当右边的两个广义积分皆收敛时才收敛,否则是发散的.根据积分对区间的可加性,易知(4.3)左边的广义积分的敛散性及收敛时积分的值都与实数a 的选取无关.例2 计算广义积分⎰∞+∞-+21x dx的值.解 ⎰⎰⎰⎰⎰+++=+++=++∞→-∞→∞+∞-∞+∞-b b a a x dx x dx x dx x dx x dx 0202020221lim 1lim 111πππ=+--=+-=+∞→-∞→2)2()(arctan lim )arctan (lim b a b a为了书写的统一与简便,以后在广义积分的讨论中,我们也引用定积分(也称常义积分) N —L 公式的记法.如例2可写成πππ=--==+∞+∞-∞+∞-⎰)2(2arctan 12x x dx . 例3 计算广义积分dt te pt ⎰+∞-0)0(>p解dt e pe pt tde p dt te ptptpt pt ⎰⎰⎰∞+-∞+-∞+-∞+-+-=-=000011 2211p e p pt==∞+- 例4 证明广义积分⎰∞+1p xdx当1>p 时收敛,当1≤p 时发散. 证 当1=p 时,+∞===⎰⎰∞+∞+∞+111ln x x dx xdx p . 当1≠p 时,⎩⎨⎧<∞+>=-=-∞+-∞+⎰1 ,1 ,1111111p p x px dx p p p .所以此广义积分当1>p 时收敛,其值为p-11;当1≤p 时发散. 2. 无界函数的广义积分定理6.4.2 设)(x f 在] ,(b a 上有定义,而在a 的右邻域内无界.若对任何正数ε,)(x f 在] ,[b a ε+上可积,则称形式⎰badx x f )(. (4.4)为)(x f 在] ,(b a 上的广义积分.若极限 ⎰+→+b a dx x f εε )(lim 0, (4.5)存在,则称广义积分(4.4)收敛,并以这极限值为它的值,即⎰⎰+→+=ba badx x f dx x f εε )(lim )(0.若极限(4.5)不存在,则称广义积分(4.4)发散.与无穷限广义积分一样,记号(4.4)的含义是指考察变下限积分⎰+=b a dx x f F εε )()(, a b -<<ε0当+→0ε时的极限情形.这里a 称为函数)(x f 的瑕点,因此无界函数的广义积分也称为瑕积分.同样也利用极限⎰-→+εεb adx x f )(lim来定义b 为瑕点的广义积分的敛散性.若)(x f 的瑕点c 在闭区间] ,[b a 的内部,即b c a <<,则广义积分⎰ba dx x f )(定义为⎰⎰⎰+=bcc abadx x f dx x f dx x f )( )( )(,它当且仅当右边两个积分都收敛时才收敛,否则左边的广义积分发散.例5 计算广义积分⎰-axa dx 022)0(>a .解 a x =为函数221xa -的瑕点.εεεε-→-→++=-=-⎰⎰a a aa x xa dxx a dx 00022022][arcsin lim lim21arcsin arcsinlim 0πεε==-=+→a a .例6 讨论广义积分⎰-112x dx的敛散性.解 0=x 为函数21x的瑕点.由于+∞=⎥⎦⎤⎢⎣⎡+-=⎥⎦⎤⎢⎣⎡-=+++→→→⎰εεεεεε11lim 1lim lim010120x x dx , 所以广义积分⎰102xdx发散,从而推出广义积分⎰-112x dx 发散.注意,如果我们疏忽了0=x 是瑕点,就会得出错误的结果:2111112-=⎥⎦⎤⎢⎣⎡-=--⎰x x dx . 例7 证明广义积分⎰1qx dx当1<q 时收敛,当1≥q 时发散. 证 当1=q 时,⎰⎰+∞===10101ln x x dx xdx q . 当1≠q 时,⎪⎩⎪⎨⎧>∞+<-=⎥⎦⎤⎢⎣⎡-=-⎰1 ,1 ,11111011q q q x q x dx q q. 所以这广义积分当1<q 时收敛,其值为q-11,当1≥q 时发散. 3. 两种广义积分的联系任何无界函数的广义积分都可以化为无穷限广义积分. 设)(x f 在],(b a 内任何闭区间上都可积,a x =是瑕点,则 ⎰⎰+→+=ba badx x f dx x f εε)(lim )(0.若令ax u -=1,就有 ⎰⎰⎰=+=-+εεϕε111)()1()(2k ba du u udu u a f dx x f ab ,其中)1(1)(2u a f u u +=ϕ,a b k -=1.于是⎰⎰⎰+∞→==+kk badu u du u dx x f )()(lim )(1ϕϕεε,这时上式右边是无穷限广义积分.同样,对于无穷限广义积分⎰⎰+∞→+∞=bab adx x f dx x f )(lim)(,只要令xau =,就有 ⎰⎰⎰=-=112)())(()(ba ba du u du u au a f dx x f baψ, 于是⎰⎰⎰==+∞→+∞11)()(lim)(du u du u dx x f bab aψψ.其中)()(2ua f u a u =ψ,0=u 是它的瑕点,即上式右边为无界函数的广义积分.§ 6.5 定积分的应用定积分是具有特定结构的和式的极限.如果从实际问题中产生的量(几何量或物理量)在某区间],[b a 上确定,当把],[b a 分成若干个子区间后,在],[b a 上的量Q 等于各个子区间上所对应的部分量Q ∆之和(称量Q 对区间具有可加性),我们就可以采用“分割、近似求和、取极限”的方法,通过定积分将量Q 求出.现在我们来简化这个过程:在区间],[b a 上任取一点x ,当x 有增量x ∆(等于它的微分dx )时,相应地量)(x Q Q =就有增量Q ∆,它是Q 分布在子区间],[dx x x +上的部分量.若Q ∆的近似表达式为dQ dx x f Q =≈∆)(, 则以dx x f )(为被积表达式求从a 到b 的定积分.即得所求量 ⎰=ba dx x f Q )(.这里的dx x f dQ )(=称为量Q 的微元,或元素,这种方法称为微元法.它虽然不够严密,但具有直观、简单、方便等特点,且结论正确.因此在实际问题的讨论中常常被采用.本节我们将讲述微元法在几何与物理两方面的应用.1. 平面图形的面积 1) 直角坐标的面积公式根据定积分的几何意义,若)(x f 是区间],[b a 上的非负连续函数,则)(x f 在],[b a 上的曲边梯形(图6—1)的面积为⎰=badx x f A )(. (5.1)若)(x f 在],[b a 上不都是非负的(图6—3),则所围面积为⎰=ba dx x f A )( . (5.2)一般地,若函数)(1x f 和)(2x f 在],[b a 上连续且总有)()(21x f x f ≤,则由两条连续曲线)(1x f y =,)(2x f y =与两条直线a x =,b x =所围的平面图形(图6—6)的面积元素为dx x f x f dA )]()([12-=. 所以⎰-=ba dx x f x f A )]()([12. (5.3)图6—6如果连续曲线的方程为)0( )(≥=y x ϕ,则由它与直线c y =,d y =(d c <)及y 轴所围成的平面图形(图6—7)的面积元素为dy y dA )(ϕ=. 所以=ddy y A )(ϕ. (5.4)其它情形也容易写出与公式(5.2)、(5.3)相仿的公式.例1 求由两条抛物线x y =2,2x y =所围图形(图6—8)的面积. 解 联立⎪⎩⎪⎨⎧==22xy xy 解得0=x 及1=x .所围的面积为313132)(10310223=⎥⎦⎤⎢⎣⎡-=-=⎰x x dx x x A . 图6—8例2 求由抛物线x y 22=与直线4-=x y 所围图形(图6—9)的面积. 解 联立⎩⎨⎧-==422x y xy 解得曲线与直线的交点)2,2(-和)4,8(.以x 为积分变量,则所求面积为[][]dx x x dx x x A )4(2 )2(28220⎰⎰--+--= 图6—91842322322282222323=⎥⎦⎤⎢⎣⎡+-+⋅=x x x x .若以y 为积分变量,则18642)24(4232422=⎥⎦⎤⎢⎣⎡-+=-+=--⎰y y y dy y y A .从例2看出,适当选取积分变量,会给计算带来方便.例3 求椭圆12222=+by a x 的面积 (图6—10).解 由于椭圆关于x 轴与y 轴都是对称的,故它的面积是位于第一象限内的面积的4倍.⎰⎰-==a adx x a abydx A 022044ab a x a x a x a b aπ=⎥⎤⎢⎣⎡+-=222arcsin 224.在例3中,若写出椭圆的参数方程⎩⎨⎧==t b y t a x s i nc o s )20(π≤≤t ,应用换元公式得 ⎰⎰=-=2220sin 4)sin (sin 4ππtdt ab dt t a t b Aab ab ππ=⋅=44. 图6—10一般地,若曲线由参数方程)( ),(t y t x ψϕ== )(βα≤≤t给出,其中)(),(t t ψϕ及)(t ϕ'在],[βα上连续,记b a ==)(,)(βϕαϕ,则由此曲线与两直线b x a x ==,及x 轴所围图形的面积为dt t t A )( )( ψψβα'=⎰. (5.5)例4 求由摆线)cos 1( ),sin (t a y t t a x -=-=的一拱)20(π≤≤t 与横轴所围图形(图6—11)的面积.解 dt t a t a A )cos 1()cos 1(20⎰-⋅-=π220222s i n 2(⎰=πt a(令θ=2t)⎰⎰==24242s i n 16 sin 8πθθθθπd ad a22344316a a ππ=⋅⋅=. 图6—112) 极坐标的面积公式设围成平面图形的一条曲边由极坐标方程 )(θr r = )(βθα≤≤给出,其中)(θr 在],[βα上连续,παβ2≤-.由曲线)(θr r =与两条射线βθαθ==,所围成的图形称为曲边扇形(图6—12).试求这曲边扇形的面积.图6—12应用微元法.取极角θ为积分变量,其变化区间为],[βα.相应于任一子区间],[θθθd +的小曲边扇形面积近似于半径为)(θr ,中心角为θd 的圆扇形面积.从而得曲边扇形的面积元素θθd r dA )(212=. 所求面积为⎰=βαθθd r A )(212. (5.6) 例5 求心形线)cos 1(θ-=a r 所围图形(图6—13)的面积. 解 利用对称性,所求面积为 θθπd a A 22)cos 1(⎰-=θθπd a⎰=0422s i n 4 (令t =2θ) 22042234438s i n 82a a dt t a πππ=⋅⋅==⎰.例6 求由两曲线θsin 2=r ,θ2cos 2=r 图 6—13 所围图形(图6—14)的面积. 解 联立⎪⎩⎪⎨⎧==θθ2c o ss i n22r r )0(πθ≤≤解得 61πθ=,652πθ=. 利用对称性,所求面积为图 6—14⎥⎦⎤⎢⎣⎡+=⎰⎰466 2cos 21)sin 2(21202πππθθθθd d A4662s i n 2142s i n 220πππθθθ+⎥⎦⎤⎢⎣⎡-=2316-+=π.2. 立体体积1) 已知平行截面面积的立体体积设空间某立体夹在垂直于x 轴的两平面a x =,b x = )(b a <之间(图6—15)图 6—15以)(x A 表示过)(b x a x <<,且垂直于x 轴的截面面积.若)(x A 为已知的连续函数,则相应于] ,[b a 的任一子区间],[dx x x +上的薄片的体积近似于底面积为)(x A ,高为dx 的柱体体积.从而得这立体的体积元素 dx x A dV )(= 所求体积为⎰=ba dx x A V )(. (5.7)例7 设有一截锥体,其高为h ,上下底均为椭圆,椭圆的轴长分别为a 2,b 2和A 2,B 2,求这截锥体的体积.解 取截锥体的中心线为t 轴 (图6—16),即取t 为积分变量,其 变化区间为] ,0[h .在] ,0[h 上任取 一点t ,过t 且垂直于t 轴的截面面积记为xy π.容易算出 图6—16t h a A a x -+=, t hbB b y -+=. 所以这截锥体的体积为⎰-+-+=hdt t hbB b t h a A a V 0))((π )](2[6AB ab Ab aB h+++=π.2) 旋转体的体积旋转体是一类特殊的已知平行截面面积的立体,容易导出它的计算公式.例如 由连续曲线)(x f y =,] ,[b a x ∈绕x 轴旋转一周所得的旋转体(图6—17).由于过)( b x a x ≤≤,且垂直于x 轴的截面是半径等于)(x f 的圆,截面面积为)()(2x f x A π=. 所以这旋转体的体积为. (5.8)类似地,由连续曲线绕轴旋转一周所得旋转体的体积为 . (5.9)例8 求底面半径为,高为的正圆锥体的体积.解 这圆锥体可看作由直线x hry =,] ,0[h x ∈绕x 轴旋转一周而成(图6—18),所以体积⎰=ba dx x f V )(2π],[ ),(d c y y x ∈=ϕy ⎰=dc dy y V )(2ϕπr h例9 求由椭圆12222=+by a x 绕x 轴旋转而产生的旋转体的体积.解 这个旋转椭球体可看作由半个椭圆22x a aby -=绕x 轴旋转一周而成.所以它的体积20222222234 )(2)(ab dx x a a b dx x a a b V a aa πππ=-=-=⎰⎰-.特别当r b a ==时得半径为r 的球体体积 334r V π=球.3. 平面曲线的弧长设有一曲线弧段AB ,它的方程是 )(x f y =, ] ,[b a x ∈.如果)(x f 在] ,[b a 上有连续的导数,则称弧段AB 是光滑的,试求这段光滑曲线的长度.应用定积分,即采用“分割、近似求和、取极限”的方法,可以证明:光滑曲线弧段是可求长的.从而保证我们能用简化的方法,即微元法,来导出计算弧长的公式.如图6—19所示,取x 为积分变量,其变化区间为] ,[b a .相应于] ,[b a 上任一子区间],[dx x x +的一段弧的长度,可以用曲线在点))(,(x f x 处切线上相应的一直线段的长度来近似代替,这直线段的长度为dx y dy dx 2221)()('+=+,于是得弧长元素(也称弧微分)dx y ds 21'+=, 因此所求的弧长为(5.10)若弧段由参数方程⎩⎨⎧==)()(t y y t x x ],[βα∈t给出,其中)(),(t y t x 在],[βα上有连续的导数,且0)]([)]([22≠'+'t y t x .则弧长元素,即微弧分为dt t y t x ds 22)]([)](['+'=,所以dt t y t x s ⎰'+'=βα22)]([)]([. (5.11)若弧段由极坐标方程)(θr r =, ],[21θθθ∈给出,其中)(θr 在],[21θθ上有连续的导数,则应用极坐标θθsin ,cos r y r x ==,可得θθsin cos r r x -'=', ,利用公式(5.11)推出θβαd r r s ⎰'+=22. (5.12)例10 求悬链线2xx e e y -+=从0=x 到a x =那一段的弧长(图6—20).解 2xx e e y --='代入公式(5.10),得dx y s a ⎰'+=021⎰---=+=aaaxx e e dx e e 022. 图6—20例11 在摆线)sin (t t a x -=,)cos 1(t a y -=上求分摆线第一拱(图6—11)成1:3的点的坐标.解 设τ=t 时,点的坐标))(),((ττy x 分摆线第一拱成1:3.由于弧微分dt ta dt t a t a ds 2sin 2sin )cos 1(2222=+-=,由公式(5.11)可得⎰⎰=πττ202sin 22sin 23dt ta dt t a .θθcos sin r r y +'='。
不定积分、定积分及其应用-定积分的应用

第3章 不定积分,定积分与其应用第6讲定积分地应用主讲教师 |本节内容01 用定积分求平均值02 用定积分求平面图形地面积在实际问题中,常常需求计算某一组数地平均值。
来描述直径地大小.思 考例如:用游标卡尺测量小球地直径,共测次,测得地数值为,我们取算术平均值如何求出某个函数在某一区间内连续变化时地平均值?例如:平均速度,平均压强,平均功率等.我们把区间等分,分点是,每一个分点对应地函数值是 ,分点与间地距离是,可以取地算术平均值当时,上述平均值就逼近 ,即这正是积分平均值.本节内容01 用定积分求平均值02 用定积分求平面图形地面积直角坐标系中平面图形地面积都是积分我们考虑由连续曲线与直线 (即轴)所围区域地面积:当时,面积为 当 时,面积为当 在 上变号时,所求面积应为 .a b c -+yx O y =f (x )面积微元面积微元进一步,如果函数 与 在上连续,并且满足条件则夹在连续曲线 与 之间,且左右分别由直线 界定地那部分区域地面积为 a b y xO g (x )f (x )更一般地图形常常可以划分成几部分,每一部分属于以上所述地情形之一,先分别求得各部分地面积,然后相加即得到总面积.Ὅ 例1解所以所围成地图形地面积为求由直线所围成地 图形地面积.因为当 时,,.Ὅ 例2解计算由曲线与所围成地图形地面积.由方程组解得两条抛物线地交点为与.这里上边界为,下边界为,.故所围图形地面积为yO x1xy=y=x2有时将图形地边界用参数方程表示,计算其面积也很方便. 这相当于用换元法计算定积分.Ὅ 例3解求椭圆 地面积.由对称性知椭圆面积等于在 第一象限部分面积地4倍,即计算略显繁琐 x x+d x O xya bx 2a 2y 2b 2+=1考虑椭圆地参数方程:由于,所以,且当时,,当时,. 因此,.极坐标系中平面图形地面积直角坐标系中,选小矩形作为面积元素(分别平行于轴与轴),在极坐标系中,则需求选小扇形作为面积元素(分别“平行”于轴与轴).O x βαd θr =r (θ)y O f (ξi )f Δ(ξi x i)x a y =f (x )设在极坐标系中,由曲线与两射线围成一平面图形将夹角分为份,这相当于将区间分为份.相应地,在任一区间上地面积微元等于以为半径,以为夹角地小圆扇形面积.由于所对地圆弧长为,所以,.βαd θr =r (θ)Ὅ 例4解求心形线所围成地图形地面积.根据对称性,心形线所围图形地面积等于 极轴上半部分面积地倍,即,x O2aθdθr=a(1+cosθ)令,则,且当时,,当时,,代入上式,得学海无涯,祝你成功!。
1.7定积分的简单应用(共两课时)

1.7 定积分的简单应用(共两课时)一、感悟要点1.知识与技能能利用定积分求曲边梯形的面积,以及解决物理中的变速直线运动的路程,变力做功问题。
2.过程与方法通过利用定积分求曲边梯形的面积,体会定积分的基本思想,学会其方法,通过定积分在物理中应用,学会用数学工具解决物理问题,进一步体会定积分的价值。
3.情感态度与价值观通过本节学习,进一步感受数学的应用价值,提高数学的应用意识,坚定学好数学的信心。
二、学习重难点1.重点:应用定积分解决平面图形的面积、变速直线运动的路程和变力做功等问题,使学生在解决问题的过程中体验定积分的价值。
2.难点:将实际问题化归为定积分的问题。
三、温习旧知1.定积分的几何意义和微积分基本定理分别是什么?2.曲边梯形的面积表达式是什么?3.匀变速直线运动中,s与v,t间的关系是什么?4.如果物体在变力F(x)的作用下做直线运动,那么如何计算变力F(x)所做的功W 呢?四、例题精析例1 计算由两条抛物线2yx =和2y x =所围成的图形的面积.解析:【教学札记】合作探究:由例1总结求由两条曲线围成的平面图形面积的步骤是什么?(1) 画出图形;(2) 确定图形范围,通过解方程组求出交点的横坐标,定出积分上下限;(3) 确定被积函数,特别是要分清被积函数的上下位置;(4) 写出平面图形的面积的定积分表达式;(5) 运用微积分基本公式计算定积分,求出平面图形的面积。
例2 计算由曲线y =4y x =-以及x 轴所围成的图形的面积.解析:【教学札记】探究:这道题还有其它解法吗?解法二:将所求平面图形的面积看成一个曲边梯形与一个三角形的面积之差:解法三:将所求平面图形的面积看成位于y 轴右边的一个梯形与一个曲边梯形的面积之差,因此可以取y 为积分变量,还需把函数y=x-4变形为x=y-4,,函数y =22y x =.变式训练:计算有曲线22y x =和直线y=x-4所围成的图形面积.作业:58P 练习,60P A 组第1题.例3 一辆汽车的速度-时间曲线如图所示,求汽车在这1min 行驶的路程。
高等数学同济下册教材目录
高等数学同济下册教材目录第一章无穷级数1.1 数项级数1.1.1 数项级数的概念1.1.2 数项级数的性质1.1.3 极限形式的级数1.2 幂级数1.2.1 幂级数的概念1.2.2 幂级数的收敛域1.2.3 幂级数的和函数1.3 函数项级数1.3.1 函数项级数的概念1.3.2 函数项级数的一致收敛性第二章傅里叶级数2.1 傅里叶级数的定义2.1.1 周期函数的傅里叶级数2.1.2 奇偶延拓的傅里叶级数2.2 傅里叶级数的性质2.2.1 傅里叶级数的线性性质2.2.2 傅里叶级数的逐项积分与逐项微分 2.2.3 傅里叶级数的逐项积分和逐项微分 2.3 傅里叶级数的收敛性2.3.1 傅里叶级数一致收敛的性质2.3.2 周期函数的傅里叶级数收敛性2.3.3 局部函数化的傅里叶级数第三章一元函数积分学3.1 定积分3.1.1 定积分的定义3.1.2 定积分的性质3.1.3 线性运算与换元积分法3.2 反常积分3.2.1 第一类反常积分3.2.2 第二类反常积分3.3 微积分基本定理3.3.1 牛顿-莱布尼茨公式3.3.2 积分求导法3.3.3 函数定积分的应用第四章多元函数微分学4.1 多元函数的极限与连续4.1.1 多元函数的极限4.1.2 多元函数的连续性4.2 多元函数的偏导数与全微分 4.2.1 多元函数的偏导数4.2.2 多元函数的全微分4.3 隐函数与参数方程的偏导数 4.3.1 隐函数的偏导数4.3.2 参数方程的偏导数第五章多元函数的积分学5.1 二重积分5.1.1 二重积分的概念5.1.2 二重积分的性质5.1.3 二重积分的计算方法5.2 三重积分5.2.1 三重积分的概念5.2.2 三重积分的性质5.2.3 三重积分的计算方法5.3 曲线积分与曲面积分5.3.1 第一类曲线积分5.3.2 第二类曲线积分5.3.3 曲面积分第六章多元函数的向量微积分6.1 多元函数的梯度、散度与旋度 6.1.1 多元函数的梯度6.1.2 多元函数的散度6.1.3 多元函数的旋度6.2 多元函数的曲线积分与曲面积分 6.2.1 多元函数的第一类曲线积分 6.2.2 多元函数的第二类曲线积分6.2.3 多元函数的曲面积分第七章序列与函数的多元极限7.1 多元函数的序列极限7.1.1 多元函数序列极限的概念7.1.2 多元函数序列极限的性质7.2 多元函数的函数极限7.2.1 多元函数函数极限的概念7.2.2 多元函数函数极限的性质第八章多元函数的泰勒展开8.1 函数的多元Taylor展开8.1.1 函数的多元Taylor展开定理 8.1.2 函数的多元Taylor展开的应用 8.2 隐函数存在定理与逆函数存在定理 8.2.1 隐函数存在定理8.2.2 逆函数存在定理第九章向量场与散度定理9.1 向量场9.1.1 向量场的定义9.1.2 向量场与流线9.2 散度与散度定理9.2.1 向量场的散度9.2.2 散度定理的概念与性质第十章曲线积分与斯托克斯定理10.1 向量值函数的曲线积分10.1.1 向量值函数的曲线积分的定义 10.1.2 向量值函数的曲线积分的计算 10.2 Stokes定理10.2.1 Stokes定理的概念与性质第十一章重积分与高斯定理11.1 二重积分与三重积分的概念11.1.1 二重积分与三重积分的定义 11.1.2 二重积分与三重积分的性质 11.2 高斯定理11.2.1 高斯定理的概念与性质第十二章序列与级数的广义极限12.1 无穷小量和无穷大量12.1.1 无穷小量的概念与性质12.1.2 无穷大量的概念与性质12.2 级数极限与广义极限12.2.1 级数极限的概念与性质12.2.2 广义极限的概念与性质第十三章多项式逼近与傅里叶级数近似13.1 约束方程组的最小二乘解13.1.1 约束方程组的最小二乘解的概念 13.1.2 约束方程组的最小二乘解的计算 13.2 多项式逼近13.2.1 多项式逼近的概念与性质13.2.2 最佳一致逼近13.3 傅里叶级数的近似13.3.1 傅里叶级数的收敛性13.3.2 傅里叶级数的部分和逼近第十四章偏微分方程初步14.1 偏导数14.1.1 偏导数的定义与性质14.1.2 高阶偏导数14.2 偏微分方程的分类与例子14.2.1 第一阶偏微分方程14.2.2 二阶线性偏微分方程14.2.3 泊松方程与拉普拉斯方程第十五章全微分方程初步15.1 微分方程的定义与解15.1.1 微分方程的概念与性质15.1.2 微分方程解的存在唯一性 15.2 一阶线性微分方程15.2.1 齐次线性微分方程15.2.2 非齐次线性微分方程15.3 可降阶的高阶线性微分方程15.3.1 可降阶的高阶线性微分方程第十六章复变函数初步16.1 复数的性质与运算16.1.1 复数的概念与性质16.1.2 复数的运算与表示16.2 复变函数的导数16.2.1 复变函数的导数的定义 16.2.2 复变函数的导数的性质 16.3 复变函数的积分16.3.1 复变函数的积分的定义 16.3.2 复变函数的积分的性质第十七章应用篇17.1 牛顿法与割线法17.1.1 牛顿迭代法17.1.2 割线法17.2 微分方程的应用17.2.1 放射性衰变方程17.2.3 流体的入口速度与出口速度之间的关系17.3 级数的应用17.3.1 泰勒级数的应用17.3.2 调和级数的收敛性与发散性希望以上内容能满足您对《高等数学同济下册教材目录》的需求,如有任何疑问或其他需求,请随时告知。
高考数学一轮复习第二章函数导数及其应用第17讲定积分与微积分基本定理课件理
• 2.定积分的几何意义
f(x) f(x)≥0
bf(x)dx 的几何意义
a
表示由直线___x_=___a_,__x_=__b__(_a_≠__b,) y=0 及曲线 y=f(x)所 围成的曲边梯形的面积
表示由直线___x_=__a__,__x_=__b__(_a_≠_b_,) y=0 及曲线 y=f(x)所 f(x)<0
分值:5分
栏目导 航
板块一 板块二 板块三 板块四
1.定积分的定义及相关概念
一般地,如果函数 f(x)在区间[a,b]上连续,用分点 a=x0<x1<…<xi-1<xi<…<xn =b,将区间[a,b]等分成 n 个小区间,在每个小区间[xi-1,xi]上任取一点 ξi(i=1,2,…,
n
n
n),作和式f(ξi)Δx=
a bf(x)dx
(3) ___a_________=cf(x)dx+bf(x)dx(其中 a<c<b).
a
c
4.微积分基本定理
一般地,如果 f(x)是区间[a,b]上的连续函数,并且 F′(x)=f(x),那么bf(x)dx= a
__F__(b__)_-__F__(_a,) 这个结论叫做微积分基本定理,又叫做牛顿-莱布尼茨公式.
b-n af(ξi),当
n→∞时,上述和式无限接近某个常数,这个
i=1
i=1
常数叫做函数 f(x)在区间[a,b]上的定积分,记作bf(x)dx. a
在bf(x)dx 中,a 与 b 分别叫做积分下限与积分上限,区间__[_a__,__b_叫] 做积分区间, a
函数 f(x)叫做被积函数,x 叫做__积__分___变___量,__f_(_x_)_d_x_叫做被积式.
高中数学(新课标)选修2课件1.7.1-2定积分的应用
a
a
=b[f(x)-g(x)]dx.
a
③如图(6)所示,所求面积 S=S1+S2=ac[f(x)-g(x)]dx+cb[g(x)-f(x)]dx
=b|f(x)-g(x)|dx.
a
知识点二 定积分在物理中的应用 1.变速直线运动的路程 我们知道,做变速直线运动的物体所经过的路程 s,等于其速 度 函数 v= v(t)(v(t)≥0)在 时间 区间 [a, b] 上的定 积分 ,即 s = ____b_v_(_t)_d_t ___.
【解析】 (1)由 v(t)=8t-2t2≥0 得 0≤t≤4,即当 0≤t≤4 时, P 点向 x 轴正方向运动,t>4 时,P 点向 x 轴负方向运动.
故 t=3 时,点 P 离开原点的路程
s1=03(8t-2t2)dt=4t2-23t330 =18. (2)当 t=5 时,点 P 离开原点的位移 s2=5(8t-2t2)dt
解析:由题意 v=x′=8t,t=12 x,所以 v=4 x.
又 F=kv(k 是比例系数),且当 v=10 米/秒时 F=2 牛,
所以 2=10k,所以 k=15,所以 F=45 x,
又 F 与物体运动的方向相反,
所以 W=-245 0
xdx=-185x3220
=-1165
2(焦耳).
所以物体从 x=0 到 x=2 阻力所做的功为-1165 2焦耳.
解得 t=0 或 t=6,
t=0 对应于 P 点刚开始从原点出发的情况,
∴t=6 是所求的值.
状元随笔 首先要确定的是所需求的是路程还是位移,然后 用相应的方法求解.
方法归纳
(1)用定积分解决变速直线运动的位移和路程问题时,将物理问 题转化为数学问题是关键.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 1 页 共 32 页 x y o )(xfy
0xa bxn
iiixx 1
第十七章 定积分及其应用 积分学的另一个基本概念是定积分.本章我们将阐明定积分的定义,它的基本性质以及它的应用.此外,我们要重点讲述沟通微分法与积分法之间关系的微积分学基本定理,它把过去一直分开研究的微分和积分彼此互逆地联系起来,成为一个有机的整体.最后,我们把定积分的概念加以推广,简要讨论两类广义积分. 定积分是高数中的另一个重要概念,它的思想方法适用于非均匀变化同时又具有可加性的量求总和的所有实际问题,以历史上看定积分是为了计算平面上封闭曲线围成的图形的面积而产生,而平面上封闭曲线所围成的平面图形的面积计算,又依赖于曲边梯形的面积的计算。 §1 定积分的概念 一、两个实例 1、曲边梯形的面积 ①什么是曲边梯形 设)(xfy为闭区间],[ba上的连续函数,且0)(xf.由曲线)(xfy,直线bxax ,及x轴所围成的平面图形(图6—1)称为)(xf在],[ba上的曲边梯形,试求这曲边梯形的面积.
图6—1 我们先来分析计算会遇到的困难.由于曲边梯形的高)(xf是随x而变化的,第 2 页 共 32 页
所以不能直接按矩形或直角梯形的面积公式去计算它的面积.但我们可以用平行于y轴的直线将曲边梯形细分为许多小曲边梯形如图6—1所示.在每个小曲边梯形以其底边一点的函数值为高,得到相应的小矩形,把所有这些小矩形的面积加起来,就得到原曲边梯形面积的近似值.容易想象,把曲边梯形分得越细,所得到的近似值就愈接近原曲边梯形的面积,从而运用极限的思想就为曲边梯形面积的计算提供了一种方法.下面我们分三步进行具体讨论: (1) 分割 在],[ba 中任意插入1n个分点 bxxxxxann1210
把],[ba分成n个子区间],[10xx,],[21xx,„,],[1nnxx,每个子区间的长度为
1iiixxx),,2,1( ni
.
(2) 近似求和 在每个子区间],[1iixx),,2,1( ni上任取一点i,作和式
iniixf1)( (1.1) (3) 取极限 当上述分割越来越细(即分点越来越多,同时各个子区间的长度越来越小)时,和式(1.1)的值就越来越接近曲边梯形的面积(记作A).因此当最长的子区间的长度趋于零时,就有
Axfinii1)(.即iniixflinA10)( 例2 求变速直线运动的路程 设某物体作直线运动,其速度v是时间t的连续函数)(tvv.试求该物体从时刻at到时刻bt一段时间内所经过的路程s. 因为)(tvv是变量,我们不能直接用时间乘速度来计算路程.但我们仍可以用类似于计算曲边梯形面积的方法与步骤来解决所述问题. (1) 用分点btttttann
1210
把时间区间],[ba任意分成n个子区间(图6—2):],[10tt,],[21tt,„,],[1nntt. 每个子区间的长度为1iiittt (ni,2,1). 第 3 页 共 32 页
1nt 2
t
1t
t
0ta o btn
图6—2 (2) 在每个子区间],[1iitt (ni,2,1)上任取一点i,作和式
iniitv1)(. (3) 当分点的个数无限地增加,最长的子区间的长度趋于零时就有 stvinii1)(.即nitiiVLimtS10 以上两个问题分别来自于几何与物理中,两者的性质截然不同,但是确定它们的量所使用的数学方法是一样的,即归结为对某个量进行“分割、近似求和、取极限”,或者说都转化为具有特定结构的和式(1.1)的极限问题,在自然科学和工程技术中有很多问题,如变力沿直线作功,物质曲线的质量、平均值、弧长等,都需要用类似的方法去解决,从而促使人们对这种和式的极限问题加以抽象的研究,由此产生了定积分的概念. 二、定积分的定义 设函数xfy在区间[a、b]内任意插入1n个分点:
0xa<1x
将[a、b]分成几个区间iixx,1其长度记为 1iiixxx (ni1),在
每一个区间iixx,1上任取点i,作和式niiixf1,记ixmax,如果当0,和式的极限存,且极限值不依赖于i的选取和对区间的分法,则此极限值叫做xf在[a、b]上的定积分,记为:iniibaxfLimdxxf10
其中叫积分号,xf叫被积函数,dxxf叫做被积表达式,x叫积分变量,a、b叫积分下限和上限[a、b]叫积分区间,dxxfba存在积xf在[a、b]上可积。 第 4 页 共 32 页
关于定积分的定义,再强调说明几点: (1) 区间],[ba 划分的细密程度不能仅由分点个数的多少或n的大小来确定.因为尽管n很大,但每一个子区间的长度却不一定都很小.所以在求和式的极限时,必须要求最长的子区间的长度0,这时必然有n. (2) 定义中的两个“任取”意味着这是一种具有特定结构的极限,它不同于第二章讲述的函数极限.尽管和式(1.1)随着区间的不同划分及介点的不同选取而不断变化着,但当0时却都以唯一确定的值为极限.只有这时,我们才说定积分存在. (3) 从定义可以推出定积分(1.2)存在的必要条件是被积函数)(xf在],[ba
上有界.因为如果不然,当把],[ba任意划分成n个子区间后,)(xf至少在其中某一个子区间上无界.于是适当选取介点i,能使)(if的绝对值任意地大,也就是能使和式(1.1)的绝对值任意大,从而不可能趋于某个确定的值. (4) 由定义可知,当)(xf在区间],[ba上的定积分存在时,它的值只与被积函数)(xf以及积分区间],[ba有关,而与积分变量x无关,所以定积分的值不会因积分变量的改变而改变,即有 bababaduufdttfdxxf)()()(
.
(5) 我们仅对ba的情形定义了积分badxxf)(,为了今后使用方便,对ba与ba的情况作如下补充规定: 当ba时,规定0)(badxxf;
当ba时,规定abbadxxfdxxf)()(. 三、定积分的几何意义 根据定积分的定义,我们说:例1中)(xf在],[ba上的曲边梯形的面积就是
曲线的纵坐标)(xf从a到b的定积分badxxfA)(. 第 5 页 共 32 页
y x
)(xfy
它就是定积分的几何意义.注意到若0)(xf,则由0)(if及0ix可知badxxf0)(.这时曲边梯形位于x轴的下方,我们就认为它的面积是负的.因此当)(xf在区间],[ba上的值有正有负时,定积分badxxf)(的值就是各个曲边梯形面积的代数和,如图6—3所示
图6—3 说明:①和式极限与[a、b]的分法,i的选取无关; ②0则n,但n,0(不一定); ③dxxfba 与xf和a、b有关; ④定义中ab 在区间[a、b]上连续或在[a、b]上有界,且最多只有有限个第一类间断点的函数是可积的。
例1 利用定积分几何意义判断定积分212dxxS的值是正还是负。 例2用定积分的几何意义求10)1(dxx 解: 函数y1x在区间[0 1]上的定积分是以y1x为曲边以区间[0 1]为底的曲边梯形的面积 因为以y1x为曲边以区间[0 1]为底的曲边梯形是一直角三角形 其底边长及高均为1 所以211121)1(10dxx.
课后小结 课外作业 第 6 页 共 32 页
§2定积分的性质 一、定积分的性质 1、两点规定 0)(aadxxf ,abbadxxfdxxf)()( 。 2.积分的线性性质 (1)性质1、若)(xf,)(xg在],[ba上可积,则)()(xgxf在],[ba上也可积,
且bababadxxgdxxfdxxgxf)()()]()([. (1.3) (2)性质2、若)(xf在],[ba上可积,k为常数,则)(xkf在],[ba上可积,且 babadxxfkdxxkf)()( (1.4) 证明: 根据定义,有(1)badxxgxf)]()([niiiixgf10)]()([lim niiiniiixgxf1010)(lim)(lim babadxxgdxxf)()( (2)baniiiniiibadxxfkxfkxkfdxxkf)()(lim)(lim)(1010. 3. 性质3---积分对区间的可加性 设)(xf是可积函数,则 bccabadxxfdxxfdxxf)()()(
(1.5)
对cba , ,任何顺序都成立. 证 先考虑bca 的情形.由于)(xf在],[ba上可积,所以不论将区间],[ba如何划分,介点i如何选取,和式的极限总是存在的.因此,我们把c始终作为一个分点,并将和式分成两部分:
iiiiiixfxfxf21)()()(, 其中21,分别为区间],[ca与],[bc上的和式.令最长的小区间的长度0,上式两边取极限,即得(1.5)式.