3 完全且完美信息动态博弈--博弈论
微观经济学-第十章-博弈论初步PPT课件

[资料] 约翰·纳什
[资料] 约翰·纳什
❖ 1994年与泽尔腾、海萨尼 分享了诺贝尔经济学奖。
❖ 他说自己只做了两件事: 一是研究过讨价还价的问 题;二是关注了经济问题 并从数学角度加以分析。
❖ 理性决策决不会无缘无故 地损害自身的利益,也就 是一个人肯定不会故意做 出对自己不利的事。
13
[案例]“华容道”里的纳什均衡(1)
1/2
1/2
▲
▲
▲
▲
1×1/2
▲▲
27
第四节 动态博弈 一、竞争者-垄断者博弈
第四节 动态博弈
一 竞争者-垄断者博弈
竞争者
进 入 不进入
竞争者
进 入 不进入
抵
垄制
断
者
不 抵
制
600
900
800
1300
1200
900
900
1300
抵
垄制
断
者
不 抵
制
600
900
800
1300
1200
900
700
1300
23
第三节 混合策略均衡 一、混合策略与策略组合
第三节 混合策略均衡
一 混合策略与策略组合
❖ 在混合策略博弈中,对于每一个混合策略组合也
存在一个支付组合。 ❖ 参与人都以一定的概率
乙厂商
q1
q2
来选择其纯策略,相应
形成“期望支付”。 甲 p1
1
p1 0,1
q1 0.7 q1 0.7
0
q1 0,1
p1厂 0.5 p1商 0p.52
0 q1 0.7
1 p1 0.5
6– 4
《西方经济学》第七章 博弈论

21
第五节
不完全信息动态博弈
对应于不完全信息动态博弈的均衡概念是精炼 精炼 贝叶斯均衡(perfect Bayesian equilibrium). 贝叶斯均衡 这个概念是完全信息动态博弈的子博弈精炼纳 什均衡与不完全信息静态均衡的贝叶斯纳什均 衡的结合.具体来说,精炼贝叶斯均衡是所有 参与人战略和信念的一种结合.它满足如下条 件:第一,在给定每个参与人有关其他参与人 类型的信念的条件下,该参与人的战略选择是 最优的.第二,每个参与人关于其他参与人所 属类型的信念,都是使用贝叶斯法则从所观察 到的行为中获得的.
22
贝叶斯法则 贝叶斯法则是概率统计中的应用所观察 到的现象对有关概率分布的主观判断 (即先验概率)进行修正的标准方法.
23
习
题
1. 什么是占优策略均衡?什么是重复剔除的占优策 略均衡?什么是纳什均衡? 2. 什么是子博弈精炼纳什均衡?重复博弈与一次性 博弈有何不同? 3. 假定两寡头生产同质产品,两寡头的边际成本为 0.两寡头所进行的是产量竞争.对于寡头产品 的市场需求曲线为P=30-Q,其中Q=Q1+ Q2.Q1是寡头1的产量,Q2是寡头2的产量. (1)假定两个寡头所进行的是一次性博弈. 如果两寡头同时进行产量决策,两个寡头各生产 多少产量?各获得多少利润?
25
�
第七章
第一节 第三节 第四节 第五节
博弈论
完全信息静态博弈 完全信息动态博弈 不完全信息静态博弈 不完全信息动态博弈
第一节 博弈问题概述
一,博弈的基本概念 二,博弈的分类
2
一,博弈的基本概念
博弈论 博弈论(game theory)是研究决策主体的 行为发生直接相互作用时候的决策以及这 种决策的均衡问题的. 博弈论的基本概念包括:参与人 行动 参与人,行动 参与人 行动, 战略,信息 支付函数,结果 均衡. 信息,支付函数 结果,均衡 战略 信息 支付函数 结果 均衡
博弈论的几个经典模型ppt课件

博弈论的几个经典模型
22
模型二、囚徒困境/非合作博弈
该博弈刻划了两大难题: • 冲突情形下,参与人的目标是什么?是采用(作 为个人 ) 他自己的最好策略,还是采用 ( 作为集 体的一员)他们共同的最好策略?前者导致均衡 策略 ( 坦白,坦白 ) ,支付为 (-8 , -8) ;后者的最 好策略是 ( 抵赖,抵赖 ) ,支付为 (-1 , -1) 。这里 反映了个体理性行为与集体理性行为之间的矛 盾、冲突。 • 此博弈只进行一次还是重复进行?如果博弈只 进行一次,参与人似乎只有坦白才是最好的策 略,因为没有理由相信对手会对你有信心,他 总认为你自己会坦白;因此,双方都采取坦白 策略。然而,若博弈进行多次,则结论将会发 生变化。
第四章 博弈论的几个经典模型
1
引言
博弈论又被称为对策论(Game Theory), 按照2005年因对博弈论的贡献而获得诺贝尔经 济学奖的Robert Aumann教授的说法,博弈论 就是研究互动决策的理论。所谓互动决策, 即各行动方(即局中人[player])的决策是相互 影响的,每个人在决策的时候必须将他人的 决策纳入自己的决策考虑之中,当然也需要 把别人对于自己的考虑也要纳入考虑之 中……在如此迭代考虑情形进行决策,选择 最有利于自己的战略(strategy)。
此外此外还与会计学还与会计学统计学统计学数学基础数学基础社会心理学社会心理学以及诸如认识论与伦理学等哲学分支有重要联以及诸如认识论与伦理学等哲学分支有重要联博弈论的几个经典模型按照按照aumannaumann所撰写的所撰写的新帕尔格雷夫经新帕尔格雷夫经济学大辞典济学大辞典博弈论博弈论辞条的看法辞条的看法标准的标准的博弈论分析出发点是理性的博弈论分析出发点是理性的而不是心理的而不是心理的或社会的角度或社会的角度
经济博弈论_谢识予_2_完全信息动态博弈0.1

单结信息集:只包含一个决策结的信息集 完美(Perfect)信息:博弈树的所有信息都是单结的。 ——博弈中没有任何参与人同时行动,且后行动者能观察到先 行动者的行动,且所有参与人观察到N的行动)
1 动态博弈的扩展式表述
静态博弈用扩展式表述 A
坦白 抵赖 坦白
Q:何为完 全信息? B
抵赖
囚 徒 困 境 博 弈
-3,-3 -4,-3
-3,-3 0,0
1,-2 -4,-3 割耳
1,-2 0,0 (-3,-3) (1,-2) 默认 割耳 (-4,-3) (0,0)
三个NE: (不画,{割耳,默认}) (画,{默认,割耳}) (画,{默认,默认})
画 小孩 不画
父亲
父亲
默认
4 NE的缺陷——不可置信的威胁
换句话说,与抽烟有关决策不是单人在中性环境中 的决定,而是一种博弈。“今日卡门”和不同偏好的卡 门自己,即“未来卡门”间的博弈。
5 逆向归纳法
继续抽 未来的 卡门 不抽 今天的卡门
-1,1
1,-1
0,0 两个“卡门”如何行事? 未来卡门如何行事? 考虑到未来卡门的未来行动,今日卡门今日如何行事?
2 动态博弈中的策略
博弈树中参与人在结点上所选择的单个行动—— 一步/招 (move)
美中军事博弈
但是,参与人可以制定一个行动计划,将每个决策结上 的选择都事先规定好,即使这个决策点实际上不会出 美国 现。——策略
中国 中国
策略: 人不犯我、我不犯人; 人若犯我、我必犯人
不犯人
(-2,-2) (2,-4) (3,-5) (0,0)
4 NE的缺陷——不可置信的威胁
博弈论课后习题

Document serial number [UU89WT-UU98YT-UU8CB-UUUT-UUT108]第一章导论1、什么是博弈博弈论的主要研究内容是什么2、设定一个博弈模型必须确定哪儿个方面3、举出烟草、餐饮、股市、房地产、广告、电视等行业的竞争中策略相互依存的例子。
4、"囚徒的困境”的内在根源是什么举出现实中囚徒的困境的具体例子。
5、博弈有哪些分类方法,有哪些主要的类型6、你正在考虑是否投资100万元开设一家饭店。
假设情况是这样的:你决定开,则的概率你讲收益300万元(包括投资),而的概率你将全部亏损;如果你不开,则你能保住本钱但也不会有利润,请你(a)用得益矩阵和扩展形式表示该博弈;(b)如果你是风险中性的,你会怎样选择(c)如果你是风险规避的,且期望得益的折扣系数为,你的策略选择是什么(d)如果你是风险偏好的,期望得益折算系数为,你的选择又是什么7、一逃犯从关押他的监狱中逃走,一看守奉命追捕。
如果逃犯逃跑有两条可选择的路线,看守只要追捕方向正确就一定能抓住逃犯。
逃犯逃脱可以少坐10年牢,但一旦被抓住则要加刑10年;看守抓住逃犯能得到1000元奖金。
请分别用得益矩阵和扩展形式表示该博弈,并作简单分析。
第二章完全信息静态博弈1、上策均衡、严格下策反复消去法和纳什均衡相互之间的关系是什么2、为什么说纳什均衡是博弈分析中最重要的概念3、找出现实经济或生活中可以用帕累托上策均衡、风险上策均衡分析的例子。
4、多重纳什均衡是否会影响纳什均衡的一致预测性质,对博弈分析有什么不利影响5、下面的得益矩阵表示两博弈方之间的一个静态博弈。
该博弈有没有纯策略纳什均衡t専弈的结果是什么6、求出下图中得益矩阵所表示的博弈中的混合策略纳什均衡。
7、博弈方1和2就如何分10 000元进行讨价还价。
假设确定了以下规则:双方同时提出自己要求的数额S1和S2, 0< sl,s2< 10 000,如果sl+s2W10 000,则两博弈方的要求都得到满足,即分别得到si和s2, 但如果是sl+s2>10 000,则该笔钱就被没收。
博弈论第3次课——博弈信息

不开
(0,0)
几个符号的意义
第i个人的信息集为Hi,其中某特定信息集 为hi,在hi的情况下会有A(hi)的行动。他的 所有信息集所对应的所有行动A(hi)的集合 为Ai,∪表示聚合。
Ai hi Hi A(hi )
Si : H i Ai
第i个人有信息H,乃有行动A 此时的战略是S(而且是纯战略, 以后用其他字母表示“不纯”战略) →maps into
为了分析方便,自然nature被当作虚拟参与 人。 自然代表决定外生随机变量的概率分布的机 制。比如房地产开发中市场需求的大小。
行动 ACTIONS OR MOVES
参与人在博弈的某个时点的决策变量。 (坦白) N个参与人的行动的有序集称为行动组合 (坦白,抵赖)。
行动的顺序
对于博弈的结果非常重要。有关静态和动态 博弈的区分就是基于行动的顺序做出的。 同样的行动集合,行动的顺序不同,每个参 与人的最有决策就不同,博弈的结果也不 同。尤其在不完全信息博弈中,后行动者 依赖观察先行动者的行动来获取信息。
博弈的分类及对应的均衡
静态 完全 信息 完全信息静态博弈; 纳什均衡; Nash(1950) 不完全信息静态博弈; 贝叶斯纳什均衡; 海萨尼(1967-1968) 动态 完全信息动态博弈; 子博弈精炼纳什均衡; 泽尔腾(1965) 不完全信息动态博弈, 精炼贝叶斯纳什均衡; 泽尔腾(1975) Kreps,Wilson(1982), Fudenberg,Tirole(199 1)
顺序和信息
博弈论非常强调时间和信息的重要性,认为时 间和信息是影响博弈均衡的主要因素。在博弈过 程中,参与者之间的信息传递决定了其行动空间 和最优战略的选择;同时,博弈过程中始终存在 一个先后问题 Sequence order 参与人的行动次序对博弈最后的均衡有直接的 影响。
第五章 重复博弈完全且非完美信息动态博弈(博弈论张醒洲)PPT课件
2. 收益情况为ui(a1,a2,a3*(a1,a2),a4*(a1,a2)),i=1,2;
假定(a1*,a2*)为以上同时行动博弈唯一的纳什均衡,我们称 (a1*,a2*,a3*(a1*,a2*),a4*(a1*,a2*))为这一两阶段博弈的子博弈完 美结果。
2009-03-16
张醒洲,大连
7
两阶段囚徒Байду номын сангаас境
• 得到 a3*(a1,a2),a4*(a1,a2)
– 根据第一阶段的行动a1和 a2 ,预测第二阶段参与人的反应; – 请注意,在囚徒困境博弈中存在唯一的纳什均衡,因此参与人
的反应独立于其在第一阶段的行动。
• 计算 ui(a1,a2,a3*(a1,a2),a4*(a1,a2)),i=1,2
• 两阶段囚徒困境博弈是“2×2 两人同时行动”博弈的一 个特殊例子。在这个博弈中,我们在上一节利用后向归纳 法的思路分析了“子博弈完美结果”,具体见2.2.1。
• 子博弈完美结果
如果参与人1和2预测到参与人3和4在第二阶段的行动将由 (a3*(a1,a2),a4*(a1,a2))给出,则参与人1和2在第一阶段的问题就可 以用以下的同时行动博弈表示:
参与人 1
参与人 2
L2
L1
1, 1
R1
0, 5
R2 5, 0 4, 4
图 2.3.1
• 让两个参与人进行两次囚徒困境博弈,观察第二次博弈 开始之前第一次博弈的结果,并假设整个过程博弈的总 收益等于两阶段博弈收益的简单相加 (即不考虑贴现因 素) 。
2009-03-16
张醒洲,大连
6
“2 × 2 ×2” 博弈和子博弈完美结果
《博弈论》期中考试试卷及参考答案
20XX 级经济学专业(1-2班)《博弈论》期中考试试卷(开卷)班级 学号 姓名 成绩1、不能用铅笔答题,违反者按缺考处理;2、开卷考试,给足够时间答题,请认真完成考试;卷面务必保持清楚整洁,每涂改一处扣10分;3、每一道题的解务必写出完整的解题过程,没有过程,只有答案不给分;4、如果发现雷同卷,一律按零分处理。
一、下面的支付矩阵表示一个两人的静态博弈。
问当a 、b 、c 、d 、f 、g 、h 之间满足什么条件时,该博弈存在严格优势策略均衡(20分)参考答案:1、严格优势策略均衡是由各博弈方的严格优势策略组成的策略组合。
(2分)2、对于博弈方1,如果a >e 且c >g ,则U 是相对于D 的严格优势策略;如果a <e 且c <g ,则D 是相对于U 的严格优势策略;(3分)3、对于博弈方2,如果b >d 且f >h 则L 是相对于R 的严格优势策略;如果b <d 且f <h ,则R 是相对于L 的严格优势策略。
(3分)4、上述两个博弈方各自有两种严格优势策略的相对支付情况的组合,总共可能构成四种严格优势策略均衡:(12分)1)如果a >e 且c >g ,b >d 且f >h ,严格优势策略均衡是(U ,L ) 2)如果a >e 且c >g ,b <d 且f <h ,严格优势策略均衡是(U ,R ) 3)如果a <e 且c <g ,b >d 且f >h ,严格优势策略均衡是(D ,L ) 4)如果a <e 且c <g ,b <d 且f <h ,严格优势策略均衡是(D ,R )(在求解本题时,如果前面三点没有写,但这四条都能写出来,可以按每条5分计算,共20分)二、一个工人给一个老板干活,工资标准是100元。
工人可以选择是否偷懒,老板则选择是否克扣工资。
假设工人不偷懒有相当于50元的负效用,老板想克扣工资总有借口扣掉60元工资,工人不偷懒老板有150元产出,而工人偷懒时老板只有80元产出,但老板在支付工资之前无法知道实际产出,这些情况是双方都知道的。
《经济博弈论》期末考试复习题及参考答案
经济博弈论复习题(课程代码262268)一、名词解释混合战略纳什均衡;子博弈精炼纳什均衡;完全信息动态博弈;不完全信息动态博弈;完全信息静态博弈;帕累托上策均衡;囚徒困境;纳什均衡;子博弈;完美信息动态博弈;颤抖手均衡;柠檬原理;完美贝叶斯均衡二、计算分析题1、在市场进入模型中,市场需求函数为p=13-Q,进入者和在位者生产的边际成本都为1,固定成本为0,潜在进入者的进入成本为4。
博弈时序为:在位者首先决定产量水平;潜在进入者在观察到在位者的产量水平之后决定是否进入;如果不进入,则博弈结束,如果进入,则进入者选择产量水平。
求解以上博弈精炼纳什均衡。
2、考虑如下扰动的性别战略博弈,其中t i服从[0,1]的均匀分布,,t1和t2是独立的,t i是参与人i的私人信息。
求出以上博弈所有纯战略贝叶斯均衡。
S1S2足球芭蕾足球3+,1 ,,芭蕾0,0 1,3+3、求下列信号传递模型的贝叶斯Nash均衡(讨论分离均衡和混同均衡)4、考察如下完全信息静态博弈,求其全部纳什均衡:L M R U 0, 4 4, 0 5, 3M 4, 4 0, 4 5, 3D 3, 5 3, 5 6, 6表1 双人静态博弈5、古诺博弈:市场反需求函数为()P Q a Q =-,其中12Q = q q +为市场总产量,i q 为企业()i i 1,2=的产量。
两个企业的总成本都为()i i i c q cq =。
请您思考以下问题: 1) 在完全信息静态条件下,这一博弈的纳什均衡是什么?2)假设这一阶段博弈重复无限次。
试问:在什么样的贴现条件下,企业选择冷酷战略可保证产量组合()()()772424,a c a c --是子博弈精炼纳什均衡的?6、考虑一个工作申请的博弈。
两个学生同时向两家企业申请工作,每家企业只有一个工作岗位。
工作申请规则如下:每个学生只能向其中一家企业申请工作;如果一家企业只有一个学生申请,该学生获得工作;如果一家企业有两个学生申请,则每个学生获得工作的概率为1/2。
导论习题解读
3. 下面的得益矩阵表示两博弈方之间的 一个静态博弈。该博弈有没有纯策略纳 什均衡?博弈的结果是什么?
博弈方2
L
C
R
T
2,0
博 弈
M
3,4
方
1
B
1,3
1,1 1,2 0,2
4,2 2,3 3,0
(1)
4. 求出下图中得益矩阵所表示的博弈中 的混合策略纳什均衡。
博弈方2
L
R
博T
2,1
0,2
弈
方
(1)用扩展型表示这一博弈。
(2)这一博弈的子博弈完美纳什么均衡是什 么?
10、乙向甲索赔1000元,并且威胁甲如 果不给就同归于尽。当然甲不一定会相 信就的威胁。请用扩展形表示该博弈, 并找出纯策略纳什么均衡和子博弈完美 纳什么均衡。
11、考虑如下的双寡头市场战略投资模型:企 业1和企业2目前情况下的单位生产成本都是 c=2。企业1可以引进一项新技术使单位成本降 低到c=1,该项技术需要投资f.在企业1作出是 否投资的决策(企业2可以观察到)后,两个 企业同时选择产量。假设市场需求函数为 p(q)=14-q,其中p是市场价格,q是两个企业 的总产量。问上述投资额f处于什么水平时,企 业1会选择引进新技术?
提议分割,若拒绝就自己提出一个比例。但这 时候冰激凌已化得只剩1/2了。对弟弟提议的 比例哥哥也可以接受或拒绝,若接受则按弟弟
的提议分割,若拒绝九冰激凌会全部化掉。因
为兄弟之间不应该做损人不利已的事,因此我
们假设接受和拒绝利益相同时兄弟俩都会接受。 求该博弈的子博弈完美NE。如果冰激凌每阶段 只化掉1/3,博弈的子博弈完美NE是什么?
(1)
7.求下列得益矩阵表示的对称博弈的 颤抖手均衡。