正方形
正方体和正方形的区别

正方体和正方形的区别
一、正方体和正方形的区别主要有以下几点:
1.正方体是立体图形,正方形是平面图形。
2.正方体有6个面,正方形只有1个面。
3.正方体有体积,正方形没有体积。
4.正方体有8个顶点,正方形只有4个顶点。
5.图形区别如下图:
正方体
正方形
二、正方形的定义
1.四条边都相等且四个角都是直角的四边形叫做正方形。
2.各边相等且有三个角是直角的四边形叫做正方形。
3.有一组邻边相等的矩形是正方形。
4.有一组邻边相等且一个角是直角的平行四边形是正方形。
三、正方体的特征
1.正六面体有8个顶点,每个顶点连接三条棱。
2.正六面体有12条棱,每条棱长度相等。
3.正六面体有6个面,每个面面积相等,形状完全相同。
4.正六面体的体对角线:√3a,其中,a为棱长。
正方形证明方法范文

正方形证明方法范文正方形是一种特殊的四边形,它拥有四条相等的边和四个内角均为90°的特点。
下面我将通过几种方法来证明正方形的性质。
方法一:使用几何定义证明正方形是一种特殊的四边形,首先我们可以通过定义证明一个四边形是正方形。
根据定义,正方形的四条边相等且四个内角均为90°。
假设有一个四边形ABCD,其中AB,BC,CD,DA四条边相等,且∠A=∠B=∠C=∠D=90°。
我们需要证明这个四边形是正方形。
根据正方形的性质,我们可以得到:1.AB=BC=CD=DA,说明四条边相等;2.∠A=∠B=∠C=∠D=90°,说明四个内角均为90°;因此这个四边形满足正方形的定义,可以被称为正方形。
方法二:使用正方形的对角线性质证明正方形的对角线相互垂直且相等,我们可以通过利用这一性质来证明一个四边形是正方形。
假设有一个四边形ABCD,其中AC为对角线,且AC⊥BD,AC=BD。
我们需要证明这个四边形是正方形。
根据正方形的对角线性质,我们可以得到:1.AC⊥BD,说明对角线相互垂直;2.AC=BD,说明对角线相等;3.AB=CD,AC=BD,说明ABC和CDA两个三角形的对应边相等;4.∠A=∠B,∠B=∠C,两个三角形的角度也相等;根据SSS(边-边-边)相等三角形的性质,我们可以得到这两个三角形全等。
所以ABCD是一个全等四边形。
从而可以得出ABCD是一个正方形。
方法三:使用正方形的对边平行性质证明正方形的对边是平行的,我们可以通过利用这一性质来证明一个四边形是正方形。
假设有一个四边形ABCD,其中AB,CD,AD,BC。
我们需要证明这个四边形是正方形。
根据正方形的对边平行性质,我们可以得到:1.AB,CD,说明AB和CD是平行的;2.AD,BC,说明AD和BC是平行的;3.AB=CD,AD=BC,说明相对边相等;根据平行四边形的性质,我们可以得到ABCD是一个平行四边形。
认识正方形与长方形的特点

认识正方形与长方形的特点正方形和长方形是我们学习数学时常见的两种形状,它们在几何学中具有各自独特的特点和性质。
下面我们将深入了解正方形和长方形的特点。
一、正方形正方形是一种特殊的四边形,具有如下特点:1. 边长相等:正方形的四条边长度都相等,这意味着每一条边的长度都一样。
2. 内角度相等:正方形的内角都是90度,也就是说每个内角的度数都是90°。
3. 对角线相等:正方形的两条对角线长度相等,且互相垂直。
4. 具有对称性:正方形具有对称性,可以通过中心对称或旋转对称得到自身。
二、长方形长方形是另一种常见的四边形,其特点如下:1. 两对边相等:长方形的两对相对边长相等,这意味着它的宽和长度不同。
2. 内角度相等:长方形的四个内角都是90度,也就是每个内角的度数都是90°。
3. 对角线不相等:长方形的两条对角线长度不相等。
可以得出一条对角线的长度大于另一条。
4. 具有对称性:长方形也具有对称性,可以通过中心对称或旋转对称得到自身。
三、正方形和长方形的区别尽管正方形和长方形都是四边形,但它们在某些方面有不同之处:1. 边长差异:正方形的四条边长度相等,而长方形的相对边长不同。
2. 对角线差异:正方形的两条对角线相等,而长方形的两条对角线不相等。
3. 用途不同:由于边长的特殊性,正方形常被用于设计正方形场所,如围墙、正方形的盖子。
长方形则常用于房屋、画框、书桌等等。
4. 角度差异:尽管正方形和长方形的内角都是直角,但正方形的内角度数永远是90°,而长方形的每个内角都是90°。
综上所述,正方形和长方形虽然在一些特点上相似,但在边长、对角线长度、形状的对称性和用途等方面存在明显的差异。
这些知识可以帮助我们在日常生活和学习中更好地理解和应用这两个形状。
矩形和正方形的判定

矩形和正方形的判定矩形和正方形是我们在几何学中经常遇到的两种形状。
它们都属于四边形,但在具体的定义和特征上有所不同。
本文将从几何学的角度来分析矩形和正方形的判定方法,并详细介绍它们的特点和区别。
一、矩形的定义和特征矩形是指具有四个直角的四边形。
简单来说,就是四条边都相互垂直的四边形。
矩形的特征有以下几点:1. 四个内角都是直角(即90度);2. 相对的边长度相等;3. 对角线相等且相互平分;4. 对边平行。
通过上述特征,我们可以对一个四边形进行判定,若满足以上特征,则可以确定其为矩形。
二、正方形的定义和特征正方形是指具有四个相等边且四个内角都是直角的四边形。
简单来说,正方形是一种特殊的矩形,它的特征有以下几点:1. 四个内角都是直角(即90度);2. 四条边长度相等;3. 对角线相等且相互平分;4. 对边平行;5. 具有对称性。
通过上述特征,我们可以对一个四边形进行判定,若满足以上特征,则可以确定其为正方形。
三、矩形和正方形的区别矩形和正方形的最大区别在于边长是否相等。
矩形的边长可以不相等,但正方形的边长必须相等。
此外,正方形还具有对称性,而矩形则不一定具有对称性。
四、矩形和正方形的应用矩形和正方形在我们的日常生活中有着广泛的应用。
以下是一些例子:1. 建筑设计中,矩形和正方形常用于绘制房屋的平面图,用来确定房间的形状和尺寸,确保房间的合理布局;2. 家具设计中,矩形和正方形常用于绘制家具的设计图,用来确定家具的形状和尺寸,确保家具的美观和实用;3. 地板铺设中,矩形和正方形的瓷砖常用于铺设地板,使地面看起来整洁、规整;4. 统计学中,统计表常常使用矩形和正方形的格子来呈现数据,使数据清晰易读;5. 程序设计中,矩形和正方形的概念常用于计算机图形学和图像处理,用来描述和操作图像的位置和尺寸。
矩形和正方形是几何学中常见的两种形状。
它们在定义和特征上有所区别,但都属于四边形。
矩形的边长可以不相等,而正方形的边长必须相等。
正方体形态特征

正方体形态特征
正方体是一种六面体,每个面都是正方形,具有以下形态特征:
1. 对称性
正方体具有六个面,每个面都是相同的正方形,因此具有六面对称性。
此外,正方体的每个顶点、每条对角线和每个中心点都具有四面对称性。
2. 相等的边长
正方体的六个面都是相等的正方形,因此每个边长都相等。
这也意味着正方体的体积可以通过公式V=a³来计算,其中a表示正方体的边长。
3. 相等的内角
正方形的内角都是90度,因此正方体的每个内角也都是90度。
这也意味着正方体的每个面都是直角三角形。
4. 对角线相等
正方体的对角线是从一个顶点到另一个相对的顶点的线段。
由于正方体的六个面都是相等的正方形,因此正方体的对角线也是相等的。
具体来说,正方体的对角线长度可以通过公式d=√3a来计算,其中a表示正方体的边长。
5. 具有六个面
正方体是一种六面体,具有六个面。
每个面都是正方形,因此正方体的六个面都是相等的。
正方体是一种具有对称性、相等的边长、相等的内角、对角线相等和六个面的六面体。
正方体在几何学中具有重要的地位,是许多几何学问题的基础。
正方形的性质与技巧

根据对称性,我们有如下结论: ADE CDE; BAM DAM
对角线或其延长线上的点(对称轴上的点):
(1)到对角顶点的距离都相等. (2)与正方形的对应边的夹角都相等.
经典结论2:对边中点连线是对称轴
根据对称性,我们有如下结论:
MAB MDC; MAE MDE; MBF MCF
(1)求证:四边形BECD是平行四边形;
(2)当AB=AC= ,BC = 4,AD=6时,求证:四边形BECD是正方形.
练3-2.如图所示,已知在△ABC中,AB=AC,AD是∠BAC 的平分线,交BC于点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E.
(1)求证:四边形ADCE是矩形;
练习:如图正方形ABCD中, DAF= ,AF角对角线BD与E,则 BEC=.
例1.(1)下列关于正方形的说法,错误的有( )
①正方形是轴对称图形; ②正方形有两条对称轴; ③正方形是中心对称图形;
④正方形的对称中心是对角线的交点; ⑤正方形的对角线平分一组内角;
⑥正方形的对角线互相垂直平分.
A:1个B:2个C:3个D:4个
练2-1.如图,四边形ABCD为正方形,以AB为边向正方形外作正△ABE,CE与BD相交于点F,则
∠AFD的度数为______.
练2-2.如图,点P是正方形ABCD的对角线BD上一点,PE⊥BC于点E,PF⊥CD于点F.
求证:(1)AP=EF;(2)AP⊥EF.
【知识点三】正方形的判定
笔记:矩形 → (①领边相等;②对角线垂直)→ 正方形
③点A到EF的距离等于正方形的边长.
例4.点E、F分别在正方形ABCD的边BC、CD上.若∠EAF= 45 ,证明:EF = BE + DF.
正方形性质
正方形性质正方形是一种具有特殊性质的四边形。
它具有以下几个重要的性质:1. 边长相等:正方形的四条边的长度都相等,即具有等边性质。
这意味着正方形的四个内角也是相等的,每个角都是90度。
正方形的边长通常用字母s表示。
2. 直角:正方形的四个内角都是直角,也就是90度。
这是因为正方形的边长相等,对角线也相等,从而使得四个角都是直角。
3. 对称性:正方形具有4条对称轴。
具体来说,正方形具有4条对称轴,分别是两条互相垂直的水平和垂直轴线以及两条对角线。
这意味着正方形可以通过旋转180度或镜像来得到完全相同的图形。
4. 对角线相等:正方形的两条对角线相等且相交于垂直平分线。
这可以通过勾股定理来证明。
由于正方形的四个内角都是直角,对角线就等于正方形的边长。
5. 面积计算:正方形的面积可以通过边长的平方来计算,即A = s^2。
这是因为正方形可以看作是一个已知边长的长方形,长和宽都是s。
6. 周长计算:正方形的周长可以通过边长乘以4来计算,即P = 4s。
这是因为正方形的四条边长度相等。
7. 面对角线关系:正方形的面对角线关系是一个重要性质。
面对角线关系意味着正方形的对角线长度等于边长的根号2倍,即d = s√2。
这可以通过勾股定理证明。
总之,正方形具有边长相等、直角、对称性、对角线相等、面积计算、周长计算和面对角线关系等重要性质。
这些性质使得正方形在几何学中具有重要的地位,而且在实际应用中也有广泛的应用。
无论是建筑设计、绘画艺术还是其他领域,正方形都扮演着重要的角色。
下一篇将继续探讨正方形的更多特点和性质。
(字数: 304)。
【精编版】中考数学专题训练——正方形的判定和性质
中考专题训练——正方形的判定和性质1.如图,在矩形ABCD中,点E,F分别在边AB,BC上,AF⊥DE,且AF=DE,AF与DE相交于点G.(1)求证:矩形ABCD为正方形:(2)若AE:EB=2:1,△AEG的面积为4,求四边形BEGF的面积.2.已知:如图,边长为4的菱形ABCD的对角线AC与BD相交于点O,若∠CAD=∠DBC.(1)求证:四边形ABCD是正方形.(2)E是OB上一点,BE=1,且DH⊥CE,垂足为H,DH与OC相交于点F,求线段OF的长.3.如图,菱形EFGH的三个顶点E、G、H分别在正方形ABCD的边AB、CD、DA上,连接CF.(1)求证:∠HEA=∠CGF;(2)当AH=DG时,求证:菱形EFGH为正方形.4.如图,已知四边形ABCD为正方形,AB=3,点E为对角线AC上一动点,连接DE,过点E作EF⊥DE,交BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)求证:矩形DEFG是正方形;(2)探究:CE+CG的值是否为定值?若是,请求出这个定值;若不是,请说明理由.5.如图①,在正方形ABCD中,点E,F分别在AB、BC上,且AE=BF.(1)试探索线段AF、DE的数量关系,写出你的结论并说明理由;(2)连接EF、DF,分别取AE、EF、FD、DA的中点H、I、J、K,则四边形HIJK是什么特殊平行四边形?请在图②中补全图形,并说明理由.6.如图,已知正方形ABCD,P是对角线AC上任意一点,PM⊥AD,PN⊥AB,垂足分别为点M和N,PE⊥PB交AD于点E.(1)求证:四边形MANP是正方形;(2)求证:EM=BN.7.如图,在等腰直角三角形ABC中,∠ACB=90°,AC=BC=4,D是AB的中点,E,F 分别是AC,BC上的点(点E不与端点A,C重合),且AE=CF,连接EF并取EF的中点O,连接DO并延长至点G,使GO=OD,连接DE,DF,GE,GF.(1)求证:四边形EDFG是正方形;(2)当点E在什么位置时,四边形EDFG的面积最小?并求四边形EDFG面积的最小值.8.如图,已知四边形ABCD为正方形,AB=,点E为对角线AC上一动点,连接DE,过点E作EF⊥DE.交射线BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.①求证:矩形DEFG是正方形;②探究:CE+CG的值是否为定值?若是,请求出这个定值;若不是,请说明理由.9.平行四边形ABCD的对角线AC和BD交于O点,分别过顶点B,C作两对角线的平行线交于点E,得平行四边形OBEC.(1)如果四边形ABCD为矩形(如图),四边形OBEC为何种四边形?请证明你的结论;(2)如果四边形ABCD是正方形,四边形OBEC也是正方形吗?如果是,请给予证明;如果不是,请说明理由.10.如果P是正方形ABCD内的一点,且满足∠APB+∠DPC=180°,那么称点P是正方形ABCD的“对补点”.(1)如图1,正方形ABCD的对角线AC,BD交于点M,求证:点M是正方形ABCD 的对补点;(2)如图2,在平面直角坐标系中,正方形ABCD的顶点A(1,1),C(3,3).除对角线交点外,请再写出一个该正方形的对补点的坐标,并证明.11.已知:如图,E是正方形ABCD的对角线BD上的点,连接AE、CE.(1)求证:AE=CE;(2)若将△ABE沿AB翻折后得到△ABF,当点E在BD的何处时,四边形AFBE是正方形?请证明你的结论.12.如图所示,有四个动点P,Q,E,F分别从正方形ABCD的四个顶点出发,沿着AB,BC,CD,DA以同样速度向B,C,D,A各点移动.(1)试判断四边形PQEF是否是正方形,并证明;(2)PE是否总过某一定点,并说明理由.13.在平面直角坐标系xOy中,OEFG为正方形,点F的坐标为(1,1).将一个最短边长大于的直角三角形纸片的直角顶点放在对角线FO上.(1)如图,当三角形纸片的直角顶点与点F重合,一条直角边落在直线FO上时,这个三角形纸片与正方形OEFG重叠部分(即阴影部分)的面积为;(2)若三角形纸片的直角顶点不与点O,F重合,且两条直角边与正方形相邻两边相交,当这个三角形纸片与正方形OEFG重叠部分的面积是正方形面积的一半时,试确定三角形纸片直角顶点的坐标(不要求写出求解过程),并画出此时的图形.14.(1)如图矩形ABCD的对角线AC、BD交于点O,过点D作DP∥OC,且DP=OC,连接CP,判断四边形CODP的形状并说明理由.(2)如果题目中的矩形变为菱形,结论应变为什么?说明理由.(3)如果题目中的矩形变为正方形,结论又应变为什么?说明理由.15.四边形ABCD为正方形,点E为线段AC上一点,连接DE,过点E作EF⊥DE,交射线BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)如图1,求证:矩形DEFG是正方形;(2)若AB=2,CE=,求CG的长度;(3)当线段DE与正方形ABCD的某条边的夹角是30°时,直接写出∠EFC的度数.16.如图,在矩形ABCD中,AD=6,CD=8,菱形EFGH的三个顶点E、G、H分别在矩形ABCD的边AB、CD、DA上,AH=2,连接CF.(1)当DG=2时,求证:四边形EFGH是正方形;(2)当△FCG的面积为2时,求CG的值.17.已知,如图,矩形ABCD中,AD=6,DC=7,菱形EFGH的三个顶点E,G,H分别在矩形ABCD的边AB,CD,DA上,AH=2,连接CF.(1)若DG=2,求证四边形EFGH为正方形;(2)若DG=6,求△FCG的面积;(3)当DG为何值时,△FCG的面积最小.18.如图,Rt△CEF中,∠C=90°,∠CEF,∠CFE外角平分线交于点A,过点A分别作直线CE,CF的垂线,B,D为垂足.(1)∠EAF=°(直接写出结果不写解答过程);(2)①求证:四边形ABCD是正方形.②若BE=EC=3,求DF的长.(3)如图(2),在△PQR中,∠QPR=45°,高PH=5,QH=2,则HR的长度是(直接写出结果不写解答过程).19.如图1,在正方形ABCD中,G为线段BD上一点,连接AG,过G作AG⊥GE交BC 于E,连接AE.(1)求证:BG=DG+BE;(2)如图2,AB=4,E为BC中点,P,Q分别为线段AB,AE上的动点,满足QE=AP,则在P,Q运动过程中,当以PQ为对角线的正方形PRQS的一边恰好落在△ABE 的某一边上时,直接写出正方形PRQS的面积.20.四边形ABCD为正方形,点E为线段AC上一点,连接DE,过点E作EF⊥DE,交射线BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)如图,求证:矩形DEFG是正方形;(2)若AB=2,CE=2,求CG的长;(3)当线段DE与正方形ABCD的某条边的夹角是40°时,直接写出∠EFC的度数.参考答案;1.如图,在矩形ABCD中,点E,F分别在边AB,BC上,AF⊥DE,且AF=DE,AF与DE相交于点G.(1)求证:矩形ABCD为正方形:(2)若AE:EB=2:1,△AEG的面积为4,求四边形BEGF的面积.【分析】(1)根据矩形的性质得∠DAB=∠B=90°,由等角的余角相等可得∠ADE=∠BAF,利用AAS可得△ABF≌△DAE(AAS),由全等三角形的性质得AD=AB,即可得四边形ABCD是正方形;(2)根据相似三角形面积的比等于相似比的平方即可解决问题.【解答】(1)证明:∵四边形ABCD是矩形,∴∠DAB=∠B=90°,∵DE⊥AF,∴∠DAB=∠AGD=90°,∴∠BAF+∠DAF=90°,∠ADE+∠DAF=90°,∴∠BAF=∠ADE,在△ABF和△DAE中,,∴△ABF≌△DAE(AAS),∴AD=AB,∵四边形ABCD是矩形,∴四边形ABCD是正方形;(2)解:∵△ABF≌△DAE,∴BF=AE,∵AE:EB=2:1,设AE=2x,EB=x,∴BF=AE=2x,AB=3x,∴AF==x,∵∠EAG=∠F AB,∠AGE=∠B=90°,∴△AEG∽△AFB,∴△AEG的面积:△AFB的面积=AE2:AF2=4x2:13x2=4:13,∵△AEG的面积为4,∴△AFB的面积为13,∴四边形BEGF的面积=13﹣4=9.2.已知:如图,边长为4的菱形ABCD的对角线AC与BD相交于点O,若∠CAD=∠DBC.(1)求证:四边形ABCD是正方形.(2)E是OB上一点,BE=1,且DH⊥CE,垂足为H,DH与OC相交于点F,求线段OF的长.【分析】(1)由菱形的性质得出AD∥BC,∠BAD=2∠DAC,∠ABC=2∠DBC,得出∠BAD+∠ABC=180°,证出∠BAD=∠ABC,求出∠BAD=90°,即可得出结论;(2)由正方形的性质得出AC⊥BD,AC=BD,CO=AC,DO=BD,得出∠COB=∠DOC=90°,CO=DO,证出∠ECO=∠EDH,证明△ECO≌△FDO(ASA),即可得出结论.【解答】(1)证明:∵四边形ABCD是菱形,∴AD∥BC,∠BAD=2∠DAC,∠ABC=2∠DBC,∴∠BAD+∠ABC=180°,∵∠CAD=∠DBC,∴∠BAD=∠ABC,∴2∠BAD=180°,∴∠BAD=90°,∴四边形ABCD是正方形;(2)解:∵四边形ABCD是正方形,AB=BC=4,∴AC⊥BD,AC=BD=4,∴OB=CO=AC=2,DO=BD=2,∴∠COB=∠DOC=90°,CO=DO,∵DH⊥CE,垂足为H,∴∠DHE=90°,∠EDH+∠DEH=90°,∵∠ECO+∠DEH=90°,∴∠ECO=∠EDH,在△ECO和△FDO中,,∴△ECO≌△FDO(ASA),∴OE=OF.∵BE=1,∴OE=OF=OB﹣BE=2﹣1.3.如图,菱形EFGH的三个顶点E、G、H分别在正方形ABCD的边AB、CD、DA上,连接CF.(1)求证:∠HEA=∠CGF;(2)当AH=DG时,求证:菱形EFGH为正方形.【分析】(1)连接GE,根据正方形的性质和平行线的性质得到∠AEG=∠CGE,根据菱形的性质和平行线的性质得到∠HEG=∠FGE,解答即可;(2)证明Rt△HAE≌Rt△GDH,得到∠AHE=∠DGH,证明∠GHE=90°,根据正方形的判定定理证明.【解答】证明:(1)连接GE,∵AB∥CD,∴∠AEG=∠CGE,∵GF∥HE,∴∠HEG=∠FGE,∴∠HEA=∠CGF;(2)∵四边形ABCD是正方形,∴∠D=∠A=90°,∵四边形EFGH是菱形,∴HG=HE,在Rt△HAE和Rt△GDH中,,∴Rt△HAE≌Rt△GDH(HL),∴∠AHE=∠DGH,又∠DHG+∠DGH=90°,∴∠DHG+∠AHE=90°,∴∠GHE=90°,∴菱形EFGH为正方形;4.如图,已知四边形ABCD为正方形,AB=3,点E为对角线AC上一动点,连接DE,过点E作EF⊥DE,交BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)求证:矩形DEFG是正方形;(2)探究:CE+CG的值是否为定值?若是,请求出这个定值;若不是,请说明理由.【分析】(1)作出辅助线,得到EN=EM,然后判断∠DEN=∠FEM,得到△DEN≌△FEM,则有DE=EF即可;(2)同(1)的方法判断出△ADE≌△CDG得到CG=AE,即:CE+CG=CE+AE=AC =6.【解答】解:(1)如图,作EM⊥BC于M,EN⊥CD于N,∴∠MEN=90°,∵点E是正方形ABCD对角线上的点,∴EM=EN,∵∠DEF=90°,∴∠DEN=∠MEF,∵∠DNE=∠FME=90°,在△DEN和△FEM中,,∴△DEN≌△FEM(ASA),∴EF=DE,∵四边形DEFG是矩形,∴矩形DEFG是正方形;(2)CE+CG的值是定值,定值为6,理由如下:∵正方形DEFG和正方形ABCD,∴DE=DG,AD=DC,∵∠CDG+∠CDE=∠ADE+∠CDE=90°,∴∠CDG=∠ADE,在∴△ADE和△CDG中,,∴△ADE≌△CDG(SAS),∴AE=CG,∴CE+CG=CE+AE=AC=AB=×3=6是定值.5.如图①,在正方形ABCD中,点E,F分别在AB、BC上,且AE=BF.(1)试探索线段AF、DE的数量关系,写出你的结论并说明理由;(2)连接EF、DF,分别取AE、EF、FD、DA的中点H、I、J、K,则四边形HIJK是什么特殊平行四边形?请在图②中补全图形,并说明理由.【分析】(1)根据已知利用SAS判定△DAE≌△ABF,由全等三角形的判定方法可得到AF=DE.(2)根据已知可得HK,KJ,IJ,HI都是中位线,由全等三角形的判定可得到四边形四边都相等且有一个角是直角,从而来可得到该四边形是正方形.【解答】解:(1)AF=DE.∵ABCD是正方形,∴AB=AD,∠DAB=∠ABC=90°,∵AE=BF,∴△DAE≌△ABF,∴AF=DE.(2)四边形HIJK是正方形.如下图,H、I、J、K分别是AE、EF、FD、DA的中点,∴HI=KJ=AF,HK=IJ=ED,∵AF=DE,∴HI=KJ=HK=IJ,∴四边形HIJK是菱形,∵△DAE≌△ABF,∴∠ADE=∠BAF,∵∠ADE+∠AED=90°,∴∠BAF+∠AED=90°,∴∠AOE=90°∴∠KHI=90°,∴四边形HIJK是正方形.6.如图,已知正方形ABCD,P是对角线AC上任意一点,PM⊥AD,PN⊥AB,垂足分别为点M和N,PE⊥PB交AD于点E.(1)求证:四边形MANP是正方形;(2)求证:EM=BN.【分析】(1)根据有三个角是直角的四边形是矩形证明四边形MANP是矩形,再根据角平分线的性质得:PM=PN,可得结论;(2)证明△EPM≌△BPN,可得结论.【解答】证明:(1)∵四边形ABCD是正方形,∴∠DAB=90°,AC平分∠DAB,(1分)∵PM⊥AD,PN⊥AB,∴∠PMA=∠PNA=90°,∴四边形MANP是矩形,(2分)∵AC平分∠DAB,PM⊥AD,PN⊥AB,∴PM=PN,(3分)∴四边形MANP是正方形;(4分)(2)∵四边形ABCD是正方形,∴PM=PN,∠MPN=90°,∵∠EPB=90°,∴∠MPE+∠EPN=∠NPB+∠EPN=90°,∴∠MPE=∠NPB,(5分)在△EPM和△BPN中,∵,∴△EPM≌△BPN(ASA),(6分)∴EM=BN.(7分)7.如图,在等腰直角三角形ABC中,∠ACB=90°,AC=BC=4,D是AB的中点,E,F 分别是AC,BC上的点(点E不与端点A,C重合),且AE=CF,连接EF并取EF的中点O,连接DO并延长至点G,使GO=OD,连接DE,DF,GE,GF.(1)求证:四边形EDFG是正方形;(2)当点E在什么位置时,四边形EDFG的面积最小?并求四边形EDFG面积的最小值.【分析】(1)连接CD,根据等腰直角三角形的性质可得出∠A=∠DCF=45°、AD=CD,结合AE=CF可证出△ADE≌△CDF(SAS),根据全等三角形的性质可得出DE=DF、ADE=∠CDF,通过角的计算可得出∠EDF=90°,再根据O为EF的中点、GO=OD,即可得出GD⊥EF,且GD=2OD=EF,由此即可证出四边形EDFG是正方形;(2)过点D作DE′⊥AC于E′,根据等腰直角三角形的性质可得出DE′的长度,从而得出2≤DE<2,再根据正方形的面积公式即可得出四边形EDFG的面积的最小值.【解答】(1)证明:连接CD,如图1所示.∵△ABC为等腰直角三角形,∠ACB=90°,D是AB的中点,∴∠A=∠DCF=45°,AD=CD.在△ADE和△CDF中,,∴△ADE≌△CDF(SAS),∴DE=DF,∠ADE=∠CDF.∵∠ADE+∠EDC=90°,∴∠EDC+∠CDF=∠EDF=90°,∴△EDF为等腰直角三角形.∵O为EF的中点,GO=OD,∴GD⊥EF,且GD=2OD=EF,∴四边形EDFG是正方形;(2)解:过点D作DE′⊥AC于E′,如图2所示.∵△ABC为等腰直角三角形,∠ACB=90°,AC=BC=4,∴DE′=BC=2,AB=4,点E′为AC的中点,∴2≤DE<2(点E与点E′重合时取等号).∴4≤S四边形EDFG=DE2<8.∴当点E为线段AC的中点时,四边形EDFG的面积最小,该最小值为4.8.如图,已知四边形ABCD为正方形,AB=,点E为对角线AC上一动点,连接DE,过点E作EF⊥DE.交射线BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.①求证:矩形DEFG是正方形;②探究:CE+CG的值是否为定值?若是,请求出这个定值;若不是,请说明理由.【分析】(1)作出辅助线,得到EN=EM,然后判断∠DEN=∠FEM,得到△DEN≌△FEM,则有DE=EF即可;(2)同(1)的方法证出△ADE≌△CDG得到CG=AE,得出CE+CG=CE+AE=AC=4即可.【解答】①证明:过E作EM⊥BC于M点,过E作EN⊥CD于N点,如图所示:∵正方形ABCD∴∠BCD=90°,∠ECN=45°∴∠EMC=∠ENC=∠BCD=90°且NE=NC,∴四边形EMCN为正方形∵四边形DEFG是矩形,∴EM=EN,∠DEN+∠NEF=∠MEF+∠NEF=90°∴∠DEN=∠MEF,又∠DNE=∠FME=90°,在△DEN和△FEM中,,∴△DEN≌△FEM(ASA),∴ED=EF,∴矩形DEFG为正方形,②解:CE+CG的值为定值,理由如下:∵矩形DEFG为正方形,∴DE=DG,∠EDC+∠CDG=90°∵四边形ABCD是正方形,∵AD=DC,∠ADE+∠EDC=90°∴∠ADE=∠CDG,在△ADE和△CDG中,,∴△ADE≌△CDG(SAS),∴AE=CG∴AC=AE+CE=AB=×2=4,∴CE+CG=4 是定值.9.平行四边形ABCD的对角线AC和BD交于O点,分别过顶点B,C作两对角线的平行线交于点E,得平行四边形OBEC.(1)如果四边形ABCD为矩形(如图),四边形OBEC为何种四边形?请证明你的结论;(2)如果四边形ABCD是正方形,四边形OBEC也是正方形吗?如果是,请给予证明;如果不是,请说明理由.【分析】(1)由平行线可得四边形OBEC为平行四边形,又矩形对角线互相平分且相等,则可得四边形OBEC为菱形;(2)由平行线可得四边形OBEC为平行四边形,又正方形对角线互相垂直、平分且相等,则可得四边形OBEC为正方形.【解答】解:(1)四边形OBEC是菱形.证明:∵BE∥OC,CE∥OB,∴四边形OBEC为平行四边形.又∵四边形ABCD是矩形,∴OC=OB,∴平行四边形OBEC为菱形;(2)四边形OBEC是正方形.证明:∵BE∥OC,CE∥OB,∴四边形OBEC为平行四边形.又∵四边形ABCD是正方形,∴OC=OB,∠BOC=90°,∴平行四边形OBEC为正方形.10.如果P是正方形ABCD内的一点,且满足∠APB+∠DPC=180°,那么称点P是正方形ABCD的“对补点”.(1)如图1,正方形ABCD的对角线AC,BD交于点M,求证:点M是正方形ABCD 的对补点;(2)如图2,在平面直角坐标系中,正方形ABCD的顶点A(1,1),C(3,3).除对角线交点外,请再写出一个该正方形的对补点的坐标,并证明.【分析】(1)根据四边形ABCD是正方形,得到AC⊥BD,于是得到结论;(2)如图2,延长CD交y轴于E,延长CB交x轴于F,则四边形CEOF是正方形连接OC,EF交于P,推出A,C在直线y=x上,得到A在OC上,根据全等三角形的性质得到∠APD=∠APB,得到∠CPD+∠APB=180°,于是得到结论.【解答】解:(1)∵四边形ABCD是正方形,∴AC⊥BD,∴∠AMB=∠CMD=90°,∴∠AMB+∠CMD=180°,∴点M是正方形ABCD的对补点;(2)如图2,点P(,)是该正方形的对补点,延长CD交y轴于E,延长CB交x轴于F,则四边形CEOF是正方形连接OC,EF交于P,∵A(1,1),C(3,3),∴A,C在直线y=x上,∴A在OC上,在△APD与△APB中,,∴△APD≌△APB,∴∠APD=∠APB,∴∠DPE=∠BPF,∵∠EPC+∠APF=180°,∴∠CPD+∠APB=180°,∴P(,)是该正方形的对补点.11.已知:如图,E是正方形ABCD的对角线BD上的点,连接AE、CE.(1)求证:AE=CE;(2)若将△ABE沿AB翻折后得到△ABF,当点E在BD的何处时,四边形AFBE是正方形?请证明你的结论.【分析】(1)利用正方形的性质和SAS证明△ABE≌△CBE即可;(2)由折叠的性质得出∠F=∠AEB,AF=AE,BF=BE,由直角三角形斜边上的中线性质得出AE=BD=BE=DE,证出AE=BE=AF=BF,得出四边形AFBE是菱形,AE ⊥BD,即可得出结论.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=CB,∠BAD=∠ABC=90°,∠ABE=∠CBE=45°,在△ABE和△CBE中,,∴△ABE≌△CBE(SAS),∴AE=CE.(2)解:点E在BD的中点时,四边形AFBE是正方形;理由如下:由折叠的性质得:∠F=∠AEB,AF=AE,BF=BE,∵∠BAD=90°,E是BD的中点,∴AE=BD=BE=DE,∵BF=BE,∴AE=BE=AF=BF,∴四边形AFBE是菱形,E是正方形ABCD对角线的交点,∴AE⊥BD,∴∠AEB=90°,∴四边形AFBE是正方形.12.如图所示,有四个动点P,Q,E,F分别从正方形ABCD的四个顶点出发,沿着AB,BC,CD,DA以同样速度向B,C,D,A各点移动.(1)试判断四边形PQEF是否是正方形,并证明;(2)PE是否总过某一定点,并说明理由.【分析】(1)正方形的定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形,故可根据正方形的定义证明四边形PQEF是否使正方形.(2)证PE是否过定点时,可连接AC,证明四边形APCE为平行四边形,即可证明PE 过定点.【解答】解:(1)在正方形ABCD中,AP=BQ=CE=DF,AB=BC=CD=DA,∴BP=QC=ED=F A.又∵∠BAD=∠B=∠BCD=∠D=90°,∴△AFP≌△BPQ≌△CQE≌△DEF.∴FP=PQ=QE=EF,∠APF=∠PQB.∴四边形PQEF是菱形,∵∠FPQ=90°,∴四边形PQEF为正方形.(2)连接AC交PE于O,∵AP平行且等于EC,∴四边形APCE为平行四边形.∵O为对角线AC的中点,∴对角线PE总过AC的中点.13.在平面直角坐标系xOy中,OEFG为正方形,点F的坐标为(1,1).将一个最短边长大于的直角三角形纸片的直角顶点放在对角线FO上.(1)如图,当三角形纸片的直角顶点与点F重合,一条直角边落在直线FO上时,这个三角形纸片与正方形OEFG重叠部分(即阴影部分)的面积为;(2)若三角形纸片的直角顶点不与点O,F重合,且两条直角边与正方形相邻两边相交,当这个三角形纸片与正方形OEFG重叠部分的面积是正方形面积的一半时,试确定三角形纸片直角顶点的坐标(不要求写出求解过程),并画出此时的图形.【分析】(1)S=OE•EF=;(2)如图,正方形GFEO的面积为1,当重合的面积为正方形GFEO的面积的一半时,有两种情况:①四边形OSCB的面积为时,易证得四边形ACDO为正方形,△ABC≌△DSC,有四边形OSCB的面积与正方形ACDO的面积相等,故有OD=OA=即点C的坐标为(,).②四边形FSCB的面积为时,易证得四边形ACDF为正方形,△ABC≌△DSC,有四边形FSCB的面积与正方形ACDO的面积相等,故有AD=F A=即点C的坐标为(1﹣,1﹣).【解答】解:(1)S=OE•EF=;(2)如图,正方形GFEO的面积为1,当重合的面积为正方形GFEO的面积的一半时,有两种情况:①四边形OSCB的面积为时,易证得四边形ACOD为正方形,△ABC≌△DSC,有四边形OSCB的面积与正方形ACOD的面积相等,故有OD=OA=即点C的坐标为(,).②四边形FSCB的面积为时,易证得四边形ACDF为正方形,△ABC≌△DSC,有四边形FSCB的面积与正方形ACDO的面积相等,故有FD=F A=即点C的坐标为(1﹣,1﹣).14.(1)如图矩形ABCD的对角线AC、BD交于点O,过点D作DP∥OC,且DP=OC,连接CP,判断四边形CODP的形状并说明理由.(2)如果题目中的矩形变为菱形,结论应变为什么?说明理由.(3)如果题目中的矩形变为正方形,结论又应变为什么?说明理由.【分析】(1)根据矩形的性质得出OD=OC,根据有一组对边平行且相等的四边形是平行四边形得出四边形CODP是平行四边形,根据菱形的判定推出即可;(2)根据菱形的性质得出∠DOC=90°,根据有一组对边平行且相等的四边形是平行四边形得出四边形CODP是平行四边形,根据矩形的判定推出即可;(3)根据正方形的性质得出OD=OC,∠DOC=90°,根据有一组对边平行且相等的四边形是平行四边形得出四边形CODP是平行四边形,根据正方形的判定推出即可;【解答】解:(1)四边形CODP的形状是菱形,理由是:∵四边形ABCD是矩形,∴AC=BD,OA=OC=AC,OB=OD=BD,∴OC=OD,∵DP∥OC,DP=OC,∴四边形CODP是平行四边形,∵OC=OD,∴平行四边形CODP是菱形;(2)四边形CODP的形状是矩形,理由是:∵四边形ABCD是菱形,∴AC⊥BD,∴∠DOC=90°,∵DP∥OC,DP=OC,∴四边形CODP是平行四边形,∵∠DOC=90°,∴平行四边形CODP是矩形;(3)四边形CODP的形状是正方形,理由是:∵四边形ABCD是正方形,∴AC⊥BD,AC=BD,OA=OC=AC,OB=OD=BD,∴∠DOC=90°,OD=OC,∵DP∥OC,DP=OC,∴四边形CODP是平行四边形,∵∠DOC=90°,OD=OC∴平行四边形CODP是正方形.15.四边形ABCD为正方形,点E为线段AC上一点,连接DE,过点E作EF⊥DE,交射线BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)如图1,求证:矩形DEFG是正方形;(2)若AB=2,CE=,求CG的长度;(3)当线段DE与正方形ABCD的某条边的夹角是30°时,直接写出∠EFC的度数.(1)作EP⊥CD于P,EQ⊥BC于Q,证明Rt△EQF≌Rt△EPD,得到EF=ED,【分析】根据正方形的判定定理证明即可;(2)通过计算发现E是AC中点,点F与C重合,△CDG是等腰直角三角形,由此即可解决问题.(3)分两种情形考虑问题即可;【解答】(1)证明:作EP⊥CD于P,EQ⊥BC于Q,∵∠DCA=∠BCA,∴EQ=EP,∵∠QEF+∠FEC=45°,∠PED+∠FEC=45°,∴∠QEF=∠PED,在Rt△EQF和Rt△EPD中,,∴Rt△EQF≌Rt△EPD(ASA),∴EF=ED,∴矩形DEFG是正方形;(2)如图2中,在Rt△ABC中.AC=AB=2,∵EC=,∴AE=CE,∴点F与C重合,此时△DCG是等腰直角三角形,易知CG=.(3)①当DE与AD的夹角为30°时,点F在BC边上,∠ADE=30°,则∠CDE=90°﹣30°=60°,在四边形CDEF中,由四边形内角和定理得:∠EFC=360°﹣90°﹣90°﹣60°=120°,②当DE与DC的夹角为30°时,点F在BC的延长线上,∠CDE=30°,如图3所示:∵∠HCF=∠DEF=90°,∠CHF=∠EHD,∴∠EFC=∠CDE=30°,综上所述,∠EFC=120°或30°.16.如图,在矩形ABCD中,AD=6,CD=8,菱形EFGH的三个顶点E、G、H分别在矩形ABCD的边AB、CD、DA上,AH=2,连接CF.(1)当DG=2时,求证:四边形EFGH是正方形;(2)当△FCG的面积为2时,求CG的值.【分析】(1)由于四边形ABCD为矩形,四边形HEFG为菱形,那么∠D=∠A=90°,HG=HE,而AH=DG=2,易证△AHE≌△DGH,从而有∠DHG=∠HEA,等量代换可得∠AHE+∠DHG=90°,易证四边形HEFG为正方形;(2)过F作FM⊥DC于M,根据AB∥CD,可得∠AEG=∠MGE,同理有∠HEG=∠FGE,利用等式性质有∠AEH=∠MGF,再结合∠A=∠M=90°,HE=FG,可证△AHE≌△MFG,利用三角形面积解答即可.【解答】(1)证明:在矩形ABCD中,有∠A=∠D=90°,∴∠DGH+∠DHG=90°.在菱形EFGH中,EH=GH∵AH=2,DG=2,∴AH=DG,∴Rt△AEH≌Rt△DHG(HL).∴∠AHE=∠DGH.∴∠AHE+∠DHG=90°.∴∠EHG=90°.∴四边形EFGH是正方形.(2)过F作FM⊥DC于M,则∠FMG=90°.∴∠A=∠FMG=90°.连接EG.由矩形和菱形性质,知AB∥DC,HE∥GF,∴∠AEG=∠MGE,∠HEG=∠FGE,∴∠AEH=∠MGF.∵EH=GF,∴△AEH≌△MGF.∴FM=AH=2.∵S△FCG=,∴CG=2.17.已知,如图,矩形ABCD中,AD=6,DC=7,菱形EFGH的三个顶点E,G,H分别在矩形ABCD的边AB,CD,DA上,AH=2,连接CF.(1)若DG=2,求证四边形EFGH为正方形;(2)若DG=6,求△FCG的面积;(3)当DG为何值时,△FCG的面积最小.【分析】(1)由于四边形ABCD为矩形,四边形HEFG为菱形,那么∠D=∠A=90°,HG=HE,而AH=DG=2,易证△AHE≌△DGH,从而有∠DHG=∠HEA,等量代换可得∠AHE+∠DHG=90°,易证四边形HEFG为正方形;(2)过F作FM⊥DC,交DC延长线于M,连接GE,由于AB∥CD,可得∠AEG=∠MGE,同理有∠HEG=∠FGE,利用等式性质有∠AEH=∠MGF,再结合∠A=∠M=90°,HE=FG,可证△AHE≌△MFG,从而有FM=HA=2(即无论菱形EFGH如何变化,点F到直线CD的距离始终为定值2),进而可求三角形面积;(3)先设DG=x,由第(2)小题得,S△FCG=7﹣x,在△AHE中,AE≤AB=7,利用勾股定理可得HE2≤53,在Rt△DHG中,再利用勾股定理可得x2+16≤53,进而可求x ≤,从而可得当x=时,△GCF的面积最小.【解答】解:(1)∵四边形ABCD为矩形,四边形HEFG为菱形,∴∠D=∠A=90°,HG=HE,又AH=DG=2,∴Rt△AHE≌Rt△DGH(HL),∴∠DHG=∠HEA,∵∠AHE+∠HEA=90°,∴∠AHE+∠DHG=90°,∴∠EHG=90°,∴四边形HEFG为正方形;(2)过F作FM⊥DC,交DC延长线于M,连接GE,∵AB∥CD,∴∠AEG=∠MGE,∵HE∥GF,∴∠HEG=∠FGE,∴∠AEH=∠MGF,在△AHE和△MFG中,∠A=∠M=90°,HE=FG,∴△AHE≌△MFG,∴FM=HA=2,即无论菱形EFGH如何变化,点F到直线CD的距离始终为定值2,因此;(3)设DG=x,则由第(2)小题得,S△FCG=7﹣x,在△AHE中,AE≤AB=7,∴HE2≤53,∴x2+16≤53,∴x≤,∴S△FCG的最小值为,此时DG=,∴当DG=时,△FCG的面积最小为().18.如图,Rt△CEF中,∠C=90°,∠CEF,∠CFE外角平分线交于点A,过点A分别作直线CE,CF的垂线,B,D为垂足.(1)∠EAF=45°(直接写出结果不写解答过程);(2)①求证:四边形ABCD是正方形.②若BE=EC=3,求DF的长.(3)如图(2),在△PQR中,∠QPR=45°,高PH=5,QH=2,则HR的长度是(直接写出结果不写解答过程).【分析】(1)根据平角的定义得到∠DFE+∠BEF=360°﹣90°=270°,根据角平分线的定义得到∠AFE=DFE,∠AEF=BEF,求得∠AEF+∠AFE=(∠DFE+∠BEF),根据三角形的内角和定理即可得到结论;(2)①作AG⊥EF于G,如图1所示:则∠AGE=∠AGF=90°,先证明四边形ABCD 是矩形,再由角平分线的性质得出AB=AD,即可得出四边形ABCD是正方形;②设DF=x,根据已知条件得到BC=6,由①得四边形ABCD是正方形,求得BC=CD =6,根据全等三角形的性质得到BE=EG=3,同理,GF=DF=x,根据勾股定理列方程即可得到结论;(3)把△PQH沿PQ翻折得△PQD,把△PRH沿PR翻折得△PRM,延长DQ、MR交于点G,由(1)(2)得:四边形PMGD是正方形,MR+DQ=QR,MR=HR,DQ=HQ =2,得出MG=DG=MP=PH=6,GQ=4,设MR=HR=a,则GR=6﹣a,QR=a+2,在Rt△GQR中,由勾股定理得出方程,解方程即可.【解答】解:(1)∵∠C=90°,∴∠CFE+∠CEF=90°,∴∠DFE+∠BEF=360°﹣90°=270°,∵AF平分∠DFE,AE平分∠BEF,∴∠AFE=DFE,∠AEF=BEF,∴∠AEF+∠AFE=(∠DFE+∠BEF)=270°=135°,∴∠EAF=180°﹣∠AEF﹣∠AFE=45°,故答案为:45;(2)①作AG⊥EF于G,如图1所示:则∠AGE=∠AGF=90°,∵AB⊥CE,AD⊥CF,∴∠B=∠D=90°=∠C,∴四边形ABCD是矩形,∵∠CEF,∠CFE外角平分线交于点A,∴AB=AG,AD=AG,∴AB=AD,∴四边形ABCD是正方形;②设DF=x,∵BE=EC=3,∴BC=6,由①得四边形ABCD是正方形,∴BC=CD=6,在Rt△ABE与Rt△AGE中,,∴Rt△ABE≌Rt△AGE(HL),∴BE=EG=3,同理,GF=DF=x,在Rt△CEF中,EC2+FC2=EF2,即32+(6﹣x)2=(x+3)2,解得:x=2,∴DF的长为2;(3)解:如图2所示:把△PQH沿PQ翻折得△PQD,把△PRH沿PR翻折得△PRM,延长DQ、MR交于点G,由(1)(2)得:四边形PMGD是正方形,MR+DQ=QR,MR=HR,DQ=HQ=2,∴MG=DG=MP=PH=5,∴GQ=3,设MR=HR=a,则GR=5﹣a,QR=a+2,在Rt△GQR中,由勾股定理得:(5﹣a)2+32=(2+a)2,解得:a=,即HR=;故答案为:.19.如图1,在正方形ABCD中,G为线段BD上一点,连接AG,过G作AG⊥GE交BC 于E,连接AE.(1)求证:BG=DG+BE;(2)如图2,AB=4,E为BC中点,P,Q分别为线段AB,AE上的动点,满足QE=AP,则在P,Q运动过程中,当以PQ为对角线的正方形PRQS的一边恰好落在△ABE 的某一边上时,直接写出正方形PRQS的面积.【分析】(1)过点G作GN⊥BC于点N,作GM⊥AB于点M,过点E作EF⊥BC,交BD于点F,先证明△AGM≌△EGN(ASA),从而AM=EN,再利用DG=BD﹣BG=AB﹣BM=AM,FG=BG﹣BF=BN﹣BE=EN,得出DG=FG,则BG =BF+FG=DG+BE;(2)分五种情况讨论,以点B为原点,BC所在直线为x轴,BA所在直线为y轴建立平面直角坐标系,分别求得AE和PQ的解析式,二者联立解得用含m的式子表示的点Q 的坐标,在Rt△QEF中,由勾股定理得出QE的表达式,然后结合QE=AP得出关于m的方程,解得m的值,则可得点Q的横坐标,从而可得正方形PRQS的面积,利用锐角三角函数和线段的和差关系列出方程,可求正方形的边长,即可求解.【解答】解:(1)证明:过点G作GN⊥BC于点N,作GM⊥AB于点M,过点E作EF ⊥BC,交BD于点F,如图所示:∵四边形ABCD是正方形,BD是对角线,∴BF=BE,GM=GN,∵AG⊥GE,GN⊥BC,GM⊥AB,∴∠AMG=∠ENG=90°,∠AGM+∠MGN=∠EGN+∠MGN,∴∠AGM=∠EGN,∴在△AGM和△EGN中,,∴△AGM≌△EGN(ASA),∴AM=EN,∵DG=BD﹣BG=AB﹣BM=AM,FG=BG﹣BF=BN﹣BE=EN,∴DG=FG,∴BG=BF+FG=DG+BE;(2)①若正方形PRQS的一边恰好落在AB上,如图2:当点P在点R的上方,∵AB=4,E为BC中点,∴A(0,4),E(2,0),设AE的解析式为y=kx+4,将(2,0)代入得:0=2k+4,∴k=﹣2,∴y=﹣2x+4,∵PQ与AB的夹角为45°,∴设PQ的解析式为y=﹣x+m,则P为(0,m),|AP|=4﹣m,由解得:Q(4﹣m,2m﹣4),过Q作QF⊥BC,则QF=2m﹣4,EF=m﹣2,∴在Rt△QEF中,由勾股定理得:QE==(m﹣2).∵QE=AP,∴(m﹣2)=(4﹣m),∴m=3,∴4﹣m=1,∴正方形PRQS的面积为1.如图2﹣1,当点P在点R的下方,∵tan∠RAQ==,∴AR=2RQ,∴AP=AR+RP=3RQ,∴AQ==RQ,∵BE=2,AB=4,∴AE===2,∵QE=AP,∴QE=3RQ,∴3RQ+RQ=2,∴RQ=,∴正方形PRQS的面积为.②当正方形PRQS的一边落在AE上,如图2﹣2,∵tan∠P AQ==,∴AS=2PS,∴AP==PS,∵QE=AP,∴QE=5PS,∵AE=AS+SQ+QE=2,∴2PS+PS+5PS=2,PS=,∴正方形PRQS的面积为,如图2﹣3,同理可得:AE=AR+RE=AR+QE﹣QR=(5+1)RP=2,∴PR=,∴正方形PRQS的面积为,当正方形PRQS与BC重合时,如图2﹣4,∵tan∠BAE==,∴AS=2SQ,∴AP=AS+SP=3SQ,∵sin∠AEB===,∵QE=QR,∴QE≠AP,∴这种情况不存在,故舍去,综上所述:正方形PRQS的面积为或1或或.20.四边形ABCD为正方形,点E为线段AC上一点,连接DE,过点E作EF⊥DE,交射线BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)如图,求证:矩形DEFG是正方形;(2)若AB=2,CE=2,求CG的长;(3)当线段DE与正方形ABCD的某条边的夹角是40°时,直接写出∠EFC的度数.(1)作EP⊥CD于P,EQ⊥BC于Q,证明Rt△EQF≌Rt△EPD,得到EF=ED,【分析】根据正方形的判定定理证明即可;(2)通过计算发现E是AC中点,点F与C重合,△CDG是等腰直角三角形,由此即可解决问题.(3)分两种情形考虑问题即可;【解答】(1)证明:作EP⊥CD于P,EQ⊥BC于Q,∵∠DCA=∠BCA,∴EQ=EP,∵∠QEF+∠FEC=45°,∠PED+∠FEC=45°,∴∠QEF=∠PED,在Rt△EQF和Rt△EPD中,,∴Rt△EQF≌Rt△EPD(ASA),∴EF=ED,∴矩形DEFG是正方形;(2)如图2中,在Rt△ABC中,AC=AB=4,∵EC=2,∴AE=CE,∴点F与C重合,此时△DCG是等腰直角三角形,易知CG=2;(3)①如图3,当DE与AD的夹角为40°时,∠DEC=45°+40°=85°,∵∠DEF=90°,∴∠CEF=5°,∵∠ECF=45°,∴∠EFC=130°,②如图4,当DE与DC的夹角为40°时,∵∠DEF=∠DCF=90°,∴∠EFC=∠EDC=40°,。
正方体正方形分类
正方体正方形分类正方体是一种具有六个相等的正方形面的立体图形。
正方体在生活和工作中都是非常常见的,例如在建筑、工程、游戏制作等领域都有广泛的应用。
而正方体中的正方形也是具有特殊意义的,一般可以根据不同的属性进行分类。
本文主要介绍正方体中的正方形分类方法及其应用。
一、正方形的分类方法正方体主要由六个面组成,每个面都是一个正方形,因此可以对这六个正方形进行分类。
以下是对它们进行分类的一些方法:(一)根据位置分类正方体中的正方形可以按位置分为三类:底面、侧面和顶面。
底面和顶面都是立方体上下的两个平行面,侧面则是连接着底面和顶面的四个正方形面。
这种分类方法主要用于制图时,以便于准确地表示立方体的尺寸和体积。
(二)根据大小分类正方体中的正方形可以按大小分为两类:大正方形和小正方形。
大正方形指的是底面和顶面,小正方形则是侧面。
通过这种分类方法可以更直观地了解到正方体的结构和比例关系。
(三)根据角度分类正方体中的正方形可以按角度分为两类:直角正方形和斜角正方形。
直角正方形指的是底面和顶面,斜角正方形则是侧面。
通过这种分类方法可以更直观地了解到正方体的倾斜程度和立体图形的倾斜方向。
二、正方形的应用正方体中的正方形在建筑、游戏、制图等领域都有广泛的应用。
以下是一些典型的应用场景:(一)建筑在建筑领域,立体图形通常用于建筑设计、室内设计、摆设绘图等。
正方体则是比较常见的建筑立体图形,因为它不仅形态简单,而且易于表示尺寸和体积关系。
在建筑设计中,正方体的正方形也常常用于表示房屋平面图与高程图。
(二)游戏游戏中的场景制作也会经常用到正方体和正方形。
通过不同尺寸和角度的正方体、正方形的组合,可以制作出各种大小、形状各异的建筑、道路、地形等。
相比其他立体图形,正方体的模型相对简单,且操作起来也较为便利。
(三)制图制图时也经常使用正方体和正方形。
例如在机械设计、电子线路或工程图的绘制中,需要用到三维模型来表示部件的立体形态。
正方形的性质及判定
正方形的性质及判定1•正方形的定义:有一组邻边相等,并且有一个角是直角的平行四边形叫做正方形.2.正方形的性质正方形是特殊的平行四边形、矩形、菱形•它具有前三者的所有性质:①边的性质:对边平行,四条边都相等.②角的性质:四个角都是直角.③对角线性质:两条对角线互相垂直平分且相等,•每条对角线平分一组对角.④对称性:正方形是中心对称图形,也是轴对称图形.平行四边形、矩形、菱形和正方形的关系:(如图)3.正方形的判定判定①:有一组邻边相等的矩形是正方形.判定②:有一个角是直角的菱形是正方形.―、正方形的性质【例1】正方形有条对称轴.【例2】已知正方形BDEF的边长是正方形ABCD的对角线,则S:S正方形BDEF正方形ABCD【例3】如图,已知正方形ABCD的面积为256,点F在CD上,点E在CB的延长线上,且AE丄AF,AF=20,则BE的长为【例4】如图,在正方形ABCD中,E为AB边的中点,G,F分别为AD,BC边上的点,若AG=1,BF=2,Z GEF=90。
,则GF的长为.【例5】将n 个边长都为1cm 的正方形按如图所示摆放,点A,A ,…,A 分别是正方形的中心,则n 个正12n方形重叠形成的重叠部分的面积和为【例6】如图,正方形ABCD 中,O 是对角线AC,BD 的交点,过点O 作OE 丄OF ,分别交AB ,CD 于E ,F ,若AE =4,CF =3,则EF =【例7】如图,正方形ABCD 的边长为2cm ,以B 为圆心,BC 长为半径画弧交对角线BD 于点E ,连接CE ,P 是CE 上任意一点,PM 丄BC 于M ,PN 丄BD 于N ,则PM+PN的值为【例8】如图,E 是正方形ABCD 对角线BD 上的一点,求证:AE =CE .A EB FD例11】 【例9】如图,P 为正方形ABCD 对角线上一点,PE 丄BC 于E ,PF 丄CD 于F .求证:AP=EF .【例10】如图所示,正方形ABCD 对角线AC 与BD 相交于O ,MN 〃AB ,且分别与AO 、BO 交于M 、N .试探讨BM 与CN 之间的关系,写出你所得到的结论的证明过程.如图,已知P 是正方形ABCD 内的一点,且A ABP 为等边三角形,那么Z DCP =【例12】已知正方形ABCD ,在AD 、AC 上分别取E 、F 两点,使ED :AD =2FC :AC ,求证:A BEF 是等腰直角三角形.【例13】如图,已知E、F分别是正方形ABCD的边BC、CD上的点,AE、AF分别与对角线BD相交于M、N,若Z EAF=50。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矩形、菱形、正方形、中心对称和中心对称图形
【课内四基达标】
1.判断题
(1)矩形的两条对角线相互平分.( )
(2)如果一个平行四边形的一组邻边长为5cm和12cm,一条对角线的长是13cm,那么这
个平行四边形一定是矩形.( )
(3)对角线互相垂直相等的四边形是菱形.( )
(4)一条对角线平分一组对角的平行四边形是菱形.( )
(5)一组对边平行,一个角是直角的四边形是矩形.( )
(6)两组对边分别相等,对角线也相等的四边形是矩形.( )
(7)有两边相等的平行四边形是菱形.( )
(8)菱形的一个顶点到它所对应的两边的距离相等.( )
(9)如果菱形的一条对角线与一边相等,那么这个菱形的一个锐角为60°( )
(10)菱形的两条对角线把菱形分成四个全等的直角三角形( )
2.选择题
(1)如果一个四边形是中心对称图形,那么这个四边形是( )
A.正方形 B.矩形 C.菱形 D.平行四边形
(2)过平行四边形ABCD的顶点A、C分别作对角线的BD的垂线,垂足是E、F,则四边
形AECF是( )
A.任意四边形 B.平行四边形
C.矩形 D.菱形
(3)下列命题中,不正确的是( )
A.既是矩形又是菱形的四边形是正方形
B.正方形比菱形多具备的一个条件是对角线相等
C.正方形具备而矩形不具备的一个条件是对角线互相垂直
D.对角线相等且互相垂直的四边形是正方形
(4)平行四边形的四个内角平分线围成的图形是( )
A.正方形 B.菱形 C.矩形 D.非特殊平行四边形
(5)设P为矩形ABCD内部的一点,∠APD=90°,∠CPB=60°,PA=3,PD=4,PC=5,则PB
的长是( )
A.23 B.5 C.25 D.42
(6)短形的一条长边的中点与另一条长边构成等腰直角三角形,已知矩形的周长为36,
则面积是( )
A.24 B.36 C.72 D.80
(7)设等边△AEF与菱形ABCD的一个顶点A公共,且边长相等,三角形另二个角的顶点
E和F分别在菱形的边BC和CD上,则∠BAD的度数是( )
A.80° B.90° C.100° D.120
(8)已知菱形的周长是高的8倍,则菱形较大的一个角是( )
A.100° B.120° C.135° D.150°
(9)由已知矩形的一个顶点向其所对的对角线引垂线,该垂线分直角为3∶1两部分,则
垂线与另一条对角线的夹角是( )
A.22.5° B.30° C.45° D.60°
(10)一个菱形的两条对角线之差为4cm,面积为6厘米2,则菱形的边长为( )
A.23cm B.3cm C.10cm D.4cm
3.填空题
(1)矩形的对角线具有的性质是______________________________
(2)菱形的对角线具有的性质是______________________________
(3)矩形ABCD中,对角线的交点为O,∠AOB=60°,AD=5cm,则AC=________,AB=________
(4)在菱形ABCD中,∠ABC=120°,AB=10cm,则AC=________,BD=________
(5)已知矩形一边的长为12cm,一条对角线长为13cm,那么这个矩形的面积是________
(6)已知矩形ABCD的周长为24cm,点M是DC中点,∠AMB=Rt∠,则
AB=________,AD=________
(7)如下图,在矩形ABCD中,AE⊥BD,∠DAE=3∠BAE,则∠EAC的度数是________
(8)如下图,菱形ABCD中AE⊥BC,且BE=EC,则∠B=________,∠C=________
(9)已知菱形的边长为6cm,一个内角为60°,则面积是________
(10)已知菱形的面积为48cm2,两对角线长的比为1∶3,则菱形的边长等于________
4.在平行四边形ABCD的对角线上取AF=CE,作EH⊥BC于H,FG⊥AD于G,求证:GH与
EF互相平分.
5.如下图,EF、GH为两条互相垂直的直线,分别交正方形于E、F、G、H,求证:EF=GH.
6.如下图所示,AD∥BC,AC⊥BC于C,从B引直线交AD于D,交AC于E,且使ED=2AB,
求证:∠ABC=3∠DBC.
7.如下图所示,在等腰直角△ABC中,D是斜边AB的中点,过AB上任一点P作PE⊥AC
于E,PF⊥BC于F,求证:(1)DE=DF;(2)DE⊥DF.
8.如下图所示,在正方形ABCD内取一点K,以AK为一边作正方形AKLM,使L、M、D在
AK的同旁,连接BK和DM.求证BK=DM.
9.如下图所示,正方形ABCD原对角线相交于O,MN∥AB且分别与AO、BO交于M、N.求
证:(1)B=CN;(2)BM⊥CN.
10.在Rt△ABC中,CF为直角的平分线,FD⊥CA于D,FE⊥CB于E,求证:CDFE为正方
形.
【能力素质提高】
1.如下图,AD是△ABC的角平分线,DE⊥AB、DH⊥AC、EG⊥AC、HF⊥AB,EG与FH交于
P,求证:四边形DEPH是菱形.
2.如下图,过正方形ABCD的D点作DE∥AC,CE=AC,求证:∠E=30°.
3.如下图,Rt△ABC中,∠ACB=Rt∠,CD⊥AB于D,AE是∠BAC的平分线交CD于F,过
E作EG⊥AB于G,求证:四边形FGEC是菱形.
4.已知:如图,矩形ABCD的对角线交于点O,DE平分∠ADC,交BC于点E,交AC于点
P,∠BDE=15°.
求证:△PEO是等腰三角形.
5.已知:如图,AB>AC,CF、BE分别为AB、AC边上的高.
求证:AB+BE>AC+CF.
6.已知:如图,P是正方形ABCD内一点,且PA∶PB∶PC=1∶2∶3.
求∠APB的度数.
7.已知:如图,四边形ABCD和OMNE都是边长为1的正方形.正方形OMNE的顶点O是正
方形ABCD的对角线的交点.
求证:当正方形OMNE绕点O旋转时,两个正方形的重叠部分的面积是一个定值.
8.已知:如图,四边形ABCD中,∠ABC=∠ADC=90°,M是AC中点,MN⊥BD,并且与
MD的平行线BN交于点N.
求证:四边形BNDM是菱形.
【渗透拓展创新】
当一个矩形的短边a和长边b满足下面的比例关系时:
a∶b=b∶(a+b) ①
就像为黄金矩形.
黄金矩形是一种非常美丽和令人兴奋的数学对象,它广泛地出现在艺术、建筑、人体和
自然界中,心理学的测试表明:在所有形状的矩形中,黄金矩形是最令人赏心悦目的.现在,
我们介绍怎样利用一个正方形作出黄金矩形.
(1)作正方形ABCD. (2)取AB、CD的中点N、M,连结NM. (3)连结NC. (4)延长AB
至E,使NE=NC. (5)过E作AE的垂线,交DC的延长线于F.则AEFD为一个黄金矩形,试
证明之.
2.在生产实际中,要把一根圆形的木头锯成矩形的木梁,问应该怎样下锯才能使矩形的
面积最大?
【中考真题演练】
1.(四川省中考题)已知:如图,在矩形ABCD中,AE⊥BD,∠DAE=3∠BAE.
求∠EAC的度数.
2.(太原市中考题)已知:如图,E为正方形ABCD的BC边上一点,CF平分∠DCG,AE⊥
EF.
求证:AE=EF.
3.(江西省中考题)已知:如图,边长为1的正方形ABCD中,M、N分别是BC、CD上的
点.
(1)若MN=BM+ND,求证∠MAN=45°.
(2)若△MNC的周长为2,求∠MAN.