遗传学(终极版)
遗传学 ppt课件

染色体数目改变与人类疾病
常染色体的非整倍性改变的疾病
先天愚型(又称Down综合征,21三体综合征) Patau综合征(又称13三体综合征) Edwards综合征(又称18三体综合征)
染色体数目改变与人类疾病
性染色体的非整倍性改变的疾病
综合征名称
Turner(特纳)综合征(又 称先天性卵巢发育不全) X三体综合征 Klinefelter (克氏)综合征 (又称小睾丸症)
若发生双交换,使F'因子上的供体细菌
普遍性转导和局限性转导的比较
比较项目
转导的发生 转导噬菌体形成 转导的基因 转导噬菌体获得 自然发生
普遍性转导
错误的装配 供体菌的几乎任何一个基因 可通过裂解反应和诱导溶源性细菌
局限性转导
人工诱导如UV等 原噬菌体不精确切除 多为原噬菌体邻近两端的供体基因 只能通过诱导溶源性细菌
2n=4X=44 =11 Ⅳ
2n=2X=22 =11Ⅱ
2n=3X=33 =11 Ⅲ
2n=2X=22 =11Ⅱ
异源多倍体的应用
小黑麦具有抗逆能力强、穗大、籽粒蛋白质 含量高和生长势强等优点
普通小麦 (2n = 42Ⅰ) × AABBDD(21 Ⅱ ) 黑麦 (2n = 14Ⅰ) RR( 7Ⅱ )
不育杂种 ABDR(28Ⅰ)
多因子的自由组合
杂交所包括的基因对数与F2基因型和表型种类的关系
杂交中包括 的基因对数 F1杂种形成 的配子种类 F1配子可能的 组合数 F2的基因 型种类 显性完全时F2 的表型种类 F2表现型 分离比例
1 2 3 4
2 4 8 16
4 16 64 256
3 9 27 81
2 4 8 16
遗传学所有重点内容总结

第一章绪论1什么是遗传,变异?遗传、变异与环境的关系?(1).遗传(heredity):生物亲子代间相似的现象。
(2).变异(variation):生物亲子代之间以及子代不同个体之间存在差异的现象。
遗传和变异的表现与环境不可分割,研究生物的遗传和变异,必须密切联系其所处的环境。
生物与环境的统一,这是生物科学中公认的基本原则。
因为任何生物都必须具有必要的环境,并从环境中摄取营养,通过新陈代谢进行生长、发育和繁殖,从而表现出性状的遗传和变异。
2.生物进化和新品种选育的三大因素是遗传,变异和选择四、近交与杂交在育种上的应用1、近亲繁殖在育种上的应用固定优良性状保持个别优秀个体的血统发现并淘汰隐性有害(不良)基因2、杂交在育种和生产上的应用在育种上,利用杂交组合不同品种、或品系、或类群间的优良特性,培育具有多种特点的优良品种在生产上,主要利用杂交产生的杂种优势杂种优势理论:显性假说:认为双亲对很多座位上的不同等位基因的纯合体形成杂种后,由于显性有利基因的积聚,遮盖了隐性有害基因,从而表现出超显性假说:认为双亲基因型异质结合所引起基因间互作杂种优势等位基因间无显隐性关系,但杂合基因间的互作> 纯合基因明显杂种优势特点:杂交(h y b r i d i z a t i o n):指通过不同个体之间的交配而产生后代的过程近交(i n b r e e d i n g):亲缘关系相近个体间杂交,亦称近亲交配近亲系数(F):是指个体的某个基因座上两个等位基因来源于共同祖先某个基因(即得到一对纯合的,而且遗传上等同的基因)的概率。
近交与杂交的遗传效应:近交增加纯合子频率,杂交增加杂合子频率。
近交降低群体均值,杂交提高群体均值。
近交使群体分化,杂交使群体一致。
近交加选择能加大群体间基因频率的差异,从而提高杂种优势。
近交产生近交衰退,杂交产生杂种优势数量性状遗传的多基因假说多基因假说要点:1.决定数量性状的基因数目很多;2.各基因的效应相等;3.各个等位基因的表现为不完全显性或无显性或有增效和减效作用;4.各基因的作用是累加性的。
现代遗传学原理(精)

遗 传 学 的 先 驱 孟 德 尔
遗传因子的分离和自由组合定律
三、发展阶段
1、细胞遗传学时期 (1900-1940)
摩尔根(Morgan T.H),1910
遗传的第三定律——连锁遗传规律
2、微生物和生化遗传学时期 (1941—1960)
华生(Watson JD)和克里克(Crick FHC) DNA双螺旋结构模型,1953
一、推动基础科学的发展
弄清生物进化的机理 揭开生命的本质
二、指导工农业生产
动植物新品种 生物能源 环境保护
转基因动物
三、保障人类健康
疾病防治 生物制药 基因治疗
重症综合性免疫缺乏症(SCID)
生物发酵
SARS病毒
第四节
遗传学的研究
一、遗传学研究的内容 二、遗传学研究的分支 三、遗传学研究的对象 四、遗传学研究的任务 五、遗传学研究的特点
19世纪下半叶至20世纪初
三、发展阶段
20世纪初以后
一、启蒙阶段
希波克拉底(Hippocrates) 亚里斯多德(Aristotle),公元前 拉马克(Lamarck JB)——用进废退,1809 达尔文(Darwin C)——物种起源,1859
二、建立阶段
孟德尔(Mendel GJ)——两大定律,1866 贝特生(Bateson W) ——遗传学,1906 约翰生(Johansen WL)——基因,1909
一、基本要求
课前预习,课堂提问 课后复习,完成作业 认真对待实验课 作业和实验记入成绩 自学与讨论相结合 加强师生、同学间交流。
二、主要参考书目
遗传学最全名词解释

遗传与变异:生物通过繁殖的方式来繁衍种族,保持生命在世代间的连续,保持子代与亲代的相似与类同,这种现象叫遗传,遗传的本质就是遗传物质通过不断地复制和传递,保持亲代与子代间的相似与类同,与此同时,亲代与子代之间,子代个体之间总存在着不同程度的差异,包括环境差异与遗传物质差异,这种差异就是变异。
1、性状:在遗传学上,把生物表现出来的形态特征和生理特征统称为性状。
2、相对性状:同一性状的两种不同表现形式叫相对性状。
3、显性性状:孟德尔把F1表现出来的性状叫显性性状,F1不表现出来的性状叫隐性性状。
4、性状分离现象:孟德尔把F2中显现性状与隐性性状同时表现出来的现象叫做性状分离现象。
5、等位基因与非等位基因:等位基因是指位于同源染色体上,占有同一位点,但以不同的方式影响同一性状发育的两个基因。
非等位基因指位于不同位点上,控制非相对性状的基因。
6、自交:F1代个体之间的相互交配叫自交。
7、回交:F1代与亲本之一的交配叫回交。
8、侧交:F1代与双隐性个体之间的交配叫侧交。
9、基因型和表型基因型是生物体的遗传组成,是性状得以表现的内在物质基础,是肉眼看不到的,要通过杂交试验才能检定。
如cc,CC,Cc。
表型是生物体所表现出来的性状,是基因型和内外环境相互作用的结果,是肉眼可以看到的。
如花的颜色性状。
10、纯合体、杂合体由两个同是显性或同是隐性的基因结合的个体,叫纯合体,如CC,cc。
由一个显性基因与一个隐性基因结合而成的个体,叫杂合体,如Cc。
有丝分裂减数分裂A、一次细胞分裂,产生两个子细胞两次细胞分裂,产生四个子细胞B、染色体的数目不变(2n)染色体的数目减半(n)C、染色体不配对同源染色体在前期Ⅰ配对D、没有重组同源染色体间发生交换,产生重组E、是体细胞产生体细胞的分裂方式是性母细胞产生配子的分裂方式F、前期短,每一染色体含两条染色单体前期Ⅰ长而复杂,每一二价体含四条染色单体G、中期着丝粒排列在赤道板上中期Ⅰ二价体排列在赤道板上,着丝粒并列在赤道板的两侧H、后期着丝粒纵裂为二,染色单体分离着丝粒不分裂,同源染色体的分离I、末期染色体数为2n,每个染色体含有一条染色单体末期Ⅰ染色体数为n,每个染色体含有两条染色单体显性上位与隐性上位:两对基因共同控制性状的表现,但其中一对基因能遮盖另一对基因的表现,这种作用称上位作用,如果起上位作用的基因是显性基因,则叫显性上位;如果起上位作用的基因是隐性基因,则叫隐性上位。
总结遗传学

遗传学第1章1、园林植物的概念:园林植物是指具有一定观赏价值,使用于室内外布置以美化环境并丰富人们生活的植物,是观赏植物的泛称,并简称或统称为花卉。
2、西方人士称誉中国为园林之母,即指中国野生和栽培的园林植物资源极为丰富,曾对世界园艺事业作出了重要贡献。
3、园林植物遗传学:研究观赏植物遗传变异的基本规律。
4、遗传:子代和亲代相似的现象就是遗传。
5、变异:变异是指亲代与子代之间、子代个体之间的差异。
6、遗传的变异:: (1)基因的重组和互作(2)基因分子结构的改变(3)染色体结构和数量的变化(4)细胞质遗传物质的改变7、品种:是经人类培育选择创造的、经济性状和生物学特性符合人类生产、生活要求的,相对整齐一致而能稳定遗传的植物群体。
8、品种特性:特异性;一致性;稳定性;地区性;时间性第2章1、染色体:是细胞核中遗传物质的主要载体,它是由DNA蛋白质和少量RNA组成,易被碱性染料染色的线状结构。
2、一般染色体的形态:着丝粒,染色体臂,次缢痕,随体,端粒。
3、同源染色体:减数分裂时,配对的染色体一个来自父方一个来自母方,形态大小相似,其上所载的基因序列基本相同。
4、染色体的结构:(1)核小体(2)螺线体(3)超螺线体(4)染色体5、有丝分裂和无丝分裂的区别:(1)染色体数目不变——减半(2)体细胞——性母细胞(3)形成细胞个数不同 2 ―― 4 (4)DNA复制一次,细胞分裂一次——两次6、有丝意义:既维持了个体的正常生长发育,也保证了物种的连续性、稳定性。
7、减数分裂意义(1)在世代间,保证了染色体数目的恒定性。
为后代的正常发育,性状遗传提供了物质基础。
同时,又保证了物种的相对稳定性。
(2)在后期I,同源染色体随机分离,产生2n种方式;粗线期非姊妹染色单体发生交换产生了遗传物质的重新组合,为生物的变异提供了重要的物质基础。
8、高等植物雌雄配子体的形成和受精(了解,不过老师仔细讲了一遍,不知道考不考)第3章1、等位基因:在同源染色体上占据相同位置、控制相对性状的一对基因。
遗传学幻灯ppt课件

2024/1/26
肿瘤遗传学基础
简要介绍肿瘤遗传学的基本概念和原理,包括基因突变、基因多 态性等与肿瘤发生发展的关系。
遗传因素在肿瘤中的作用
详细阐述遗传因素在肿瘤发生、发展和转移中的作用,如抑癌基因 失活、原癌基因激活等。
肿瘤遗传咨询与筛查
探讨肿瘤遗传咨询的意义和内容,以及针对不同人群的肿瘤遗传筛 查策略和方法。
遗传学定义及研究领域
研究生物遗传信息传递、表达 和调控的科学。
02
研究领域
01
遗传学定义
2024/1/26
包括基因结构、功能、表达调控 ,以及生物遗传变异、进化等方
面。
5
遗传物质基础:DNA与RNA
03
DNA
RNA
DNA与RNA的关系
脱氧核糖核酸,是生物体主要的遗传物质 ,存在于细胞核中。
核糖核酸,在蛋白质合成过程中起重要作 用,存在于细胞质中。
CRISPR-Cas9技术应用
基因功能研究、基因治疗、农作物遗传改良等。
2024/1/26
32
合成生物学在遗传学领域前景展望
合成生物学在遗传学中的角色
通过设计和构建人工生物系统,实现对生命过程的精确控制和改造。
合成生物学在遗传学中的应用前景
设计新型生物药物、创建人工生态系统、实现绿色能源生产等。
2024/1/26
母性影响
02
母亲通过细胞质遗传对后代产生影响,如线粒体疾病的母系遗
传等。
基因互作与环境因素
03
细胞核外遗传与细胞核内遗传相互作用,同时受环境因素影响
,共同决定生物性状的表现。
13
03
基因突变、重组与表达调 控
2024/1/26
遗传学(朱军_主编)_个人整理的复习资料

第一章绪论一、遗传学研究方向:遗传学是研究生物遗传和变异的科学,直接探索生命起源和进化的机理。
同时它又是一门紧密联系生产实际的基础科学,是指导植物、动物和微生物育种工作的理论基础;并与医学和人民保健等方面有着密切的关系。
*遗传:是指亲代与子代相似的现象。
如种瓜得瓜、种豆得豆。
*变异:是指亲代与子代之间、子代个体之间存在着不同程度差异的现象。
第四章孟德尔遗传孟德尔认为父母本性状遗传不是混合,而是相对独立地传给后代,后代还会分离出父母本性状。
于是提出:①.分离规律;②.独立分配规律。
验证分离定律的方法:1.测交法:也称回交法。
即把被测验的个体与隐性纯合基型的亲本杂交,根据测交子代(Ft)的表现型和比例测知该个体的基因型。
2.自交法:F2植株个体通过自交产生F3株系,根据F3株系的性状表现,推论F2个体的基因型。
3.F1花粉鉴定法:杂种细胞进行减数分裂形成配子时,由于各对同源染色体分别分配到两个配子中,位于同源染色体的等位基因随之分离,进入不同配子。
独立分配的实质:1.控制两对性状的等位基因,分布在不同的同源染色体上;2.减数分裂时,每对同源染色体上等位基因发生分离,而位于非同源染色体上的基因,可以自由组合。
卡方测验:进行χ2测验时可利用以下公式(O是实测值,E是理论值,∑是总和),即:显性现象的几种表现(重点)1. 完全显性:F1表现与亲本之一相同,而非双亲的中间型或者同时表现双亲的性状;2. 不完全显性:F1表现为双亲性状的中间型。
3. 共显性:F1同时表现双亲性状。
4. 镶嵌显性:F1同时在不同部位表现双亲性状。
非等位基因间的相互作用(必考,概念,F2代比例)1.互补作用:两对独立遗传基因分别处于纯合显性或杂合显性状态时共同决定一种性状的发育;当只有一对基因是显性、或两对基因都是隐性时,则表现为另一种性状。
2.积加作用:两种显性基因同时存在时产生一种性状,单独存在时能分别表现相似的性状,两种基因均为隐性时又表现为另一种性状。
遗传学复习重点(最新)+试题库12

遗传学复习重点(最新)+试题库12第一章绪论1.什么是遗传,变异?遗传、变异与环境的关系?遗传与变异的关系?(1).遗传(heredity):在生物的繁殖过程中,亲代与子代间在性状上总是表现相似的现象。
(2).变异(variation):在生物的繁殖过程中,亲代与子代之间以及子代不同个体之间存在差异的现象。
(3)遗传和变异的表现与环境不可分割,研究生物的遗传和变异,必须密切联系其所处的环境。
生物与环境的统一,这是生物科学中公认的基本原则。
因为任何生物都必须具有必要的环境,并从环境中摄取营养,通过新陈代谢进行生长、发育和繁殖,从而表现出性状的遗传和变异。
(4)在整个生物界,遗传是相对的、保守的,而变异是绝对的、发展的,遗传和变异是相互制约又相互依存的。
在生物进化的过程中,如果没有遗传,生物就不能把种的特征传递下去,任何物种都不可能存在;没有变异物种就不能够适应急剧变化的环境,生物就是在遗传与变异这对矛盾的斗争和转化中不断向前发展进化的。
因此,遗传和变异是生物进化发展和物种形成的内在因素。
2. 什么是遗传学?遗传学:是研究生物遗传、变异及其规律的科学。
3.遗传学研究的对象和任务是什么?(1)遗传学研究的对象是:植物、动物、微生物以及人类;(2)遗传学研究的任务是:阐明生物遗传和变异的现象及其规律,探索遗传和变异的物质基础及其机制,指导动物、植物、微生物的育种实践,提高医学水平,防治遗传疾病,为人类健康服务。
第二章遗传的细胞学基础1.同源染色体和非同源染色体的概念?答:(1)同源染色体:体细胞内形态、结构、功能相似的的一对染色体;(2)异源染色体:这一对染色体与另一对形态结构不同的染色体,互称为非同源染色体。
2.染色体和姐妹染色单体的概念,关系?染色体:在细胞分裂过程中,染色质便卷缩而呈现为一定数目和形态的染色体姐妹染色单体:有丝分裂中,由于染色质的复制而形成的物质3.染色质和染色体的关系?染色体和染色质实际上是同一物质在细胞分裂周期过程中所表现的不同形态。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章绪论1、遗传学:是研究生物遗传和变异的科学遗传:亲代与子代相似的现象就是遗传。
如“种瓜得瓜、种豆得豆”变异:亲代与子代、子代与子代之间,总是存在着不同程度的差异,这种现象就叫做变异。
2、遗传学研究就是以微生物、植物、动物以及人类为对象,研究他们的遗传和变异。
遗传是相对的、保守的,而变异是绝对的、发展的。
没有遗传,不可能保持性状和物种的相对稳定性;没有变异,不会产生新的性状,也就不可能有物种的进化和新品种的选育。
遗传、变异和选择是生物进化和新品种选育的三大因素。
3、1953年瓦特森和克里克通过X射线衍射分析的研究,提出DNA分子结构模式理念,这是遗传学发展史上一个重大的转折点。
4.(分离规律)(Mendel’s first law) (孟德尔第一定律)一对基因在杂合状态互不干扰,保持相互独立,在配子形成时,各自分配到不同的配子中去。
正常情况下,配子分离比为1∶1,F2代基因型比是1∶2∶1,F2代表型比为3∶1。
5.(独立分配规律,自由组合规律) (孟德尔第二定律)控制两对性状的两对等位基因,分别位于不同的同源染色体上。
在减数分裂形成配子时,每对同源染色体上的每一对等位基因各自独立分离,而位于非同源染色体上的基因之间则自由组合。
6.遗传的第三定律------连锁遗传规律1910年以后,摩尔根(Morgan TH)同样发现性状连锁现象,并提出--连锁遗传规律。
7.遗传学的诞生和发展第二章遗传的物质基础1.染色质:在细胞尚未进行分裂的核中,可以见到许多由于碱性染料而染色较深的、纤细的网状物,这就是染色质。
2.染色体:含有许多基因的自主复制核酸分子。
细菌的全部基因包容在一个双股环形DNA 构成的染色体内。
真核生物染色体是与组蛋白结合在一起的线状DNA双价体;整个基因组分散为一定数目的染色体,每个染色体都有特定的形态结构,染色体的数目是物种的一个特征。
3.染色单体:由染色体复制后并彼此靠在一起,由一个着丝点连接在一起的姐妹染色体。
4.细胞的膜体系包括哪些膜结构?细胞质里包括哪些主要的细胞器?各有什么特点?答:细胞的膜体系包括膜结构有:细胞膜、线粒体、质体、内质网、高尔基体、液泡、核膜。
细胞质里主要细胞器有:线粒体、叶绿体、核糖体、内质网、中心体。
5.一般染色体的外部形态包括哪些部分?染色体形态有哪些类型?答:一般染色体的外部形态包括:着丝粒、染色体两个臂、主溢痕、次溢痕、随体。
一般染色体的类型有:V型、L型、棒型、颗粒型。
6.有丝分裂和减数分裂有什么不同?用图表示并加以说明。
答:有丝分裂只有一次分裂。
先是细胞核分裂,后是细胞质分裂,细胞分裂为二,各含有一个核。
称为体细胞分裂。
减数分裂包括两次分裂,第一次分裂染色体减半,第二次染色体等数分裂。
细胞在减数分裂时核内,染色体严格按照一定的规律变化,最后分裂成为4个子细胞,发育成雌性细胞或者雄性细胞,各具有半数的染色体。
也称为性细胞分裂。
减数分裂偶线期同源染色体联合称二价体。
粗线期时非姐妹染色体间出现交换,遗传物质进行重组。
双线期时各个联会了的二价体因非姐妹染色体相互排斥发生交叉互换因而发生变异。
有丝分裂则都没有。
减数分裂的中期I 各个同源染色体着丝点分散在赤道板的两侧,并且每个同源染色体的着丝点朝向哪一板时随机的,而有丝分裂中期每个染色体的着丝点整齐地排列在各个分裂细胞的赤道板上,着丝点开始分裂。
细胞经过减数分裂,形成四个子细胞,,染色体数目成半,而有丝分裂形成二个子细胞,染色体数目相等。
9.有丝分裂和减数分裂意义在遗传学上各有什么意义在遗传学上?l 有丝分裂的遗传学意义:(1)维持个体的正常生长和发育。
使子细胞获得与母细胞同样数量和质量的染色体(2)保证了物种的连续性和持续性。
均等式的细胞分裂,使每一个细胞都得到与当初受精卵所具有的同一套遗传性息l 减数分裂的遗传学意义:(1)维持物种染色体数目的稳定性(2)为生物的变异提供了重要的物质基础3.简述DNA双螺旋结构及其特点?答:根据碱基互补配对的规律,以及对DNA分子的X射线衍射研究的成果,提出了DNA双螺旋结构。
特点:⑴. 两条多核苷酸链以右手螺旋的形式,彼此以一定的空间距离,平行的环绕于同一轴上,很像一个扭曲起来的梯子。
⑵. 两条核苷酸链走向为反向平行。
⑶. 每条长链的内侧是扁平的盘状碱基。
⑷. 每个螺旋为3.4nm长,刚好有10个碱基对,其直径为2nm。
⑸. 在双螺旋分子的表面有大沟和小沟交替出现。
第三章孟德尔遗传定律第四章连锁与交换规律第一节连锁与交换*连锁遗传:同一染色体上的某些基因以及它们所控制的性状结合在一起传递的现象。
1906年英国学者贝特森(Bateson)和潘耐特(Pannett)研究香豌豆两对性状遗传时,首先发现的。
一、连锁与交换的遗传现象连锁现象是1906年英国学者贝特森(Bateson)和潘耐特(Pannett)研究香豌豆两对性状遗传时,首先发现的。
后来,摩尔根等发现连锁分二类:完全连锁和不完全连锁。
香豌豆两对相对性状杂交试验.花色:紫花(P)对红花(p)为显性;花粉粒形状:长花粉粒(L)对圆花粉粒(l)为显性。
1. 紫花、长花粉粒×红花、圆花粉粒.2. 紫花、圆花粉粒×红花、长花粉粒.杂交组合1:紫花、长花粉粒×红花、圆花粉粒;试验结果:1、F1两对相对性状均表现为显性,F2出现四种表现型;2、F2四种表现型个体数的比例与9:3:3:1相差很大,并且两亲本性状组合类型(紫长和红圆)的实际数高于理论数,而两种新性状组合类型(紫圆和红长)的实际数少于理论数。
杂交组合2:紫花、圆花粉粒×红花、长花粉粒;试验结果:1、F1两对相对性状均表现为显性,F2出现四种表现型;2、F2四种表现型个体数的比例与9:3:3:1相差很大,并且两亲本性状组合类型(紫圆和红长)的实际数高于理论数,而两种新性状组合类型(紫长和红圆)的实际数少于理论数。
(一)完全连锁:位于同一条染色体上的非等位基因,在形成配子过程中,作为一个整体随染色体传递到配子中,同源染色体之间不发生染色体片段的交换,杂合体在形成配子时,只有亲本组合类型的配子。
完全连锁在生物界很少见,只在雄果蝇(XY)和雌家蚕(ZW)中发现(注意雌雄连锁不同)。
霍尔丹定律:凡是较少发生交换的个体必定是异配性别的个体。
例如:果蝇的体色、翅膀的遗传P 灰身残翅BBvv♂×bbVV♀黑身长翅↓F1 灰身长翅BbVv ♂× bbvv黑身残翅↓bbVv BbvvF2 黑身长翅灰身残翅(亲本类型)因为F1 BbVv♂在形成配子时,只形成了bV和Bv两种配子,即bV完全连锁,Bv也完全连锁。
果蝇的体色、和眼睛颜色遗传:P 灰身紫眼b+b+prpr × bbpr+pr+黑身红眼↓F1 b+bpr+pr × (bbprpr黑身紫眼测交)↓测交后代灰身紫眼b+bprpr:bbpr+pr黑身红眼拟等位基因:完全连锁的、控制同一形性状的非等位基因。
(二)不完全连锁:位于同源染色体上的非等位基因,在形成配子时,除有亲型配子外,还有少数重组型配子产生。
(同源染色体的非姊妹染色单体发生交换)例如:果蝇体色、翅膀的遗传:P bbVV×BBvv → F1 BbVv♀× bbvv♂黑长灰残↓F2 Bbvv bbVv BbVv bbvv0.42 0.42 0.08 0.08香豌豆花色、花粉粒形状遗传:P 紫花、长花粉粒×红花、圆花粉粒PPLL ↓ ppllF1紫花、长花粉粒PpLl↓ 自交F2紫、长紫、圆红、长红、圆总数P_L_ P_ll ppL_ ppll实际个体数4831 390 393 1338 6952按9:3:3:1推算的理论数3910.5 1303.5 1303.5 434.5 6952从上图看出,F2代也出现四种表现型,但二种新组合的表现型比理论推算少得多,即象亲本组合的实际数偏多,而重新组合的实际数偏少。
P 紫花、圆花粉粒×红花、长花粉粒PPll ↓ ppLLF1紫花、长花粉粒PpLl↓自交F2紫、长紫、圆红、长红、圆总数P_L_ P_ll ppL_ ppll实际个体数226 95 97 1 419按9:3:3:1推算的理论数235.8 78.5 78.5 26.2 419这二个试验的结果都不能用独立分配规律来解释。
亲组合:亲代原有的组合。
重组合:亲代没有的组合。
二、交叉与交换的关系1、同源染色体在减数分裂配对时,偶尔在相应的位置发生断裂,然后错接,造成同源染色体中的非姐妹染色单体之间染色体片段的互换,这个过程叫交换或重组2、每发生一次有效交换,形成1个交叉,将产生两条重组染色体,两条非重组染色体(亲染色体),含有重组染色体的配子叫重组合配子,含有非重组染色体的配子叫亲组合配子。
三、交换值及其测定(一)重组值(交换值)的概念重组值(率):指重组型配子数占总配子数的百分率。
有时也叫交换值。
1、每1次交换,只涉及四条非姊妹染色单体中的2条。
2、发生交换的性母细胞的百分率是重组合配子百分率的2倍。
因此如果交换值为4%,则表明有8%的性母细胞发生了交换。
3、重组值的范围0—50%之间,重组值越大,基因之间连锁的程度越小。
(二)重组值(Rf)的测定1、测交法:用于异花授粉植物是易进行。
测交后代(Ft)的表现型的种类和比例直接反映被测个体(如F1)产生配子的种类和比例。
即算公式:重组值= 交换型的个体数*100%测交后代个体总数赫钦森(C. B. Hutchinson, 1922)玉米色粒遗传的测交试验:籽粒颜色:有色(C)、无色(c);籽粒饱满程度:饱满(Sh)、凹陷(sh)相引组(相):杂交的双亲是显性基因与显性基因相连锁,隐性基因与隐性基因想相连锁的杂交组合。
相斥(组)相:杂交的双亲中,一个是显性基因与隐性基因相连锁,另一个是相对应的隐性基因与显性基因相连锁的杂交组合。
C-Sh相引相的重组值为3.6%;C-Sh相斥相的重组值为3.0%。
相引相测交试验与相斥相测交试验结果分析:(1)F1产生的四种类型配子比例不等于1:1:1:1;(2)亲本型配子比例高于50%,重组型配子比例低于50%;(3)亲本型配子数基本相等,重组型配子数也基本相等。
根据实验计算的重组值(Rf)是估算值,其标准误差Se的计算公式是:Se= n:是总配子数或测交个体总数。
相引组:Se= =±?2、自交法:适用于自花授粉的植物。
(1)平方根法:不同的杂交组合计算方法不同相引组:AB/AB×ab/ab 相斥组:Ab/Ab×aB/aBF1基因型:AB/ ab Ab/ aBF2表型4种:A-B-;A-bb;aaB-;aabbF2后代数量:a1 a2 a3 a4在相引组中,AB和ab配子是亲型配子,且AB=ab的频率=q.亲型配子的总频率=AB+ab=2q重组配子的频率(重组值)=1-2q在相斥组中,AB和ab配子是重组型配子。