小学四年级数学奥数竞赛试卷及答案

合集下载

【经典】小学四年级奥数竞赛数学竞赛试卷及答案图文百度文库

【经典】小学四年级奥数竞赛数学竞赛试卷及答案图文百度文库

【经典】小学四年级奥数竞赛数学竞赛试卷及答案图文百度文库一、拓展提优试题1.有一个学生在做计算题时,最后一步应当除以20,但却错误地加上20,因而得到错误的结果是180.请问这道计算题的正确得数应是.2.有一个数学运算符号“⊙”,使下列算式成立:2⊙4=8,4⊙6=14,5⊙3=13,8⊙7=23.按此规定,9⊙3=.3.如果a表示一个三位数,b表示一个两位数,那么,a+b最小是a+b 最大是,a﹣b最小是,a﹣b最大是.4.一个口袋中有5枚面值1元的硬币和6枚面值5角的硬币,小明随意从袋中摸出6枚,那么这6枚硬币的面值的和有种.5.只能被1和它本身整除的自然数叫做质数,如:2,3,5,7等.那么,比40大并且比50小的质数是,小于100的最大的质数是.6.(7分)后羿朝三个箭靶分别射了三支箭,如图:他在第一个箭靶上得了29分,第二个箭靶上得了43分.请问他在第三个箭靶上得了分.7.(17分)一块长方形木板,如果按长、短不同的两组边分别截去4分米,则面积减少了168平方分米,请问:原来长方形的周长是多少分米?8.如图,小明从A走到B再到C再到D,走了38米,小马从B到C再到D再到A,走了31米,此问长方形ABCD的周长多少米?9.小东和小荣同时从甲地出发到乙地,小东每分钟行50米,小荣每分钟行60米,小荣到达乙地后立即返回,若两人从出发到相遇用了10分钟,则甲、乙两地相距米.10.一个正方形的面积与一个长方形的面积相等,若长方形的长是1024,宽是1,则正方形的周长是.11.21个篮子,每个篮子中有48个鸡蛋,现在将这些鸡蛋装到一些盒子中,每个盒子装28个鸡蛋,可以装盒.12.(15分)水果店用三种水果搭配果篮,每个果篮里有2个哈密瓜,4个火龙果,10个猕猴桃,店里现有的火龙果的数量比哈密瓜的3倍多10个,猕猴桃的数量是火龙果的2倍,当用完所有的哈密瓜后,还剩130个火龙果.问:(1)水果店原有多少个火龙果?(2)用完所有的哈密瓜后,还剩多少个猕猴桃?13.一个质数的2倍和另一个质数的5倍的和是36,求这两个质数的乘积是多少?14.教室里有若干学生,他们的平均年龄是8岁.如果加上李老师的年龄,他们的平均年龄就是11岁.已知李老师的年龄是32岁.那么,教室里一共有人.15.洋洋从家出发去学校,若每分钟走60米,则它6:53到达学校,若每分钟走75米,则她6:45到达学校,洋洋从家里出发的时刻是.【参考答案】一、拓展提优试题1.解:设最后一步之前运算的结果是a,a+20=180,那么:a=180﹣20=160;正确的计算结果是:a÷20=160÷20=8;故答案为:8.2.解:9⊙3=9×2+3=21;故答案为:21.3.【分析】两个数越大,和就大,越小和就小,两个数越接近差越小,反之差就大,所以根据条件找出最大与最小的三位数与二位数,计算即可解答.解:a+b最小是10+100=110,a+b最大是99+999=1098,a﹣b最小是100﹣99=1,a﹣b最大是999﹣10=989.故答案为:110,1098,1,989.【点评】本题主要考查最大与最小问题,解题关键是知道最小的三位数是100,最大的三位数是999,最小的二位数是10,最大的二位数是99.4.【分析】从5角的硬币进行分析讨论:首选从袋中摸出6枚全是5角的硬币;(2)从袋中摸出6枚中5枚面值5角的硬币和1枚面值1元的硬币;(3)从袋中摸出6枚中4枚面值5角的硬币和2枚面值1元的硬币;(4)从袋中摸出6枚中3枚面值5角的硬币和3枚面值1元的硬币;(5)从袋中摸出6枚中2枚面值5角的硬币和4枚面值1元的硬币;(6)从袋中摸出6枚中1枚面值5角的硬币和5枚面值1元的硬币.解:由以上分析,得出下列情况:这6枚硬币的面值的和有6种.故答案为:6.【点评】解答此题可从5角的硬币考虑,逐一分析探讨得出结论.5.【分析】根据质数的概念:指在一个大于1的自然数中,除了1和此整数自身外,没其它约数的数;然后列举出比40大并且比50小的质数;求小于100的最大的质数,应从100以内的最大数找起:99、98是合数;进而得出结论.解:比40大比50小的质数有:41、43、47;小于100的最大质数是97;故答案为:41、43、47,97.【点评】解答此题的关键:根据质数的定义,并结合题意,进行例举即可.6.【分析】这个箭靶共三个环,设最小的环为a分,中间环为b分,最外环为c分,得:第一个靶得分为:2b+c=29①第二个靶得分为:2a+c=43②第三个靶得分为:a+b+c③通过等量代换,解决问题.解:设最小的环为a分,中间环为b分,最外环为c分,得:第一个靶得分为:2b+c=29①第二个靶得分为:2a+c=43②第三个靶得分为:a+b+c③由①+②得:2a+2b+2c=29+43=72即a+b+c=36即第三个靶的得分为36分.答:他在第三个箭靶上得了36分故答案为:36.7.解【分析】如图所示:,假设长、宽各截去4分米后剩下的长为b分米,剩下的宽为a分米,则截去的部分的面积为:4b+4a+4×4=168,求出a+b=(168﹣16)÷4=38,原来长方形的周长为:(b+4+a+4)÷2,据此代入(a+b)的值计算即可.:如图所示:,设长、宽各截去4分米后剩下的长为b分米,剩下的宽为a分米,4b+4a+4×4=1684(a+b)=168﹣164(a+b)=152,4(a+b)÷4=152÷4a+b=38,原长方形的周长为:(b+4+a+4)×2=(38+8)×2=46×2=92(分米).答:原来长方形的周长是92分米.8.解:长方形长比宽多:38﹣31=7(米),长方形宽:(38﹣7×2)÷3,=24÷3,=8(米),长:8+7=15(米),(15+8)×2,=23×2,=46(米),答:长方形ABCD的周长46米.9.【分析】两人从出发到相遇用了10分钟,也就是二人相遇时都行了10分钟,行了两个单程,因此先求出两人的速度和,再乘上相遇时间,再除以2,解决问题.解:(50+60)×10÷2=110×10÷2=1100÷2=550(米)答:甲、乙两地相距550米.故答案为:550.【点评】此题根据关系式:速度和×相遇时间=路程,进而解决问题.10.【分析】若长方形的长是1024,宽是1,根据长方形的面积=长×宽,可求出长方形的面积,再根据正方形的面积公式可求出正方形的边长,然后再根据正方形的周长=边长×4可求出它的周长.解:1024×1=10241024=2×2×2×2×2×2×2×2×2×2=32×32,所以正方形的边长是32.32×4=128答:正方形的周长是128.【点评】本题主要考查了学生对长方形面积和正方形面积与周长公式的掌握.11.【分析】根据乘法的意义,可用21乘48计算出鸡蛋的总个数,然后再根据除法的意义,用总的鸡蛋个数除以28进行计算即可得到需要的盒子数.解:21×48÷28=1008÷28=36(盒)答:可以装36盒.故答案为:36.【点评】此题主要考查的是乘法意义和除法意义的应用.12.【分析】(1)所有的果篮用掉2个哈密瓜,4个火龙果,8个猕猴桃.当哈密瓜全部用完时,用掉火龙果的数量是哈密瓜的2倍,依题意,可画出线段图帮助理解:剩下的130个对应着箭头部分,然后列式解答;(2)先求出水果店原有的猕猴桃,即370×2=740(个);再求用完所有的哈密瓜后,还剩下的猕猴桃数即可.解:(1)(130﹣10)÷2=120÷2=60(个)60×6+10=360+10=370(个)答:水果店原有370个火龙果.(2)370×2=740(个)740﹣60×10=740﹣600=140(个)答:还剩140个猕猴桃.【点评】此题属于比较难的题目,解答的关键在于画出线段图来理解,找出数量关系式,列式解答.13.【分析】一个质数的2倍一定是偶数,一个质数的5倍一定是5的倍数,而36要拆成两个数的和,要么都是偶数,要么都是奇数,本题中2的倍数一定是偶数,所以只能拆成两个偶数,故此5的倍数只能是个位上带0的数,当是10时,36﹣10=26,26÷2=13当是20时,4×5=20,4不是质数当是30时,5×6=30,6不是质数,据此解答.解:根据分析可得:符合题意的5的倍数只能是10,20,305×2=10,5×4=20,5×6=30,4和6不是质数,所以只能是2,36﹣10=26.答:这两个质数的乘积是26.【点评】本题考查了质数的定义及其奇数与偶数的性质.14.解:(32﹣11)÷(11﹣8)+1=21÷3+1=8(人)答:教室里一共有 8人.故答案为:8.15.【分析】6时53分﹣6时45分=8分钟,设从家到学校若每分钟走60米,x分钟到学校,则若每分钟走75米,x﹣8分钟到学校,因为从家到学校的距离一定,根据“速度×时间=路程”列方程解答即可.解:设从家到学校若每分钟走60米,x分钟到学校,6时53分﹣6时45分=8分钟60x=(x﹣8)×7560x=75x﹣60015x=600x=40;6时53分﹣40分=6时13分;答:洋洋从家里出发的时刻是6:13.故答案为:6:13.【点评】此题考查列方程解应用题,本题关键是根据题意找出基本数量关系,设未知数为x,由此列方程解决问题.。

广东省深圳市深圳小学四年级数学奥数竞赛试卷及答案百度文库

广东省深圳市深圳小学四年级数学奥数竞赛试卷及答案百度文库

广东省深圳市深圳小学四年级数学奥数竞赛试卷及答案百度文库一、拓展提优试题1.空心圆和实心圆排成一行如下图所示:○●○●●○●●●○●○●●○●●●○●○●●○●●●…在前200个圆中有个空心圆.2.如图,一小正方形的边为边向小正方形外作四个正方形,再依次连接几个定点,若图中阴影三角形的面积是S,则面积为2S的三角形有个,面积为8S 的正方形有个.3.在一个长方形内,任意画一条直线,长方形被分成两部分(如图),如果画三条互不重合的直线,那么长方形至少被分成部分,最多被分成部分.4.如图所示,长方形ABCD中,AB=14厘米,AD=12厘米,现沿其对角线BD将它对折,得一几何图形,则图中阴影部分周长是.5.学校组织春游,租船让学生划.每条船坐3人,有16人没有船坐;如果每条船坐5人,则有一条船上差4人.学校共有学生人.6.一条大河,河中间(主航道)水的流速为每小时10千米,沿岸边水的流速为每小时8千米.一条船在河中间顺流而下,10小时行驶360千米,这条船沿岸边返回原地需要小时.7.(17分)一块长方形木板,如果按长、短不同的两组边分别截去4分米,则面积减少了168平方分米,请问:原来长方形的周长是多少分米?8.一个两位数除723,余数是30,满足条件的两位数共有个,分别是.9.一列火车身长90米,火车以每分钟160米的速度通过山洞,用了3分钟,山洞长390米.10.买5斤黄瓜用了11元8角,比买4斤西红柿少用1元4角,那么,每斤西红柿的价格是元角.11.小东和小荣同时从甲地出发到乙地,小东每分钟行50米,小荣每分钟行60米,小荣到达乙地后立即返回,若两人从出发到相遇用了10分钟,则甲、乙两地相距米.12.如图,从一张长50厘米、宽20厘米的长方形纸片上剪去边长分别是12厘米和4厘米的两个正方形,则剩余部分图形的周长是厘米.13.21个篮子,每个篮子中有48个鸡蛋,现在将这些鸡蛋装到一些盒子中,每个盒子装28个鸡蛋,可以装盒.14.袋子中有黑白两种颜色的棋子,黑子的个数是白子的个数的2倍,每次从袋中同时取出3个黑子和2个白子,某次取完后,白子剩下1个,黑子剩下31个,则袋中原有黑子个.15.100只老虎和100只狐狸分别为100组,每组两只动物,老虎总说真话,狐狸总说假话.当问及“组内另一只动物是狐狸吗?”结果这200只动物中恰有128只回答“是”,其它的都回答“不是”.那么同组2只动物都是狐狸的共有组.【参考答案】一、拓展提优试题1.解:200÷9=22…2,所以22×3+1=67(个),答:前200个圆中有67个空心圆.故答案为:67.2.【分析】(1)观察题干可知,阴影部分的面积是S,则面积为2S的三角形是每个小正方形的面积的一半,即三角形的两条直角边都是小正方形的边长,由此即可计数;(2)阴影部分的面积是S,则它所在的正方形的面积是4S,则面积为8S的正方形只有中间1个,解:(1)观察图形可知,面积为2S的独三角形有4个;由两个面积为S的三角形组成的三角形有4×4=16(个),所以一共有4+16=20(个);(2)面积为8S的正方形只有1个.故答案为:20;1.【点评】本题考查平面图形数量的确定,属于中档题目,注意仔细地观察图形,要做到不重不漏.3.【分析】三条线不重合,不相交时,把长方形分成的部分最少;三条线不重合,但在长方形内两两相交,有3个交点,把长方形分成的部分最多,如下图所示,因此得解.解:由分析可得:故答案为:4,7.【点评】认真分析题意,找出规律是解决此题的关键,线的交点越多,图形被分的部分越多.4.【分析】由图意得:BE、CD是长方形的长,BC、DE是长方形的宽,阴影部分的周长=长方形的2条长+2条宽,代数计算即可.解:14×2+12×2,=28+24,=52(厘米).答:阴影部分的周长是52厘米.故答案为:52厘米.【点评】解决本题的关键是找到BE、CD是长方形的长,BC、DE是长方形的宽,阴影部分的周长=长方形的2条长+2条宽.5.解:船:(16+4)÷(5﹣3),=20÷2,=10(条);学生:3×10+16=46(人);答:学校共有学生46人.故答案为:46.6.解:船的静水速度为:360÷10﹣10,=36﹣10,=26(千米/时);返回原地需要:360÷(26﹣8),=360÷18,=20(小时);答:这条船沿岸边返回原地需要20小时.故答案为:20.7.解【分析】如图所示:,假设长、宽各截去4分米后剩下的长为b分米,剩下的宽为a分米,则截去的部分的面积为:4b+4a+4×4=168,求出a+b=(168﹣16)÷4=38,原来长方形的周长为:(b+4+a+4)÷2,据此代入(a+b)的值计算即可.:如图所示:,设长、宽各截去4分米后剩下的长为b分米,剩下的宽为a分米,4b+4a+4×4=1684(a+b)=168﹣164(a+b)=152,4(a+b)÷4=152÷4a+b=38,原长方形的周长为:(b+4+a+4)×2=(38+8)×2=46×2=92(分米).答:原来长方形的周长是92分米.8.解:723﹣30=693,693=3×3×7×11,所以一个两位数除723,除数大于30的两位数因数有:11×3=33,11×7=77,3×3×7=63,11×3×3=99,共4个;故答案为:33、63、77、99.9.解:160×3﹣90,=480﹣90,=390(米),答:山洞长390米.故答案为:390.10.【分析】先根据买5斤黄瓜用了11元8角,比买4斤西红柿少用1元4角,求出西红柿买需要的钱数,再根据单价=总价÷数量即可解答.解:11元8角=11.8元,1元4角=1.4元(11.8+1.4)÷4=13.2÷4=3.3(元);3.3元=3元3角;答:每斤西红柿的价格是3元3角.故答案为:3,3.【点评】本题主要考查学生依据单价,数量以及总价之间数量关系解决问题的能力.11.【分析】两人从出发到相遇用了10分钟,也就是二人相遇时都行了10分钟,行了两个单程,因此先求出两人的速度和,再乘上相遇时间,再除以2,解决问题.解:(50+60)×10÷2=110×10÷2=1100÷2=550(米)答:甲、乙两地相距550米.故答案为:550.【点评】此题根据关系式:速度和×相遇时间=路程,进而解决问题.12.【分析】剩下部分的周长=原长方形的周长+2个(12+4)厘米,依此列出算式(50+20)×2+(12+4)×2计算即可求解.解:(50+20)×2+(12+4)×2=70×2+16×2=140+32=172(厘米)答:剩余部分图形的周长是172厘米.故答案为:172.【点评】本题主要考查了学生对长方形面积和周长公式的掌握情况,关键是让学生理解剩下部分的周长=原长方形的周长+2个(12+4)厘米.13.【分析】根据乘法的意义,可用21乘48计算出鸡蛋的总个数,然后再根据除法的意义,用总的鸡蛋个数除以28进行计算即可得到需要的盒子数.解:21×48÷28=1008÷28=36(盒)答:可以装36盒.故答案为:36.【点评】此题主要考查的是乘法意义和除法意义的应用.14.【分析】因黑子个数是白子个数的2倍,可假设黑子每次取的个数也是白子的2倍,即黑子每次2×2=4个、白子每次取2个,则白子余1个时,黑子余2个.现每次黑子取少4﹣3=1个了,则黑子多出来的数量,除以应取和实取的差,就是取的次数.据此解答.解:假设黑子每次取的个数也是白子的2倍,即黑子每次2×3=6个、白子每次取3个,则:(31﹣1×2)÷(2×2﹣3)=29÷1=29(次)3×29+31=87+31=118(个)答:袋中原有黑子 118个.故答案为:118.【点评】本题的关键是根据黑子是白子个数的2倍,假设每次取黑子的个数是白子的2倍,与实际取黑子的差,及实际取与假设取应剩下黑子的差,进行解答.15.解:128÷2=64(组)100﹣64=36(组)36÷2=18(组)答:那么同组2只动物都是狐狸的共有18组.故答案为:18.。

小学四年级奥数培优竞赛试卷答案(通用版)

小学四年级奥数培优竞赛试卷答案(通用版)

小学四年级奥数培优竞赛试卷答案与评分标准一、填空(每空2分,其中第1(3)每空1分,共28分)1.(1)15(2)10 、12(3)60,202. 15.953.被减数增加74.盒0.32kg 牛奶:2.48kg5.42平方厘米6. 57×68=38767. 12分钟8. 乙9.97分10.3幅通过16年级的画作数量之和是16,通过15幅画不是五年级的可以知道六年级和其他年级的画作数量之和是15,那也就是说五年级的画比六年级多1幅,我们还知道五、六年级共展出25幅画,进而可以求出五年级画作有13幅,六年级画作有12幅,那么就可以求出其他年级的画作共有3幅.二、巧算(每题4分,共24分)(1)25×125×4×8 (2)98+998+9998+6 =(25×4)×(125×8) =100+1000+10000=100×1000 =11100=100000(3)(360+108)÷36 (4)1200÷25÷4=360÷36+108÷36 =1200÷(25×4) =10+3 =1200 ÷100=13 =12(5)90.5+89.8+90.2+270.4+83.3+186.7+29.6+9.5(6)(2+4+6+...+100)-(1+3+5+ (99)=(2-1)+(4-3)+(6-5)+…+(100-99)=1+1+1+…+1=5049425÷701328910335366×四、解决问题(7+8+8+7+8,共38分)1、47-7=40(本)连环画有 40÷(4+1)=8(本)故事书有 47-8=39(本)2、1m5cm=1.05m=(90.5+9.5)+(89.8+90.2)+(270.4+29.6)+(83.3+186.7)=100+180+300+270 =85025cm=0.25m0.25+1.05=1.3(m)丝带长:1.3+1.3=2.6(m)皮皮身高:1.3+0.25=1.55(m)3、母子今年年龄和: 78-6×2=66(岁),母子6年前年龄和: 66-6×2=54(岁),母亲6年前的年龄: 54÷ (5+1)×5=45(岁),母亲今年的年龄: 45+6=51(岁).4、20-(20×5-60)÷(5+3)=15(道)5、因为AE×CE=6,DE×EB=35,把两个式子相乘AE×CE×DE×EB=35×6,而CE×EB=14,所以AE×DE=35×6÷14=15。

小学四年级数学奥数竞赛试卷及答案

小学四年级数学奥数竞赛试卷及答案

小学四年级数学竞赛试卷及答案一、填空。

(共20分,每小题2分)1.被除数是3320,商是150,余数是20,除数是()。

2.3998是4个连续自然数的和,其中最小的数是()。

3.有一个两位数,在它的某一位数字的前面加上一个小数点,再和这个两位数相加,得数是20.9。

这个两位数是()4.填一个最小的自然数,使225×525×()积的末尾四位数字都是0。

5.在下面的式子中填上括号,使等式成立。

(可以使用大括号或者中括号) 5×8+16÷4-2=206.从1、2、3、4、5、6、7、8、9九个数中,任取3个数组成一组,使它的平均数是5,有()种取法。

7.某地的邮政编码可用ABCCDD表示,已知这六个数字的和是8,A与B的和等于2个D,A是最小的自然数。

这个邮政编码是()。

8.两个数之和是444,大数除以小数商11,且没有余数,大数是()。

9.把5、11、14、15、21、22六个数填入下面的括号内,使等式成立。

()×()×()=()×()×()二、判断。

(对的在括号内画“√”,错的画“×”,共10分,每小题2分)11.大于0.9997而小于0.9999的小数只有0.9998。

()12.一张长方形彩纸长21厘米,宽15厘米,先剪下一个最大的正方形,再从余下的纸上剪下一个最大的正方形。

这时纸的长是6厘米。

()13.一个箱子里放着几顶帽子,除2顶以外都是红的,除2顶以外都是蓝的,除2顶以外都是黄的。

箱子中一共有3顶帽子。

()14.一个占地1公顷的正方形苗圃,边长各加长100米,苗圃的面积增加3公顷。

()15.有铅笔180支,分成若干等份,每份不得少于7支,也不能多于25支,共有7种不同的分法。

三、选择。

(把正确答案的序号填在括号里,共10分,每小题2分)16.5÷7的商用循环小数表示,这个小数的小数点后面第200位数字是()。

湖南省长沙市荷晏小学四年级奥数竞赛数学竞赛试卷及答案百度文库

湖南省长沙市荷晏小学四年级奥数竞赛数学竞赛试卷及答案百度文库

湖南省长沙市荷晏小学四年级奥数竞赛数学竞赛试卷及答案百度文库一、拓展提优试题1.甲、乙、丙三校合办画展,参展的画中,有41幅不是甲校的,有38幅不是乙校的,甲、乙两校参展的画共43幅,那么,丙校参展的画有幅.2.甲、乙、丙、丁四人参加了一次考试,甲、乙的成绩比丙、丁的成绩和高17分,甲比乙低4分,丙比丁高5分.四人中最高分比最低分高分.3.在一个停车场,共有24辆车,其中汽车是4个轮子,摩托车是3个轮子,这些车共有86个轮子,那么三轮摩托车有辆.4.4名工人3小时可以生产零件108个,现在要在8小时内生产504个零件,需增加工人名.5.一辆公共汽车有78个座位,空车出发,第一站上一位乘客,第二站上二位乘客,第三站上三位乘客,依次下去,多少站以后,车上坐满乘客?6.如图,小明从A走到B再到C再到D,走了38米,小马从B到C再到D再到A,走了31米,此问长方形ABCD的周长多少米?7.五个人站成一排,每个人戴一顶不同的帽子,编号为1、2、3、4、5.每人只能看到前面的人的帽子.小王一顶都看不到;小孔只看到4号帽子;小田没有看到3号帽子,但看到了1号帽子;小严看到了有3顶帽子,但没有看到3号帽子;小韦看到了3号帽子和2号帽子,小韦戴号帽子.8.如图,从一张长50厘米、宽20厘米的长方形纸片上剪去边长分别是12厘米和4厘米的两个正方形,则剩余部分图形的周长是厘米.9.一列火车身长90米,火车以每分钟160米的速度通过山洞,用了3分钟,山洞长390米.10.甲、乙两个油桶中共有100千克油,将乙桶中的15千克油注入甲桶,此时甲桶中的油是乙桶中的油的4倍.那么,原来甲桶中油比乙桶中的油多千克.11.如果,那么=.12.一列快车和一列慢车相向而行,快车的车长是315米,慢车的车长是300米.坐在慢车上的人看见快车驶过的时间是21秒,那么坐在快车上的人看见慢车驶过的时间是秒.【分析】坐在慢车上的人看见快车驶过的时间是21秒:既为人与快车的相遇问题,人此13.有白棋子和黑棋子共2014个,按照如图的规律从左到右排成一行,其中黑棋子的个数是.○●○●●○●●●○●○●●○●●●○●○●●○…14.如图,一个大正方形被分成四个相同的小长方形和一个小正方形,若一个小长方形的周长是28,则大正方形的面积是.15.围棋24元一副,象棋18元一副,用300元恰好可以购买两种棋子共14副,其中象棋有副.16.一个质数的2倍和另一个质数的5倍的和是36,求这两个质数的乘积是多少?17.3年前,爸爸的年龄是明明年龄的8倍,在今年,爸爸的年龄是明明年龄的5倍,则爸爸今年岁.18.甲、乙二人从同一天开始工作,公司规定:甲每工作3天后休息1天,乙每工作7天后连续休息3天,则在开始的前1000天中,甲、乙同一天休息的日子有天..19.(8分)有一棵神奇的树上长了123个果子,第一天会有1个果子从树上掉落,从第二天起,每天掉落的果子数量比前一天多1个,但如果某天树上的果子数量少于这一天应该掉落的数量时,那么这一天它又重新从掉落1个果子开始,按照规律进行新的一轮,如此继续,那么第天树上的果子会都掉光.20.如图是长方形,将它分成7部分,至少要画条直线.21.甲,乙二人先后从一个包裹中轮流取糖果,甲先取1块,乙接着取2块,然后甲再取4块,乙接着取8块,…,如此继续.当包裹中的糖果少于应取的块数时,则取走包裹中所有糖果,若甲共取了90块糖果,则最初包裹中有块糖果.22.已知x,y是大于0的自然数,且x+y=150,若x是3的倍数,y是5的倍数,则(x,y)的不同取值有对.23.有一个学生在做计算题时,最后一步应当除以20,但却错误地加上20,因而得到错误的结果是180.请问这道计算题的正确得数应是.24.有一个数学运算符号“⊙”,使下列算式成立:2⊙4=8,4⊙6=14,5⊙3=13,8⊙7=23.按此规定,9⊙3=.25.用0、1、2、3、4这五个数字可以组成个没有重复数字的偶数.26.少先队员计划做一些幸运星送给幼儿园的小朋友.如果每人做10个,还差6个没完成计划;如果其中4人各做8个,其余每人各做12个,就正好完成计划.问一共计划做颗幸运星.27.一个口袋中有5枚面值1元的硬币和6枚面值5角的硬币,小明随意从袋中摸出6枚,那么这6枚硬币的面值的和有种.28.只能被1和它本身整除的自然数叫做质数,如:2,3,5,7等.那么,比40大并且比50小的质数是,小于100的最大的质数是.29.如图,BC=3BE,AC=4CD,三角形ABC的面积是三角形ADE面积的倍.30.在一个长方形内,任意画一条直线,长方形被分成两部分(如图),如果画三条互不重合的直线,那么长方形至少被分成部分,最多被分成部分.31.(8分)如图,已知正方形的面积是100m2,图中灰色部分的面积是m2.32.如图所示,长方形ABCD中,AB=14厘米,AD=12厘米,现沿其对角线BD将它对折,得一几何图形,则图中阴影部分周长是.33.小胖用两个秒表测一列火车的车速.他发现这列火车通过一座660米的大桥需要40秒,以同样的速度从他身边开过需要10秒,请你根据小胖提供的数据算出火车的车身长是米.34.学校组织春游,租船让学生划.每条船坐3人,有16人没有船坐;如果每条船坐5人,则有一条船上差4人.学校共有学生人.35.(7分)有一行数:1,1,2,3,5,8,13,21,…,从第三个数开始,每个数都是前两个数的和,问在前2007个数中,有是偶数.36.(7分)今年小翔和爸爸、妈妈的年龄分别是5岁、48岁、42岁.年后爸爸、妈妈的年龄和是小翔的6倍.37.(7分)棱长都是1厘米的63个白色小正方体和1个黑色小正方体,可以拼成一个大正方体,问:一共可以拼成种不同的含有64个小正方体的大正方体.38.(17分)一块长方形木板,如果按长、短不同的两组边分别截去4分米,则面积减少了168平方分米,请问:原来长方形的周长是多少分米?39.一个两位数除723,余数是30,满足条件的两位数共有个,分别是.40.如图,一小正方形的边为边向小正方形外作四个正方形,再依次连接几个定点,若图中阴影三角形的面积是S,则面积为2S的三角形有个,面积为8S的正方形有个.【参考答案】一、拓展提优试题1.【分析】41幅不是甲校的,就是乙校和丙校的,38幅不是乙校的,就是甲校和丙校,其中丙校的数量同时包含在41与38中,所以41+38=79(幅)是甲校、乙校和丙校的2倍的总和,减去甲乙两校一共展出的数量,得出丙校的2倍,再除以2就是丙校参展的画的数量.解:(41+38﹣43)÷2=(79﹣43)÷2=36÷2=18(幅)答:丙校参展的画有 18幅.故答案为:18.【点评】解决本题的关键是明确其丙校的数量同时包含在41与38中,所以,41与38的和是甲校、乙校和丙校的2倍的总和,减去甲乙两校一共展出的数量,再除以2就是丙校参展的画的数量.2.解:设乙得了x分,则甲得了x﹣4分,丙得了y分,则丁得了y﹣5分,所以(x+x﹣4)﹣(y+y﹣5)=17,整理,可得:2x﹣2y+1=17,所以2x﹣2y=16,所以x﹣y=8,所以乙比丙得分高;因为x﹣y=8,所以(x﹣4)﹣(y﹣5)=9,所以甲比丁得分高,所以乙得分最高,丁得分最低,所以四人中最高分比最低分高:x﹣(y﹣5)=x﹣y+5=8+5=13(分)答:四人中最高分比最低分高13分.故答案为:13.3.解:假设24辆全是4个轮子的汽车,则三轮车有:(24×4﹣86)÷(4﹣3),=10÷1,=10(辆),答:三轮车有10辆.故答案为:10.4.解:504÷8÷(108÷3÷4)﹣4,=504÷8÷9﹣4,=63÷9﹣4,=7﹣4,=3(名),答:需增加3名,故应填:3.5.解:设第n站以后车上坐满了乘客,可得:[1+1+(n﹣1)×1]×n÷2=78[2+n﹣1]×n÷2=78,[1+n]×n÷2=78,(1+n)×n=156,由于12×13=156,即n=12.答:12站以后,车上坐满乘客.6.解:长方形长比宽多:38﹣31=7(米),长方形宽:(38﹣7×2)÷3,=24÷3,=8(米),长:8+7=15(米),(15+8)×2,=23×2,=46(米),答:长方形ABCD的周长46米.7.解:根据分析,首先从“小王一顶都看不到”判断出小王排在第一位的位置上;然后从“小孔只看到4号帽子”判断出小孔排在第二的位置上;接着从“小严看到了有3顶帽子”判断出小严在第四的位置上;结合小田没看到3,小韦看到3对比可知小田在第三位,小韦在第五位;由于第二位的小孔只看到4,所以小王的帽子编号为4;由第三位的小田看到1,可知第二位的小孔的帽子编号为1;因为第四位的小严没看到3,而第五位的小韦看到了3和2,所以小田帽子编号为2,小严帽子编号为3,小韦帽子编号为5.故答案是:5.8.【分析】剩下部分的周长=原长方形的周长+2个(12+4)厘米,依此列出算式(50+20)×2+(12+4)×2计算即可求解.解:(50+20)×2+(12+4)×2=70×2+16×2=140+32=172(厘米)答:剩余部分图形的周长是172厘米.故答案为:172.【点评】本题主要考查了学生对长方形面积和周长公式的掌握情况,关键是让学生理解剩下部分的周长=原长方形的周长+2个(12+4)厘米.9.解:160×3﹣90,=480﹣90,=390(米),答:山洞长390米.故答案为:390.10.【分析】根据题意,把甲乙两个油桶的共存油看作5份,可以计算出每份是多少千克油,将乙桶中的15千克油注入甲桶后,甲桶占了其中的4份,乙桶占了其中的1份,1份即100÷5=20千克,可以计算出注入后各个油桶的千克,再用乙桶的油减去15千克,甲桶的油加上15千克,即是甲乙两桶原存油的数量,再用甲桶原存油的数量减去一桶原存油的数量,列式解答即可解:100÷(1+4)=20(千克)注入后的甲桶:4×20=80(千克)倒出后的乙桶:1×20=20(千克)原甲桶存油:80﹣15=65(千克)原乙桶存油:20+15=35(千克)甲桶中油比乙桶中的油多:65﹣35=30(千克)答:原来甲桶中油比乙桶中的油多30千克.故答案为:30.【点评】解答此题的关键是分清注入后甲乙两桶油的关系,即甲桶存油等于乙桶存油的4倍,然后可计算出注入后甲乙两桶油的存量,再计算出注入前两桶油的重量,二者相减即可.11.解:因为,所以(b+10a)×65=4800+10a+b,即10a+b=75,因此b=5,a=7.即=75.故答案为:75.12.时具有慢车的速度,相遇路程为快车的车长315米,相遇时间为21秒,即人与慢车的速度和为快车与慢车的速度和为:315÷21=15(米/秒);那么坐在快车上的人看见慢车驶过的时间,既为人与慢车的相遇问题,人此时具有快车的速度,相遇路程为慢车的车长300米,由于两车为相向而行,所以坐在车上的人看到车通过的速度为两车的速度和.用快车车长除以快车与慢车的速度和即可.解:根据题意可得:快车与慢车的速度和:315÷21=15(米/秒);坐在快车上的人看见慢车驶过的时间是:300÷15=20(秒);答:坐在快车上的人看见慢车驶过的时间是20秒.故答案为:20.【点评】完成本题的关键是根据坐在慢车上的人见快车通过的时间求出两车的速度和,然后再根据相遇问题进一步解答即可.13.【分析】根据每9个棋子是一个循环,用2014除以9,用得到的商乘以一个循环中黑棋子的个数,再根据余数的情况判断最后需加上几个黑棋子即可.解:2014÷9=223…7,循环了223次后,还剩7个,里面有4个黑棋子,223×6+4=1338+4=1342(个)答:其中黑棋子的个数是1342个.故答案为:1342.【点评】答此类问题的关键是找出每几个数或每几个图形是一个循环.14.【分析】一个小长方形的周长是28,也就是小长方形的长和宽的和是28÷2=14,也就是大正方形的边长,然后根据正方形的面积公式,解决问题.解:28÷2=1414×14=196答:大正方形的面积是196.故答案为:196.【点评】根据长方形的长和宽与正方形边长之间的关系,先求出小长方形的长和宽的和,即求出了大正方形的边长.15.【分析】假设全是围棋,那么就有24×14=336元,这就比已知的300元多出了336﹣300=36元,因为一副围棋比一副象棋多24﹣18=6元,由此即可求得象棋的数量.解:假设全是围棋,则象棋就有:(24×14﹣300)÷(24﹣18)=36÷6=6(副);答:其中象棋有6副.故答案为:6.【点评】此题属于鸡兔同笼问题,解这类题的关键是用假设法进行分析,进而得出结论;也可以用方程进行解答.16.【分析】一个质数的2倍一定是偶数,一个质数的5倍一定是5的倍数,而36要拆成两个数的和,要么都是偶数,要么都是奇数,本题中2的倍数一定是偶数,所以只能拆成两个偶数,故此5的倍数只能是个位上带0的数,当是10时,36﹣10=26,26÷2=13当是20时,4×5=20,4不是质数当是30时,5×6=30,6不是质数,据此解答.解:根据分析可得:符合题意的5的倍数只能是10,20,305×2=10,5×4=20,5×6=30,4和6不是质数,所以只能是2,36﹣10=26.答:这两个质数的乘积是26.【点评】本题考查了质数的定义及其奇数与偶数的性质.17.【分析】3年前,爸爸的年龄是父子年龄差的,今年后爸爸的年龄是年龄差的,共经过了3年,对应的分率是(),用除法可以求出父子的年龄差,进而可以求出爸爸今年的年龄.据此解答.解:3÷()=3÷()=3×=28(岁)28×=35(岁)答:爸爸今年35岁.故答案为:35.【点评】父子年龄差是个不变的量,而年龄的倍数却年年不同.我们可以抓住“差不变”这个特点,再根据父子年龄之间的倍数关系与年龄之和等条件解答这类应用题.18.【分析】甲的休息天数为4的倍数,即4,8,12,…1000;乙的休息日为:8,9,10,18,19,20,…,那么甲只要在4的倍数天休息就行了,每三个数中有一个数是4的倍数,那么也就是说,乙每工作10天才会有1天与喜羊羊的重合,那么以10为周期,共有1000÷10=100个周期,每一周期有一天重合,那么100周期共有100天重合解:甲的休息天数为4的倍数,即4,8,12,…1000;乙的休息日为:8,9,10,18,19,20,…,那么乙只要在4的倍数天休息就行了,每三个数中有一个数是4的倍数,那么也就是说,乙每工作10天才会有1天与喜羊羊的重合,那么以10为周期,共有1000÷10=100个周期每一周期有一天重合,那么100周期共有100天重合.故答案为:100.【点评】本题主要考查了公约数与公倍数问题.关键是乙每工作10天才会有1天与甲的重合.19.解:因为1+2+3+4+5+6+7+8+9+10+11+12+13+14+15=120当到第十六天时不够16个需要重新开始.1+2=3即1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+1+2=123(个)故答案为:17天20.【分析】两条直线把正方形分成4部分,第三条直线与前两条直线相交多出3部分,共分成7部分;第四条直线与前3条直线相交,又多出4部分.共11部分,第五条直线与前4条直线相交,又多出5部分,如下图所示.解:1+1+2+3=7答:在一个长方形上画上3条直线,最多能把长方形分成7部分.故答案为:3.【点评】此题考查了图形的拆拼.使直线间相互交叉,交点越多,则分割的空间越多.每多第几条直线,就加几个部分.21.【分析】通过题意,甲取1块,乙取2块,甲取4块,乙取8块, (1)20,2=21,4=22,8=23…,可以看出,甲取的块数是20+22+24+26+28+…,相应的乙取得块数是21+23+25+27+29+…,我们看一看90是甲取了几次,乙相应的取了多少次,把两者总数加起来,即可得解.解:甲取的糖果数是20+22+24+…+22n=90,因为1+4+16+64+5=90,所以甲共取了5次,4次完整的,最后的5块是包裹中的糖果少于应取的块数,说明乙取了4次完整的数,即乙取了21+23+25+27=2+8+32+128=170(块),90+170=260(块),答:最初包裹中有 260块糖果.故答案为:260.【点评】判断出甲乙取得次数是解决此题的关键.22.【分析】首先根据5的整除特性可知尾数是0或者5,那么150和5的倍数差依然是尾数是0或者5的数字枚举即可.解:根据5的整除特性可知尾数是0或者5.那么150减去这个数字尾数还是0或者5.可以找到尾数是0或者5的数字是3的倍数.30,60,90,120,15,45,75,105,135共9个数字满足条件.对应的数字就有9对.故答案为:9.【点评】本题是考察数的整除特性,关键在于找到尾数是0或5的数字是3的倍数,枚举即可解决问题.23.解:设最后一步之前运算的结果是a,a+20=180,那么:a=180﹣20=160;正确的计算结果是:a÷20=160÷20=8;故答案为:8.24.解:9⊙3=9×2+3=21;故答案为:21.25.解:一位偶数有:0,2和4,3个;两位偶数:10,20,30,40,12,32,42,14,24,34,一共有10个;三位偶数:位是0时,十位和百位从4个元素中选两个进行排列有A42=12种结果,当末位不是0时,只能从2和4中选一个,百位从3个元素中选一个,十位从三个中选一个共有A21A31A31=18种结果,根据分类计数原理知共有12+18=30种结果;四位偶数:当个位数字为0时,这样的四位数共有:=24个,当个位数字为2或者4时,这样的四位数共有:2×C41×=36个,一共是24+36=60(个)五位偶数:当个位数字为0时,这样的五位数共有:A44=24个,当个位数字为2或者4时,这样的五位数共有:2×C31A33=36个,所以组成没有重复数字的五位偶数共有24+36=60个.一共是:3+10+30+60+60=163(个);答:可以组成 163个没有重复数字的偶数.故答案为:163.26.解:[(12﹣8)×4+6]÷(12﹣10),=[16+6]÷2,=22÷2,=11(人);10×11+6=116(个);答:一共计划做116颗幸运星.故答案为:116.27.【分析】从5角的硬币进行分析讨论:首选从袋中摸出6枚全是5角的硬币;(2)从袋中摸出6枚中5枚面值5角的硬币和1枚面值1元的硬币;(3)从袋中摸出6枚中4枚面值5角的硬币和2枚面值1元的硬币;(4)从袋中摸出6枚中3枚面值5角的硬币和3枚面值1元的硬币;(5)从袋中摸出6枚中2枚面值5角的硬币和4枚面值1元的硬币;(6)从袋中摸出6枚中1枚面值5角的硬币和5枚面值1元的硬币.解:由以上分析,得出下列情况:这6枚硬币的面值的和有6种.故答案为:6.【点评】解答此题可从5角的硬币考虑,逐一分析探讨得出结论.28.【分析】根据质数的概念:指在一个大于1的自然数中,除了1和此整数自身外,没其它约数的数;然后列举出比40大并且比50小的质数;求小于100的最大的质数,应从100以内的最大数找起:99、98是合数;进而得出结论.解:比40大比50小的质数有:41、43、47;小于100的最大质数是97;故答案为:41、43、47,97.【点评】解答此题的关键:根据质数的定义,并结合题意,进行例举即可.29.解:因为BC=3BE,AC=4CD,则BC:BE=3:1,AC:CD=4:1,所以S△ABE =S△ABC,S△ACE=S△ABC,S△ADE=S△ACE=S△ABC=S△ABC,三角形ABC的面积是三角形ADE面积的2倍.故答案为:2.30.【分析】三条线不重合,不相交时,把长方形分成的部分最少;三条线不重合,但在长方形内两两相交,有3个交点,把长方形分成的部分最多,如下图所示,因此得解.解:由分析可得:故答案为:4,7.【点评】认真分析题意,找出规律是解决此题的关键,线的交点越多,图形被分的部分越多.31.解:根据分析可得,100÷2=50(平方米)答:图中灰色部分的面积是 50m2.故答案为:50.32.【分析】由图意得:BE、CD是长方形的长,BC、DE是长方形的宽,阴影部分的周长=长方形的2条长+2条宽,代数计算即可.解:14×2+12×2,=28+24,=52(厘米).答:阴影部分的周长是52厘米.故答案为:52厘米.【点评】解决本题的关键是找到BE、CD是长方形的长,BC、DE是长方形的宽,阴影部分的周长=长方形的2条长+2条宽.33.解:根据分析可得,660÷(40﹣10),=660÷30,=22(米);22×10=220(米);答:火车的车身长是 220米.故答案为:220.34.解:船:(16+4)÷(5﹣3),=20÷2,=10(条);学生:3×10+16=46(人);答:学校共有学生46人.故答案为:46.35.【分析】因为前两个数相加得偶数,即奇数+奇数=偶数;同理,第四个数是:奇数+偶数=奇数,以此类推,总是奇数、奇数、偶数、奇数、奇数、偶数…;每三个数一个循环周期,然后确定2007个数里面有几个循环周期,再结合余数,即可得出偶数的个数.解:2007÷3=669,又因为,每一个循环周期中有2个奇数,1个偶数,所以前2007个数中偶数的个数是:1×669=669;答:前2007个数中,有699是偶数.故答案为:699.36.【分析】设x年后,爸爸、妈妈的年龄和是小翔的6倍,则:小翔x年后的年龄×4=小翔爸爸x年后的年龄+小翔妈妈x年后的年龄,列出方程解答即可.解:设x年后,爸爸、妈妈的年龄和是小翔的6倍,(5+x)×6=48+42+2x30+6x=90+2x4x=60x=15答:15年后,爸爸、妈妈的年龄和是小翔的6倍.故答案为:15.37.【分析】一共64个,4×4×4,①把黑色正方体放在顶点处,1种;②把黑色正方体放在棱中间,任选一个,2种;③把正方体放在每个面的中间4个,任选一个,4种;④把黑色正方体放在里面,从外边看不到,8种;然后把几种情况的种数相加即可.解:①把黑色正方体放在顶点处,1种;②把黑色正方体放在棱中间,任选一个,2种;③把正方体放在每个面的中间4个,任选一个,4种;④把黑色正方体放在里面,从外边看不到,8种;共:1+2+4+8=15(种);答:一共可以拼成15种不同的含有64个小正方体的大正方体.故答案为:15.38.解【分析】如图所示:,假设长、宽各截去4分米后剩下的长为b分米,剩下的宽为a分米,则截去的部分的面积为:4b+4a+4×4=168,求出a+b=(168﹣16)÷4=38,原来长方形的周长为:(b+4+a+4)÷2,据此代入(a+b)的值计算即可.:如图所示:,设长、宽各截去4分米后剩下的长为b分米,剩下的宽为a分米,4b+4a+4×4=1684(a+b)=168﹣164(a+b)=152,4(a+b)÷4=152÷4a+b=38,原长方形的周长为:(b+4+a+4)×2=(38+8)×2=46×2=92(分米).答:原来长方形的周长是92分米.39.解:723﹣30=693,693=3×3×7×11,所以一个两位数除723,除数大于30的两位数因数有:11×3=33,11×7=77,3×3×7=63,11×3×3=99,共4个;故答案为:33、63、77、99.40.【分析】(1)观察题干可知,阴影部分的面积是S,则面积为2S的三角形是每个小正方形的面积的一半,即三角形的两条直角边都是小正方形的边长,由此即可计数;(2)阴影部分的面积是S,则它所在的正方形的面积是4S,则面积为8S的正方形只有中间1个,解:(1)观察图形可知,面积为2S的独三角形有4个;由两个面积为S的三角形组成的三角形有4×4=16(个),所以一共有4+16=20(个);(2)面积为8S的正方形只有1个.故答案为:20;1.【点评】本题考查平面图形数量的确定,属于中档题目,注意仔细地观察图形,要做到不重不漏.。

小学四年级数学奥数竞赛试卷及答案

小学四年级数学奥数竞赛试卷及答案

小学四年级数学竞赛试卷及答案一、填空。

〔共20分,每题2分〕1.被除数是3320,商是150,余数是20,除数是〔〕。

2.3998是4个连续自然数的和,其中最小的数是〔〕。

3.有一个两位数,在它的某一位数字的前面加上一个小数点,再和这个两位数相加,得数是20.9。

这个两位数是〔〕4.填一个最小的自然数,使225×525×〔〕积的末尾四位数字都是0。

5.在下面的式子中填上括号,使等式成立。

(可以使用大括号或者中括号) 5×8+16÷4-2=206.从1、2、3、4、5、6、7、8、9九个数中,任取3个数组成一组,使它的平均数是5,有〔〕种取法。

7.某地的邮政编码可用ABCCDD表示,这六个数字的和是8,A与B的和等于2个D,A是最小的自然数。

这个邮政编码是〔〕。

8.两个数之和是444,大数除以小数商11,且没有余数,大数是〔〕。

9.把5、11、14、15、21、22六个数填入下面的括号内,使等式成立。

〔〕×〔〕×〔〕=〔〕×〔〕×〔〕二、判断。

〔对的在括号内画"√〞,错的画"×〞,共10分,每题2分〕11.大于0.9997而小于0.9999的小数只有0.9998。

〔〕12.一张长方形彩纸长21厘米,宽15厘米,先剪下一个最大的正方形,再从余下的纸上剪下一个最大的正方形。

这时纸的长是6厘米。

〔〕13.一个箱子里放着几顶帽子,除2顶以外都是红的,除2顶以外都是蓝的,除2顶以外都是黄的。

箱子中一共有3顶帽子。

〔〕14.一个占地1公顷的正方形苗圃,边长各加长100米,苗圃的面积增加3公顷。

〔〕15.有铅笔180支,分成假设干等份,每份不得少于7支,也不能多于25支,共有7种不同的分法。

三、选择。

〔把正确答案的序号填在括号里,共10分,每题2分〕16.5÷7的商用循环小数表示,这个小数的小数点后面第200位数字是〔〕。

奥数综合训练试卷(竞赛)-2023四年级数学竞赛通用版含答案

.奥数综合训练试卷(奥数专训)2023小学四年级数学竞赛通用版全解析一.填空题(共5 小题)1.两数相除,商4 余8,被除数、除数、商数、余数四数之和等于415,则被除数是2.图形的面积是 cm 2.3.根据如图7×7的方格盘中已经填好的左下角4×4个方格中数字显现的规律,求出方格盘中a 与b 的数值,并计算其和,得a +b = .4.已知△ABC 为等边三角形,面积为a ,D 、E 、F 分别为三边的中点,BF 、DE 交于M ,CD 、EF交于N ,AM 、AN 交DF 于I 、J ,若△ADI 、△AJF 、△HBC 面积和为常数k (k >),则五边形IJNHM (图中阴影部分)的面积为 .(用k 和a 的代数式表示)5.快、慢车分别从A 、B 两地同时相向而行.快车每小时行78千米,慢车每小时行58千米,两车离中点25千米相遇.请回答:A 、B 两地相距 千米.二.计算题(共1小题)6.脱式计算,能简算的要简算.20﹣2.5×4÷86.4×9.9+0.64 5.37×2.5+7.5×5.37 (4.8﹣4.8×0.5)÷2 1.5×1.2﹣0.6÷2.4 2.5×7.6×4﹣7.6三.解答题(共17小题)7.用0,1,2,3四个数字组成一个没有重复数字的三位数,可以组成多少个偶数?8.一辆摩托车从A地到B地共行驶了420km,用了5小时.途中一部分公路是水泥路,部分是普通公路,已知摩托车在水泥公路上每小时行驶110km,在普通公路上每小时行驶60km,求摩托车在普通公路上行驶了多少千米?9.在一条马路2旁植树,每隔3米植一棵,植到头还剩3棵;每隔2.5米植一棵,植到头还缺少37棵,这条马路的长度?10.六年级各班组队参加一次数学竞赛,竞赛规则是:每队都分别给出50道题,答对一题得3分,否则倒扣1分,如果六(1)班代表队最后得分130分,那么六(1)班答对了多少道题?11.用0﹣5这6个数字组成没有重复数字的多位数,一共可以组合成多少个能被3整除的数?12.如图,给定一个正六边形,其中矩形的每个顶点都位于正六边形各边的中点上.请问矩形的面积与正六边形的面积之比是几比几?13.有一群小朋友分一堆苹果,如果减少1人,每人可分得8个;如果增加2人,每人可分得6个,求实际有多少个小朋友?14.一头大象每天吃90根香蕉,一头小象每天吃60根香蕉.(1)一头大象一个星期要吃多少根香蕉?(2)3头小象吃一堆200根的香蕉,够1天吃吗?15.在1到100的全部自然数中,既不是8的倍数也不是5的倍数的数有多少个?16.用一条60米的长绳沿着一道围墙围出长方形的三个边(如图所示,墙是长方形另一个边)请问这条绳子所能围出的最大面积为多少?17.某班有50名学生,他们都参加了课外兴趣小组.活动内容有美术、声乐、书法,每个人可以参加1个、2个或3个兴趣小组.问班级中至少有几名同学参加的项目完全相同?18.以尽可能小的自然数做被除数,以18,27,7为除数,余数都是5,问:被除数是几?19.在下面等号左边的数字之间适当地添上一些加号,使其结果等于144.(数的顺序不变)1 2 3 4 5 6 7 8 9=14420.一个正方体的六个面上分别写着ABCDEF六个字母.根据下列摆放的三种情况,判断每个字母的对面是什么?21.从数字1﹣6中选5个数字填入下面算式的方框中,使算式的结果尽量大.这个最大的结果是多少?□×(□﹣□)×(□﹣□)22.甲、乙、丙三人进行200米跑比赛.当甲跑至150米处时,比乙领先25米,比丙领先50米.(1)如果三人速度都不变,当甲到达终点时,乙比丙领先多少米?(2)如果乙的速度不变,丙的速度提高一倍,丙能否在乙之前到达终点?如果能,丙到达终点时,乙离终点多远?(3)如果甲、乙速度不变,丙想得第一名,他的速度应提高到原来速度的几倍?23.一次测验有10道问答题,每题的评分标准是:回答完全正确得5分,回答不完全正确得3分,回答错误或不答得0分.若保证至少有4人得分相同,参加这次测验的学生至少要有多少人?奥数综合训练试卷(奥数专训)小学四年级数学竞赛通用版全解析参考答案与试题解析一.填空题(共5小题)1.两数相除,商4余8,被除数、除数、商数、余数四数之和等于415,则被除数是324.【答案】见试题解答内容【分析】设除数为x,根据“被除数=商×除数+余数”得:(4x+8)+x+4+8=415,解这个方程,求出除数,进而根据“被除数=商×除数+余数”解答即可.【解答】解:设除数为x,则:(4x+8)+x+4+8=415,5x+20=415,x=79;4×79+8,=316+8,=324;答:被除数是324.故答案为:324.2.图形的面积是75cm2.【答案】见试题解答内容【分析】如图所示,做出辅助线,则将原图形分割成了1个三角形和1个长方形,利用三角形和长方形的面积和即可得解.【解答】解:(12﹣6)×(10﹣5)÷2+12×5,=6×5÷2+60,=15+60,=75(平方厘米);答:图形的面积是75平方厘米.3.根据如图7×7的方格盘中已经填好的左下角4×4个方格中数字显现的规律,求出方格盘中a与b的数值,并计算其和,得a+b=43.【答案】见试题解答内容【分析】依表得规律:三列自下而上的数依次多4,5,6,…,所以b=26;a所在行,从左向右的数依次多2,3,4,5,…,a=12+5=17,即可得出结论.【解答】解:依表得规律:(1)从第一列起自下而上的数依次多2,3,4,5,…,第二列自下而上的数依次多3,4,5,6,…,第三列自下而上的数依次多4,5,6,…,所以b=26;(2)a所在行,从左向右的数依次多2,3,4,5,…,a=12+5=17,故:a+b=26+17=43.故答案为43.4.已知△ABC为等边三角形,面积为a,D、E、F分别为三边的中点,BF、DE交于M,CD、EF 交于N,AM、AN交DF于I、J,若△ADI、△AJF、△HBC面积和为常数k(k>),则五边形IJNHM(图中阴影部分)的面积为k﹣.(用k和a的代数式表示)【答案】见试题解答内容【分析】利用S IJNHM=S△ANB+S△AMC+S△HBC﹣(S△ABC﹣S△ADI﹣S△AJF),即可得出结论.【解答】解:∵S△ANB=S△AMC=S△ABC=a,△ADI、△AJF、△HBC面积和为常数k(k>),∴S IJNHM=S△ANB+S△AMC+S△HBC﹣(S△ABC﹣S△ADI﹣S△AJF)=+S△HBC﹣(a﹣S△ADI ﹣S△AJF)=k﹣,故答案为k﹣.5.快、慢车分别从A、B两地同时相向而行.快车每小时行78千米,慢车每小时行58千米,两车离中点25千米相遇.请回答:A、B两地相距340千米.【答案】见试题解答内容【分析】两车离中点25千米相遇,快车就比慢车多走了25×2千米,然后根据时间=路程÷速度差,可求出两车相遇时的时间,再根据路程=速度×时间,可求出两地之间的距离.【解答】解:25×2÷(78﹣58)×(78+58),=25×2÷20×136,=340(千米);答:A、B两地相距340千米.故答案为:340.二.计算题(共1小题)6.脱式计算,能简算的要简算.20﹣2.5×4÷8 6.4×9.9+0.64 5.37×2.5+7.5×5.37(4.8﹣4.8×0.5)÷2 1.5×1.2﹣0.6÷2.4 2.5×7.6×4﹣7.6【答案】见试题解答内容【分析】(1)(5)首先计算乘除法,然后计算减法即可.(2)(3)根据乘法分配律简算即可.(4)首先计算小括号里面的乘法、减法,然后计算小括号外面的除法即可.(6)根据乘法交换律、乘法结合律简算即可.【解答】解:(1)20﹣2.5×4÷8=20﹣10÷8=20﹣1.25=18.75(2)6.4×9.9+0.64=6.4×9.9+6.4×0.1=6.4×(9.9+0.1)=6.4×10=64(3)5.37×2.5+7.5×5.37=5.37×(2.5+7.5)=5.37×10=53.7(4)(4.8﹣4.8×0.5)÷2=(4.8﹣2.4)÷2=2.4÷2=1.2(5)1.5×1.2﹣0.6÷2.4=1.8﹣0.25=1.55(6)2.5×7.6×4﹣7.6=2.5×4×7.6﹣7.6=10×7.6﹣7.6=76﹣7.6=68.4三.解答题(共17小题)7.用0,1,2,3四个数字组成一个没有重复数字的三位数,可以组成多少个偶数?【分析】由题意,末尾是0或2,分类讨论,利用排列知识可得结论.【解答】解:由题意,末尾是0或2,末尾是0时,有=6个;末尾是2时,有=4个,所以共有6+4=10个偶数,答:用0,1,2,3四个数字组成一个没有重复数字的三位数,可以组成10个偶数.8.一辆摩托车从A地到B地共行驶了420km,用了5小时.途中一部分公路是水泥路,部分是普通公路,已知摩托车在水泥公路上每小时行驶110km,在普通公路上每小时行驶60km,求摩托车在普通公路上行驶了多少千米?【答案】见试题解答内容【分析】根据题意分析,利用“鸡兔同笼”原理,即可解答.【解答】解:根据题意分析:如果全部用每小时60千米的速度行驶,5小时只能行5×60=300(千米);还剩420﹣300=120(千米);故水泥路长为:120÷(110﹣60)×110=264(千米);普通路为420﹣264=156(千米).故答案为摩托车在普通公路上行驶了156千米9.在一条马路2旁植树,每隔3米植一棵,植到头还剩3棵;每隔2.5米植一棵,植到头还缺少37棵,这条马路的长度?【答案】见试题解答内容【分析】3和2.5的最小公倍整数是3×2.5×2=15,即每15米每旁多种1棵(两旁多2棵),里外里多3+37=40棵,即每旁多40÷2=20棵,马路长15×20=300米.【解答】解:由题意,这条马路的长为:[3÷(3﹣2.5)×2.5]×[(3+37)÷2]=300米.答:这条马路的长为300米.10.六年级各班组队参加一次数学竞赛,竞赛规则是:每队都分别给出50道题,答对一题得3分,否则倒扣1分,如果六(1)班代表队最后得分130分,那么六(1)班答对了多少道题?【答案】见试题解答内容【分析】假设50道题全做对,则得50×3=150分,这样就少出150﹣130=20分;最错一题比做对一题少3+1=4分,也就是做错20÷4=5道题,进而得出做对题的数量.【解答】解:做错:(50×3﹣130)÷(3+1)=20÷4=5(道)做对:50﹣5=45(道)答:六(1)班答对了45道题.11.用0﹣5这6个数字组成没有重复数字的多位数,一共可以组合成多少个能被3整除的数?【答案】见试题解答内容【分析】由于0+3=3,1+2=3,1+5=6,2+4=6,0+1+2=3,0+1+5=6,0+2+4=6,1+2+3=6,1+3+5=9,2+3+4=9,3+4+5=12,0+1+2+3=6,0+1+3+5=9,0+2+3+4=9,0+3+4+5=12,1+2+4+5=12,0+1+2+4+5=12,1+2+3+4+5=15,0+1+2+3+4+5=15,根据能被3整除的数的特征,分别得到各自能被3整除的数,进一步即可求解.【解答】解:由于0+3=3,有30;1+2=3,有12,21;1+5=6,有15,51;2+4=6,有24,42;0+1+2=3,有102,120,201,210;0+1+5=6,有105,150,501,510;0+2+4=6,有204,240,402,420;1+2+3=6,有123,132,213,231,312,321;1+3+5=9,有135,153,315,351,513,531;2+3+4=9,有234,243,324,342,423,432;3+4+5=12,有345,354,435,453,534,543;0+1+2+3=6,有1023,1032,1203,1230,1302,1320,2013,2031,2103,2130,2301,2310,3012,3021,3102,3120,3201,3210;0+1+3+5=9,有1035,1053,1305,1350,1503,1530,3015,3051,3105,3150,3501,3510,5013,5031,5103,5130,5301,5310;0+2+3+4=9,有2034,2043,2304,2340,2403,2430,3024,3042,3204,3240,3402,3420,4023,4032,4203,4230,4302,4320;0+3+4+5=12,有3045,3054,3405,3450,3504,3540,4035,4053,4305,4350,4503,4530,5034,5043,5304,5340,5403,5430;1+2+4+5=12,有1245,1254,1425,1452,1524,1542,2145,2154,2415,2451,2514,2541,4125,4152,4215,4251,4512,4521,5124,5142,5214,5241,5412,5421;0+1+2+4+5=12,有10245,10254,10425,10452,10524,10542,12045,12054,14025,14052,15024,15042,12405,12504,14205,14502,15204,15402,12450,12540,14250,14520,15240,15420,20145,20154,20415,20451,20514,20541,21045,21054,24015,24051,25014,25041,21405,21504,24105,24501,25104,25401,21450,21540,24150,24510,25140,25410,40125,40152,40215,40251,40512,40521,41025,41052,42015,42051,45012,45021,41205,41502,42105,42501,45102,45201,41250,41520,42150,42510,45120,45210,50124,50142,50214,50241,50412,50421,51024,51042,52014,52041,54012,54021,51204,51402,52104,52401,54102,54201,51240,51420,52140,52410,54120,54210;1+2+3+4+5=15,有12345,12354,12435,12453,12534,12543,13245,13254,13425,13452,13524,13542,14235,14253,14325,14352,14523,14532,15234,15243,15324,15342,15423,15432,21345,21354,21435,21453,21534,21543,23145,23154,23415,23451,23514,23541,24135,24153,24315,24351,24513,24531,25134,25143,25314,25341,25413,25431,31245,31254,31425,31452,31524,31542,32145,32154,32415,32451,32514,32541,34125,34152,34215,34251,34512,34521,35124,35142,35214,35241,35412,35421,41235,41253,41325,41352,41523,41532,42135,42153,42315,42351,42513,42531,43125,43152,43215,43251,43512,43521,45123,45132,45213,45231,45312,45321,51234,51243,51324,51342,51423,51432,52134,52143,52314,52341,52413,52431,53124,53142,53214,53241,53412,53421,54123,54132,54213,54231,54312,54321;0+1+2+3+4+5=15,有6×5×4×3×2×1﹣5×4×3×2×1=5×5×4×3×2×1=600个;一共2×3+4×3+6×4+18×4+24+96+120+600=954(个)答:一共可以组合成954个能被3整除的数.12.如图,给定一个正六边形,其中矩形的每个顶点都位于正六边形各边的中点上.请问矩形的面积与正六边形的面积之比是几比几?【答案】见试题解答内容【分析】如图所示:作出红色的辅助线,则可以得出图中编序号的8个三角形的面积都相等,则红色大三角形的面积就等于正六边形的面积,求出红色大三角形的面积与原图中矩形的面积的关系,问题即可得解.【解答】解:如图所示:作出红色的辅助线,则1、2、3、4、5、6、7、8的面积都相等,将2、3、6、7分别移到1、4、5、8的位置,可以得出:红色大三角形的面积就等于正六边形的面积,又因红色大三角形的面积等于矩形的面积的2倍,所以矩形的面积与正六边形的面积之比是1:2.13.有一群小朋友分一堆苹果,如果减少1人,每人可分得8个;如果增加2人,每人可分得6个,求实际有多少个小朋友?【答案】见试题解答内容【分析】求出两次分配的人数差、分得的数量差,即可得出结论.【解答】解:两次分配的人数差是2+1=3(人),分得的数量差是8﹣6=2(个),所以减少1人后,共有3×6÷2=9(人),实际有小朋友9+1=10(人).14.一头大象每天吃90根香蕉,一头小象每天吃60根香蕉.(1)一头大象一个星期要吃多少根香蕉?(2)3头小象吃一堆200根的香蕉,够1天吃吗?【答案】见试题解答内容【分析】根据题意,一头大象每天吃90根香蕉,用1天吃的90根乘7天就是一头大象一个星期吃的根数;用一头小象一天吃的香蕉根数60乘3求出3头小象1天吃多少根香蕉,与给出的200进行比较,吃的根数小于或等于给出的200够吃,否则不够.【解答】解:根据题意可得:(1)90×7=630(根)答:一头大象一个星期吃630根香蕉.(2)3×60=180(根)180<200,够了.答:这些香蕉够3头小象1天吃.15.在1到100的全部自然数中,既不是8的倍数也不是5的倍数的数有多少个?【答案】见试题解答内容【分析】在1~100中,除去“既不是5也不是8的倍数”的数,剩下的数或者是5的倍数,或者是8的倍数,同时包含了40的倍数,100与这部分数的个数之差即为所求.【解答】解:100﹣[]﹣[]+[]=100﹣20﹣12+2=70(个)答:既不是8的倍数也不是5的倍数的数有70个.16.用一条60米的长绳沿着一道围墙围出长方形的三个边(如图所示,墙是长方形另一个边)请问这条绳子所能围出的最大面积为多少?【答案】见试题解答内容【分析】围成的长是宽2倍的时候所围成的长方形的面积最大.【解答】解:因为只围了三条边,沿长的中点画垂直于墙壁的线段,将长方形分成两个图形,只有当这两个图形是正方形时面积才最大.长:60÷2=30(米)宽:30÷2=15(米)面积:30×15=450(平方米)答:这条绳子所能围出的最大面积为450平方米.17.某班有50名学生,他们都参加了课外兴趣小组.活动内容有美术、声乐、书法,每个人可以参加1个、2个或3个兴趣小组.问班级中至少有几名同学参加的项目完全相同?【答案】见试题解答内容【分析】参加了课外兴趣小组的种类共有7种(看作7个抽屉):参加1个的有3种方法,参加2个的有3种方法,参加3个的有1种方法.将50名学生依他们参加的项目分成7类,然后根据抽屉原理解答即可.【解答】解:3+3+1=7(种)50÷7=7(名)…1(名)7+1=8(名)答:班级中至少有8名同学参加的项目完全相同.18.以尽可能小的自然数做被除数,以18,27,7为除数,余数都是5,问:被除数是几?【答案】见试题解答内容【分析】求出这三个数的最小公倍数,然后加上5即可求解.【解答】解:[18,27]=54[54,7]=378378+5=383答:被除数是383.19.在下面等号左边的数字之间适当地添上一些加号,使其结果等于144.(数的顺序不变)1 2 3 4 5 6 7 8 9=144【答案】见试题解答内容【分析】先凑成接近得数的式子,然后再通过加减乘除法,凑数即可.【解答】解:1+2+3+4+56+78=14420.一个正方体的六个面上分别写着ABCDEF六个字母.根据下列摆放的三种情况,判断每个字母的对面是什么?【答案】见试题解答内容【分析】根据前两个图形可得:E与D、F、C、B相邻,所以E的对面是A;第二个和第三个图形可得:F与B、A、D、E相邻,所以F的对面是C;然后进一步解答即可.【解答】解:根据分析可得,根据前两个图形可得:E与D、F、C、B相邻,所以E的对面是A;第二个和第三个图形可得:F与B、A、D、E相邻,所以F的对面是C;则剩下的B的对面就是D,所以,E的对面是A;F的对面是C;B的对面就是D.21.从数字1﹣6中选5个数字填入下面算式的方框中,使算式的结果尽量大.这个最大的结果是多少?□×(□﹣□)×(□﹣□)【答案】见试题解答内容【分析】根据题意明白,要求积尽可能大,也就是相乘的因数尽可能大,只能在1~6中选,又因为括号里面是两个数相减,因此减数越小,算出来的积越大,故两个减数一定是1和2,故应取4、5、6三个,这样如果把括号里面的看做一个整体当一个数看,则三个因数的和是一定的,即4+5+6﹣1﹣2=12,相当于在x+y+z=12,且x、y、z均大于零的条件下,求x×y×z的最大值,其获得最大值的条件是x=y=z时最大,故应有x=y=z=12÷3=4时,最大,再算出积即可.【解答】解:因为括号里面是两个数相减,因此减数越小,算出来的积越大,故两个减数一定是1和2;另外三个数一定是越大积越大,故应取4、5、6三个;这样如果把括号里面的看做一个整体当一个数看,则三个因数的和是一定的,即4+5+6﹣1﹣2=12,相当于在x+y+z=12,且x、y、z均大于零的条件下,求x×y×z的最大值;其获得最大值的条件是x=y=z时最大,故应有x=y=z=12÷3=4时,最大,分别填4、5、1、6、2时乘积最大,得到算式是:4×(5﹣1)×(6﹣2)=4×4×4=64.22.甲、乙、丙三人进行200米跑比赛.当甲跑至150米处时,比乙领先25米,比丙领先50米.(1)如果三人速度都不变,当甲到达终点时,乙比丙领先多少米?(2)如果乙的速度不变,丙的速度提高一倍,丙能否在乙之前到达终点?如果能,丙到达终点时,乙离终点多远?(3)如果甲、乙速度不变,丙想得第一名,他的速度应提高到原来速度的几倍?【答案】见试题解答内容【分析】先根据题意求出:甲、乙、丙三人是路程(或速度)比是6:5:4,然后再根据这个比,分别作答下面的3个问题即可.【解答】解:(1)甲跑150米,乙跑150﹣25=125米,丙跑150﹣50=100米三人的路程(或速度)比是150:125:100当甲跑了200米时,乙能跑200×125÷150=米,丙能跑200×100÷150=米﹣=33(米)答:乙比丙领先33米.(2)甲、乙、丙的速度比是150:125:(100×2)=6:5:8丙还剩下200﹣100=100米到达终点,乙还剩200﹣125=75米若乙跑75米时,丙可以跑75×8÷5=120米120>100若丙跑了100米,乙能跑100×5÷8=62.5米75﹣62.5=12.5(米)答:丙能到达终点,丙到达时,乙离终点还有12.5米.(3)丙要得第一名,他是速度应是甲速度的100÷50=2(倍)6×2÷4=3(倍)答:丙的速度应提高到原来速度的3倍.23.一次测验有10道问答题,每题的评分标准是:回答完全正确得5分,回答不完全正确得3分,回答错误或不答得0分.若保证至少有4人得分相同,参加这次测验的学生至少要有多少人?【答案】见试题解答内容【分析】最低得分为0分,最高得分为50分,分数在0~50分之间,由于1分,2分,4分,7分,47分,49分都不可能出现,所以共有45种得分情况,求至少有多少人参加考试,才能保证至少有3人得分相同,最坏的打算是每种得分情况都有3人,那么再有1个,才能保证至少有4人得分相同,从而得出问题答案.【解答】解:最低得分为0分,最高得分为50分,分数在0~50分之间,由于1分,2分,4分,7分,47分,49分都不可能出现,所以共有45种得分情况,至少:45×3+1=136(人);答:若保证至少有4人得分相同,参加这次测验的学生至少要有136人.。

【精选】小学四年级奥数竞赛数学竞赛试卷及答案图文百度文库

【精选】小学四年级奥数竞赛数学竞赛试卷及答案图文百度文库一、拓展提优试题1.相传唐代诗仙李白去买酒,提壶街上走,遇店加1倍,见花喝2杯.途中四遇店和花,最后壶中还剩2杯酒.壶中原有杯酒.2.把50颗巧克力分给4个小朋友,每个小朋友分得的巧克力的颗数各不相同.分得最多的小朋友至少可以得颗巧克力.3.如果a表示一个三位数,b表示一个两位数,那么,a+b最小是a+b 最大是,a﹣b最小是,a﹣b最大是.4.一次乐器比赛的规则规定:初赛分四轮依次进行,四轮得分的平均分不低于96分的才能进入决赛,小光前三轮的得分依次是95、97、94.那么,他要进入决赛,第四轮的得分至少是分.5.只能被1和它本身整除的自然数叫做质数,如:2,3,5,7等.那么,比40大并且比50小的质数是,小于100的最大的质数是.6.(7分)今年小翔和爸爸、妈妈的年龄分别是5岁、48岁、42岁.年后爸爸、妈妈的年龄和是小翔的6倍.7.一个两位数除723,余数是30,满足条件的两位数共有个,分别是.8.有6个数排成一行,它们的平均数是27,已知前4个数的平均数是23,后3个数的平均数34,第4个数是.9.一辆公共汽车有78个座位,空车出发,第一站上一位乘客,第二站上二位乘客,第三站上三位乘客,依次下去,多少站以后,车上坐满乘客?10.过元旦时,班委会用730元为全班同学每人买了一份价值17元的纪念品,剩余16元,那么,这个班共有学生名.11.一个正方形的面积与一个长方形的面积相等,若长方形的长是1024,宽是1,则正方形的周长是.12.如图,将一张圆形纸片对折,再对折,又对折,…,到第六次对折后,得到的扇形的面积是5,那么,圆形纸片的面积是.13.一列快车和一列慢车相向而行,快车的车长是315米,慢车的车长是300米.坐在慢车上的人看见快车驶过的时间是21秒,那么坐在快车上的人看见慢车驶过的时间是秒.【分析】坐在慢车上的人看见快车驶过的时间是21秒:既为人与快车的相遇问题,人此14.一个质数的2倍和另一个质数的5倍的和是36,求这两个质数的乘积是多少?15.有一笔钱,用来给四(1)班的学生每人买一个笔记本,若每本3元,则可多买6本;若每本5元,则差30元.若用完这笔钱,恰好给每人买一个笔记本,则共买笔记本24个,其中3元的笔记本个.【参考答案】一、拓展提优试题1.解:设李白壶中原有x杯酒,由题意得:{[(x×2﹣2)×2﹣2]×2﹣2}×2﹣2=2,{[(2x﹣2)×2﹣2]×2﹣2}×2﹣2=2,{[4x﹣6]×2﹣2}×2﹣2=2,{8x﹣14}×2﹣2=2,16x﹣30=2,16x=32,x=2;答:壶中原有2杯酒.故答案为:2.2.解:因为要使每个小朋友分得的巧克力的颗数各不相同,第一次先分给这4个小朋友的巧克力数依次为:1、2、3、4,从这里可以看出最后那个人是分得鲜花最多的人;那么还剩下50﹣(1+2+3+4)=40颗巧克力;如果这40颗巧克力全给最后这个人,那么他最多可分得4+40=44颗,要想让他分得的巧克力数少,那么剩下的40颗朵,可以再分给每个人10,由此可得出这时每个人的巧克力数为:11、12、13、14,答:分得最多的小朋友至少可以得14颗巧克力;故答案为:14.3.【分析】两个数越大,和就大,越小和就小,两个数越接近差越小,反之差就大,所以根据条件找出最大与最小的三位数与二位数,计算即可解答.解:a+b最小是10+100=110,a+b最大是99+999=1098,a﹣b最小是100﹣99=1,a﹣b最大是999﹣10=989.故答案为:110,1098,1,989.【点评】本题主要考查最大与最小问题,解题关键是知道最小的三位数是100,最大的三位数是999,最小的二位数是10,最大的二位数是99.4.【分析】要想四轮得分的平均分不低于96分,总分应该达到96×4=384分,用这一分数减去小光前三轮的得分即可解答.解:96×4﹣95﹣97﹣94,=384﹣95﹣97﹣94,=98(分);答:第四轮的得分至少是98分.【点评】本题主要考查简单规划问题,熟练掌握平均数的定义与求法是解答本题的关键.5.【分析】根据质数的概念:指在一个大于1的自然数中,除了1和此整数自身外,没其它约数的数;然后列举出比40大并且比50小的质数;求小于100的最大的质数,应从100以内的最大数找起:99、98是合数;进而得出结论.解:比40大比50小的质数有:41、43、47;小于100的最大质数是97;故答案为:41、43、47,97.【点评】解答此题的关键:根据质数的定义,并结合题意,进行例举即可.6.【分析】设x年后,爸爸、妈妈的年龄和是小翔的6倍,则:小翔x年后的年龄×4=小翔爸爸x年后的年龄+小翔妈妈x年后的年龄,列出方程解答即可.解:设x年后,爸爸、妈妈的年龄和是小翔的6倍,(5+x)×6=48+42+2x30+6x=90+2x4x=60x=15答:15年后,爸爸、妈妈的年龄和是小翔的6倍.故答案为:15.7.解:723﹣30=693,693=3×3×7×11,所以一个两位数除723,除数大于30的两位数因数有:11×3=33,11×7=77,3×3×7=63,11×3×3=99,共4个;故答案为:33、63、77、99.8.解:23×4+34×3﹣27×6,=92+102﹣162,=194﹣162,=32.答:第4个数是32.故答案为:32.9.解:设第n站以后车上坐满了乘客,可得:[1+1+(n﹣1)×1]×n÷2=78[2+n﹣1]×n÷2=78,[1+n]×n÷2=78,(1+n)×n=156,由于12×13=156,即n=12.答:12站以后,车上坐满乘客.10.【分析】根据题意,由减法的意义,用730元减去16元,求出全班同学每人买一份纪念品的总钱数,再根据数量=总价÷单价,代入数据解答即可.解:(730﹣16)÷17=714÷17=42(名);答:这个班共有学生42名.故答案为:42.【点评】解答此题的关键是求出全班同学每人买一份纪念品的总钱数,再根据单价、数量和总价之间的关系进行解答.11.【分析】若长方形的长是1024,宽是1,根据长方形的面积=长×宽,可求出长方形的面积,再根据正方形的面积公式可求出正方形的边长,然后再根据正方形的周长=边长×4可求出它的周长.解:1024×1=10241024=2×2×2×2×2×2×2×2×2×2=32×32,所以正方形的边长是32.32×4=128答:正方形的周长是128.【点评】本题主要考查了学生对长方形面积和正方形面积与周长公式的掌握.12.【分析】把这张圆形纸片对折1次,折成的角是以这张圆形纸片的圆心为顶点,两条半径为边的平角,平角=180°,再对折1次,就是把平角平均分成2分,每份是90°,再对折1次,就是把90°的角再平均分成2份,每份是45°,第六次对折后,平均分成了(2×2×2×2×2×2)=64份,得到的扇形的面积是圆面积的;由此解答即可.解:5=320答:圆形纸片的面积是320;故答案为:320.【点评】本题是考查简单图形的折叠问题,明确把圆对折6次后,得到的图形的面积是圆面积的.13.时具有慢车的速度,相遇路程为快车的车长315米,相遇时间为21秒,即人与慢车的速度和为快车与慢车的速度和为:315÷21=15(米/秒);那么坐在快车上的人看见慢车驶过的时间,既为人与慢车的相遇问题,人此时具有快车的速度,相遇路程为慢车的车长300米,由于两车为相向而行,所以坐在车上的人看到车通过的速度为两车的速度和.用快车车长除以快车与慢车的速度和即可.解:根据题意可得:快车与慢车的速度和:315÷21=15(米/秒);坐在快车上的人看见慢车驶过的时间是:300÷15=20(秒);答:坐在快车上的人看见慢车驶过的时间是20秒.故答案为:20.【点评】完成本题的关键是根据坐在慢车上的人见快车通过的时间求出两车的速度和,然后再根据相遇问题进一步解答即可.14.【分析】一个质数的2倍一定是偶数,一个质数的5倍一定是5的倍数,而36要拆成两个数的和,要么都是偶数,要么都是奇数,本题中2的倍数一定是偶数,所以只能拆成两个偶数,故此5的倍数只能是个位上带0的数,当是10时,36﹣10=26,26÷2=13当是20时,4×5=20,4不是质数当是30时,5×6=30,6不是质数,据此解答.解:根据分析可得:符合题意的5的倍数只能是10,20,305×2=10,5×4=20,5×6=30,4和6不是质数,所以只能是2,36﹣10=26.答:这两个质数的乘积是26.【点评】本题考查了质数的定义及其奇数与偶数的性质.15.【分析】若每本3元,则多3×6=18元,则总人数为(18+30)÷(5﹣3)=24人,总钱数有5×24﹣30=90元,进而可得结论.解:由题意得若每本3元,则多3×6=18元,则总人数为(18+30)÷(5﹣3)=24人,总钱数有5×24﹣30=90元,若钱用完刚好买24本,则3元的笔记本有(24×5﹣90)÷(5﹣3)=15个,故答案为24,15.【点评】本题考查分配盈亏问题,考查学生的计算能力,属于中档题.。

【经典】小学四年级数学奥数竞赛试卷及答案

【经典】小学四年级数学奥数竞赛试卷及答案一、拓展提优试题1.(15分)如图,小红和小丽的家分别在电影院的正西和正东方向,某日她们同时从自己家出发,小红每分钟走52米,小丽每分钟走70米,两人同时到达电影院.看完电影后,小红先回家,速度不变,4分钟后小丽也开始往家走,每分钟走90米,两人同时到家.求两人的家相距多少米.2.(8分)有一棵神奇的树上长了123个果子,第一天会有1个果子从树上掉落,从第二天起,每天掉落的果子数量比前一天多1个,但如果某天树上的果子数量少于这一天应该掉落的数量时,那么这一天它又重新从掉落1个果子开始,按照规律进行新的一轮,如此继续,那么第天树上的果子会都掉光.3.如果,那么=.4.两数相除,商是12,余数是3,被除数最小是.5.一个三位数A的三个数字所组成的最大三位数与最小三位数的差仍是A,那么,这个数A等于几?6.如图,将一张圆形纸片对折,再对折,又对折,…,到第六次对折后,得到的扇形的面积是5,那么,圆形纸片的面积是.7.四年级的两个班共有学生72人,其中有女生35人,四(1)班有学生36人,四(2)班有男生19人,则四(1)班有女生人.8.21个篮子,每个篮子中有48个鸡蛋,现在将这些鸡蛋装到一些盒子中,每个盒子装28个鸡蛋,可以装盒.9.一个两位数除723,余数是30,满足条件的两位数共有个,分别是.10.(15分)水果店用三种水果搭配果篮,每个果篮里有2个哈密瓜,4个火龙果,10个猕猴桃,店里现有的火龙果的数量比哈密瓜的3倍多10个,猕猴桃的数量是火龙果的2倍,当用完所有的哈密瓜后,还剩130个火龙果.问:(1)水果店原有多少个火龙果?(2)用完所有的哈密瓜后,还剩多少个猕猴桃?11.爸爸比儿子大24岁,今年爸爸的年龄是儿子的五倍,年后爸爸的年龄是儿子的三倍.12.小明有100元钱,买了3支相同的钢笔后还剩61元,则他最多还可以买支相同的钢笔.13.商店里有甲、乙、丙三筐苹果,丙筐内苹果的个数是甲筐内苹果的个数的2倍,若从乙筐内拿出12个苹果放入甲筐,则此时甲筐内比丙筐内少24个苹果,乙筐内比丙筐内多6个苹果,则乙筐内原有苹果个.14.围棋24元一副,象棋18元一副,用300元恰好可以购买两种棋子共14副,其中象棋有副.15.一个质数的2倍和另一个质数的5倍的和是36,求这两个质数的乘积是多少?16.3年前,爸爸的年龄是明明年龄的8倍,在今年,爸爸的年龄是明明年龄的5倍,则爸爸今年岁.17.教室里有若干学生,他们的平均年龄是8岁.如果加上李老师的年龄,他们的平均年龄就是11岁.已知李老师的年龄是32岁.那么,教室里一共有人.18.(8分)2015年1月1日是星期四,那么2015年6月1日是星期.19.袋子中有黑白两种颜色的棋子,黑子的个数是白子的个数的2倍,每次从袋中同时取出3个黑子和2个白子,某次取完后,白子剩下1个,黑子剩下31个,则袋中原有黑子个.20.有白棋子和黑棋子共2014个,按照如图的规律从左到右排成一行,其中黑棋子的个数是.○●○●●○●●●○●○●●○●●●○●○●●○…21.小慧从开始站立的A点向西走了15米,到达B点,接着从B点向东走了23米,到达C点,那么从C点到A点的距离是米.22.今年,小军5岁,爸爸31岁,再过年,爸爸的年龄是小军的3倍.23.甲,乙两人分别从A,B两地同时出发,相向而行,甲到达A,B中点C 时,乙距C点还有240米,乙到达C点时,甲已经超过C点360米,则两人在D点相遇时,CD的距离是米.24.(8分)小红去买水果,如果买5千克苹果则少4元,如果买6千克梨则少3元,已知苹果比梨每500克贵5角5分,那么小红买水果共带了元.25.有一个学生在做计算题时,最后一步应当除以20,但却错误地加上20,因而得到错误的结果是180.请问这道计算题的正确得数应是.26.相传唐代诗仙李白去买酒,提壶街上走,遇店加1倍,见花喝2杯.途中四遇店和花,最后壶中还剩2杯酒.壶中原有杯酒.27.将一张长11厘米,宽7厘米的长方形纸沿直线剪开,每次必须剪出正方形,这样最多能剪出个正方形.28.用0、1、2、3、4这五个数字可以组成个没有重复数字的偶数.29.粮店里有6袋面粉,分别重15、16、18、19、20、31千克,食堂分两次买走了其中5袋,已知第一次买走得重量是第二次的两倍,剩下的一袋重量为千克.30.《好少年》上下两册书的页码共用了888个数码,且下册比上册多用8页,下册书有页.31.已知x,y是大于0的自然数,且x+y=150,若x是3的倍数,y是5的倍数,则(x,y)的不同取值有对.32.如图,一小正方形的边为边向小正方形外作四个正方形,再依次连接几个定点,若图中阴影三角形的面积是S,则面积为2S的三角形有个,面积为8S的正方形有个.33.在一个长方形内,任意画一条直线,长方形被分成两部分(如图),如果画三条互不重合的直线,那么长方形至少被分成部分,最多被分成部分.34.甲,乙二人先后从一个包裹中轮流取糖果,甲先取1块,乙接着取2块,然后甲再取4块,乙接着取8块,…,如此继续.当包裹中的糖果少于应取的块数时,则取走包裹中所有糖果,若甲共取了90块糖果,则最初包裹中有块糖果.35.有一筐桃子,4个4个地数,多2个;6个6个地数,多4个;8个8个地数,少2个.已知这筐桃子的个数不少于120,也不多于150,共有个.36.一条大河,河中间(主航道)水的流速为每小时10千米,沿岸边水的流速为每小时8千米.一条船在河中间顺流而下,10小时行驶360千米,这条船沿岸边返回原地需要小时.37.A说:“我10岁,比B小2岁,比C大1岁.”B说:“我不是年龄最小的,C和我差3岁,C是13岁.”C说:“我比A年龄小,A是11岁,B比A 大3岁.”以上每人所说的三句话中都有一句是错误的,请确定其中A的年龄是岁.38.(7分)将偶数按下图进行排列,问:2008排在第列.2 4681614121018 20 22 2432 30 28 26…39.(17分)一块长方形木板,如果按长、短不同的两组边分别截去4分米,则面积减少了168平方分米,请问:原来长方形的周长是多少分米?40.少先队员计划做一些幸运星送给幼儿园的小朋友.如果每人做10个,还差6个没完成计划;如果其中4人各做8个,其余每人各做12个,就正好完成计划.问一共计划做颗幸运星.【参考答案】一、拓展提优试题1.【分析】根据题意知:小丽第一次用的时间×第一次的速度=(第一次用的时间﹣4)×第二次用的速度,可设第一次用的时间是x小时,据此可求出用的时间,再根据路程=速度和×时间可求出两家的距离.据此解答.解:设第一次相遇用的时间是x分钟70x=90×(x﹣4)70x=90x﹣36090x﹣70x=36020x=360x=360÷20x=18(52+70)×18=122×18=2196(米)答:两家相距2196米.【点评】本题的重点是求出两人相遇时用的时间,再根据路程=速度和×时间进行解答.2.解:因为1+2+3+4+5+6+7+8+9+10+11+12+13+14+15=120当到第十六天时不够16个需要重新开始.1+2=3即1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+1+2=123(个)故答案为:17天3.解:因为,所以(b+10a)×65=4800+10a+b,即10a+b=75,因此b=5,a=7.即=75.故答案为:75.4.解:除数最小为:3+1=412×4+3=48+3=51故答案为:51.5.解:设组成三位数A的三个数字是a,b,c,且a>b>c,则最大的三位数是a×100+b×10+c,最小的三位数是c×100+b×10+a,所以差是(a×100+b×10+c)﹣(c×100+b×10+a)=99×(a﹣c).所以原来的三位数是99的倍数,可能的取值有198,297,396,495,594,693,792,891,其中只有495符合要求,954﹣459=495.答:这个三位数A是495..6.【分析】把这张圆形纸片对折1次,折成的角是以这张圆形纸片的圆心为顶点,两条半径为边的平角,平角=180°,再对折1次,就是把平角平均分成2分,每份是90°,再对折1次,就是把90°的角再平均分成2份,每份是45°,第六次对折后,平均分成了(2×2×2×2×2×2)=64份,得到的扇形的面积是圆面积的;由此解答即可.解:5=320答:圆形纸片的面积是320;故答案为:320.【点评】本题是考查简单图形的折叠问题,明确把圆对折6次后,得到的图形的面积是圆面积的.7.【分析】先用两个班的总人数减去四(1)班的人数,求出四(2)班的人数,再用四(2)班的人数减去四(2)班男生的人数,求出四(2)班女生的人数,再用女生的总人数35人,减去四(2)班的女生人数,就是四(1)班的女生人数.解:35﹣(72﹣36﹣19)=35﹣17=18(人)答:四(1)班有女生 18人.故答案为:18.【点评】解决本题注意理解题意,把总人数按照两种方法进行分类:总人数=四(1)班人数+四(2)班人数=男生人数+女生人数.8.【分析】根据乘法的意义,可用21乘48计算出鸡蛋的总个数,然后再根据除法的意义,用总的鸡蛋个数除以28进行计算即可得到需要的盒子数.解:21×48÷28=1008÷28=36(盒)答:可以装36盒.故答案为:36.【点评】此题主要考查的是乘法意义和除法意义的应用.9.解:723﹣30=693,693=3×3×7×11,所以一个两位数除723,除数大于30的两位数因数有:11×3=33,11×7=77,3×3×7=63,11×3×3=99,共4个;故答案为:33、63、77、99.10.【分析】(1)所有的果篮用掉2个哈密瓜,4个火龙果,8个猕猴桃.当哈密瓜全部用完时,用掉火龙果的数量是哈密瓜的2倍,依题意,可画出线段图帮助理解:剩下的130个对应着箭头部分,然后列式解答;(2)先求出水果店原有的猕猴桃,即370×2=740(个);再求用完所有的哈密瓜后,还剩下的猕猴桃数即可.解:(1)(130﹣10)÷2=120÷2=60(个)60×6+10=360+10=370(个)答:水果店原有370个火龙果.(2)370×2=740(个)740﹣60×10=740﹣600=140(个)答:还剩140个猕猴桃.【点评】此题属于比较难的题目,解答的关键在于画出线段图来理解,找出数量关系式,列式解答.11.解:根据题意,由差倍公式可得:今年爸爸的年龄是儿子的五倍时,儿子的年龄是:24÷(5﹣1)=6(岁);爸爸的年龄是儿子的三倍时,儿子的年龄是:24÷(3﹣1)=12(岁);12﹣6=6(年).答:6年后爸爸的年龄是儿子的三倍.故答案为:6.12.【分析】根据题意,可用100减去61计算出购买3支钢笔花的钱数,然后再除以3计算出每支钢笔的钱数,最后再用100除以每支钢笔的钱数进行计算,得到的商就是最多购买钢笔的支数,得到的余数就是剩余的钱数,最后再用最多购买的钢笔数减去原来买的3支即可.解:(100﹣61)÷3=39÷3=13(元)100÷13=7(支)…9(元)7﹣3=4(支)答:他最多还可以买4支同样的钢笔.故答案为:4.【点评】此题主要考查的有余数除法计算方法的应用,解答时关键求出每支钢笔的单价.13.【分析】根据题意“若从乙筐内拿出12个苹果放入甲筐,则此时甲筐内比丙筐内少24个苹果,乙筐内比丙筐内多6个苹果”则原来甲筐比丙筐少(12+24)=36个苹果,结合原来丙筐内苹果的个数是甲筐内苹果的个数的2倍,可以求出原来甲筐和丙筐苹果的数量,同时知道原来乙筐比丙筐多(6+12)个苹果,进而求出原来乙筐苹果的个数.解:根据题意可知,原来甲筐比丙筐少(12+24)=36个苹果,且原来丙筐是甲筐个数的2倍,则原来甲筐有:36÷(2﹣1)=36个,原来丙筐有:36×2=72个,原来乙筐有:72+(6+12)=90(个)答:乙筐内原有苹果 90个.故答案为:90.【点评】此题考查了差倍问题,根据题意得出:原来甲筐比丙筐少(12+24)=36个苹果,原来乙筐比丙筐多(6+12)个苹果,是解答此题的关键.14.【分析】假设全是围棋,那么就有24×14=336元,这就比已知的300元多出了336﹣300=36元,因为一副围棋比一副象棋多24﹣18=6元,由此即可求得象棋的数量.解:假设全是围棋,则象棋就有:(24×14﹣300)÷(24﹣18)=36÷6=6(副);答:其中象棋有6副.故答案为:6.【点评】此题属于鸡兔同笼问题,解这类题的关键是用假设法进行分析,进而得出结论;也可以用方程进行解答.15.【分析】一个质数的2倍一定是偶数,一个质数的5倍一定是5的倍数,而36要拆成两个数的和,要么都是偶数,要么都是奇数,本题中2的倍数一定是偶数,所以只能拆成两个偶数,故此5的倍数只能是个位上带0的数,当是10时,36﹣10=26,26÷2=13当是20时,4×5=20,4不是质数当是30时,5×6=30,6不是质数,据此解答.解:根据分析可得:符合题意的5的倍数只能是10,20,305×2=10,5×4=20,5×6=30,4和6不是质数,所以只能是2,36﹣10=26.答:这两个质数的乘积是26.【点评】本题考查了质数的定义及其奇数与偶数的性质.16.【分析】3年前,爸爸的年龄是父子年龄差的,今年后爸爸的年龄是年龄差的,共经过了3年,对应的分率是(),用除法可以求出父子的年龄差,进而可以求出爸爸今年的年龄.据此解答.解:3÷()=3÷()=3×=28(岁)28×=35(岁)答:爸爸今年35岁.故答案为:35.【点评】父子年龄差是个不变的量,而年龄的倍数却年年不同.我们可以抓住“差不变”这个特点,再根据父子年龄之间的倍数关系与年龄之和等条件解答这类应用题.17.解:(32﹣11)÷(11﹣8)+1=21÷3+1=8(人)答:教室里一共有 8人.故答案为:8.18.解:因为2015÷4=503…3,所以2015年是平年,2月有28天,(31×3+30+28)÷7=151÷7=21(个)…4(天)因为2015年1月1日是星期四,4+4﹣7=1所以2015年6月1日是星期一.故答案为:一.19.【分析】因黑子个数是白子个数的2倍,可假设黑子每次取的个数也是白子的2倍,即黑子每次2×2=4个、白子每次取2个,则白子余1个时,黑子余2个.现每次黑子取少4﹣3=1个了,则黑子多出来的数量,除以应取和实取的差,就是取的次数.据此解答.解:假设黑子每次取的个数也是白子的2倍,即黑子每次2×3=6个、白子每次取3个,则:(31﹣1×2)÷(2×2﹣3)=29÷1=29(次)3×29+31=87+31=118(个)答:袋中原有黑子 118个.故答案为:118.【点评】本题的关键是根据黑子是白子个数的2倍,假设每次取黑子的个数是白子的2倍,与实际取黑子的差,及实际取与假设取应剩下黑子的差,进行解答.20.【分析】根据每9个棋子是一个循环,用2014除以9,用得到的商乘以一个循环中黑棋子的个数,再根据余数的情况判断最后需加上几个黑棋子即可.解:2014÷9=223…7,循环了223次后,还剩7个,里面有4个黑棋子,223×6+4=1338+4=1342(个)答:其中黑棋子的个数是1342个.故答案为:1342.【点评】答此类问题的关键是找出每几个数或每几个图形是一个循环.21.【分析】我们通过画图进行解决,向西走15米,然后再向东走23米其实,从C点到A点的距离是就是23米与15米的差.解:画图如下:从C点到A点的距离是:23﹣15=8(米),答:从C点到A点的距离是8米.22.【分析】根据“今年,小军5岁,爸爸31岁”求出父子的年龄差是(31﹣5)岁,由于此年龄差不会改变,倍数差是3﹣1=2,所以利用差倍公式,求出当父亲年龄是儿子年龄的3倍时儿子的年龄,由此进一步解决问题.解:父子年龄差是:31﹣5=26(岁),爸爸的年龄是小军的3倍时,小军的年龄是:26÷(3﹣1)=26÷2=13(岁),13﹣5=8(年),答:再过8年,爸爸的年龄是小军的3倍.故答案为:8.【点评】解答此题的关键是根据两人的年龄差不会随着时间的改变而变化,利用差倍公式求出儿子相应的年龄,由此解决问题.差倍问题的关系式:数量差÷(倍数﹣1)=1倍数(较小数),1倍数(较小数)×倍数=几倍数(较大数).23.【分析】由题目中的已知条件,得出甲乙的速度比,进而又得出他们的路程比,这样求出甲到达中点后再与乙共行240米,甲行的路程即CD之间的距离.解:由题意知“甲走360米时乙正好走240米”,甲、乙的速度比是360:240=3:2相同时间内,甲、乙的路程比等于他们的速度比即3:2甲乙共行240米,甲行的路程是240×3÷(2+3)=144(米)故:CD的距离是144米.【点评】解此题的突破口就是能得出他们的速度比,之后就可轻松解答了.24.解:设梨每千克x元,则每千克苹果x+0.55×2=(x+1.1)元6x﹣3=5×(x+1.1)﹣46x﹣3=5x+5.5﹣46x﹣5x=1.5+3x=4.56×4.5﹣3=27﹣3=24(元)答:小红买水果共带了24元.故答案为:24.25.解:设最后一步之前运算的结果是a,a+20=180,那么:a=180﹣20=160;正确的计算结果是:a÷20=160÷20=8;故答案为:8.26.解:设李白壶中原有x杯酒,由题意得:{[(x×2﹣2)×2﹣2]×2﹣2}×2﹣2=2,{[(2x﹣2)×2﹣2]×2﹣2}×2﹣2=2,{[4x﹣6]×2﹣2}×2﹣2=2,{8x﹣14}×2﹣2=2,16x﹣30=2,16x=32,x=2;答:壶中原有2杯酒.故答案为:2.27.解:根据题干分析可得:答:一共可以剪出6个正方形.故答案为:6.28.解:一位偶数有:0,2和4,3个;两位偶数:10,20,30,40,12,32,42,14,24,34,一共有10个;三位偶数:位是0时,十位和百位从4个元素中选两个进行排列有A42=12种结果,当末位不是0时,只能从2和4中选一个,百位从3个元素中选一个,十位从三个中选一个共有A21A31A31=18种结果,根据分类计数原理知共有12+18=30种结果;四位偶数:当个位数字为0时,这样的四位数共有:=24个,当个位数字为2或者4时,这样的四位数共有:2×C41×=36个,一共是24+36=60(个)五位偶数:当个位数字为0时,这样的五位数共有:A44=24个,当个位数字为2或者4时,这样的五位数共有:2×C31A33=36个,所以组成没有重复数字的五位偶数共有24+36=60个.一共是:3+10+30+60+60=163(个);答:可以组成 163个没有重复数字的偶数.故答案为:163.29.解:15+16+18+19+20+31=119(千克),食堂共买走的总量是:119﹣20=99(千克),99÷3=33(千克),第二次买走得重量是:15+18=33(千克),第一次买走得重量是:16+31+19=66(千克);答:剩下的一袋重量为20千克.故答案为:20.30.解:个位数1~9页共有9个数码;两位数10~99共用2×90=180个数码;此时还剩888﹣9﹣180=699个数码,699÷3=233,699个数码可组成233个三位数,所以上下册共有:233+100﹣1=332页,则下册书有:(332+8)÷2=340÷2,=170(页).即下册书有170页.故答案为:170.31.【分析】首先根据5的整除特性可知尾数是0或者5,那么150和5的倍数差依然是尾数是0或者5的数字枚举即可.解:根据5的整除特性可知尾数是0或者5.那么150减去这个数字尾数还是0或者5.可以找到尾数是0或者5的数字是3的倍数.30,60,90,120,15,45,75,105,135共9个数字满足条件.对应的数字就有9对.故答案为:9.【点评】本题是考察数的整除特性,关键在于找到尾数是0或5的数字是3的倍数,枚举即可解决问题.32.【分析】(1)观察题干可知,阴影部分的面积是S,则面积为2S的三角形是每个小正方形的面积的一半,即三角形的两条直角边都是小正方形的边长,由此即可计数;(2)阴影部分的面积是S,则它所在的正方形的面积是4S,则面积为8S的正方形只有中间1个,解:(1)观察图形可知,面积为2S的独三角形有4个;由两个面积为S的三角形组成的三角形有4×4=16(个),所以一共有4+16=20(个);(2)面积为8S的正方形只有1个.故答案为:20;1.【点评】本题考查平面图形数量的确定,属于中档题目,注意仔细地观察图形,要做到不重不漏.33.【分析】三条线不重合,不相交时,把长方形分成的部分最少;三条线不重合,但在长方形内两两相交,有3个交点,把长方形分成的部分最多,如下图所示,因此得解.解:由分析可得:故答案为:4,7.【点评】认真分析题意,找出规律是解决此题的关键,线的交点越多,图形被分的部分越多.34.【分析】通过题意,甲取1块,乙取2块,甲取4块,乙取8块, (1)20,2=21,4=22,8=23…,可以看出,甲取的块数是20+22+24+26+28+…,相应的乙取得块数是21+23+25+27+29+…,我们看一看90是甲取了几次,乙相应的取了多少次,把两者总数加起来,即可得解.解:甲取的糖果数是20+22+24+…+22n=90,因为1+4+16+64+5=90,所以甲共取了5次,4次完整的,最后的5块是包裹中的糖果少于应取的块数,说明乙取了4次完整的数,即乙取了21+23+25+27=2+8+32+128=170(块),90+170=260(块),答:最初包裹中有 260块糖果.故答案为:260.【点评】判断出甲乙取得次数是解决此题的关键.35.【分析】可以看做4个4个地数,少2个;6个6个地数,少2个;8个8个地数,也是少2个.也就是4、6、8的公倍数减2.[4、6、8]=24.可以记作24x﹣2,120<24x﹣2<150.x是整数,x=6.这筐桃子共有24×6﹣2,计算即可.解:[4、6、8]=24.这筐桃子的数量可以记作24x﹣2,120<24x﹣2<150.x是整数,所以x=6,这筐桃子共有:24×6﹣2=142(个).答:这筐桃子共有142个.故答案为:142.【点评】关键是通过把原题转化,运用了求最小公倍数以及解不等式的方法解决问题.36.解:船的静水速度为:360÷10﹣10,=36﹣10,=26(千米/时);返回原地需要:360÷(26﹣8),=360÷18,=20(小时);答:这条船沿岸边返回原地需要20小时.故答案为:20.37.解:根据题干分析,将讨论分析的过程利用表格的形式进行统计如下:×√第一句第二句第三句A说我10岁×比B小2岁√比C大1岁√B说我不是最小的C和我差3岁C是13岁C说我比A年龄小×A是11岁√B比A大3岁√以得出:B是11+2=13岁,C是11﹣1=10岁;即A11岁、B13岁、C10岁;将这个结论代入上表中,可以得出B说的C是13岁时错误的,其他两句正好符合题意是正确的,由此可得,此假设成立;答:由上述推理可以得出A是11岁.故答案为:11.38.【分析】首先发现数列中的偶数8个一循环,奇数行从左到右是从小到大,偶数行从右到左是从小到大,与上一行逆数;再求出2008是第2008÷2=1004个数,再用1004除以8算出余数,根据余数进一步判定.解:2008是第2008÷2=1004个数,1004÷8=125…4,说明2008是经过125次循环,与第一行的第四个数处于同一列,也就是在第4列.故答案为:4.39.解【分析】如图所示:,假设长、宽各截去4分米后剩下的长为b分米,剩下的宽为a分米,则截去的部分的面积为:4b+4a+4×4=168,求出a+b=(168﹣16)÷4=38,原来长方形的周长为:(b+4+a+4)÷2,据此代入(a+b)的值计算即可.:如图所示:,设长、宽各截去4分米后剩下的长为b分米,剩下的宽为a分米, 4b+4a+4×4=1684(a+b)=168﹣164(a+b)=152,4(a+b)÷4=152÷4a+b=38,原长方形的周长为:(b+4+a+4)×2=(38+8)×2=46×2=92(分米).答:原来长方形的周长是92分米.40.解:[(12﹣8)×4+6]÷(12﹣10),=[16+6]÷2,=22÷2,=11(人);10×11+6=116(个);答:一共计划做116颗幸运星.故答案为:116.。

【经典】小学四年级奥数竞赛数学竞赛试卷及答案

【经典】小学四年级奥数竞赛数学竞赛试卷及答案一、拓展提优试题1.(8分)传说,能在三叶草中找到四叶草的人,都是幸运之人.一天,佳佳在大森林中摘取三叶草,当她摘到第一颗四叶草时,发现摘到的草刚好共有100片叶子,那么,她已经有颗三叶草.2.(8分)小红去买水果,如果买5千克苹果则少4元,如果买6千克梨则少3元,已知苹果比梨每500克贵5角5分,那么小红买水果共带了元.3.少先队员计划做一些幸运星送给幼儿园的小朋友.如果每人做10个,还差6个没完成计划;如果其中4人各做8个,其余每人各做12个,就正好完成计划.问一共计划做颗幸运星.4.空心圆和实心圆排成一行如下图所示:○●○●●○●●●○●○●●○●●●○●○●●○●●●…在前200个圆中有个空心圆.5.小慧从开始站立的A点向西走了15米,到达B点,接着从B点向东走了23米,到达C点,那么从C点到A点的距离是米.6.某冷饮店推出“夏日冰饮第二杯半价”活动,小刚买了2杯饮料共花了13元5角.那么一杯饮料的原价是元.7.如果,那么=.8.一列火车身长90米,火车以每分钟160米的速度通过山洞,用了3分钟,山洞长390米.9.在一个停车场,共有24辆车,其中汽车是4个轮子,摩托车是3个轮子,这些车共有86个轮子,那么三轮摩托车有辆.10.小东和小荣同时从甲地出发到乙地,小东每分钟行50米,小荣每分钟行60米,小荣到达乙地后立即返回,若两人从出发到相遇用了10分钟,则甲、乙两地相距米.11.甲、乙两个油桶中共有100千克油,将乙桶中的15千克油注入甲桶,此时甲桶中的油是乙桶中的油的4倍.那么,原来甲桶中油比乙桶中的油多千克.12.如图,将一张圆形纸片对折,再对折,又对折,…,到第六次对折后,得到的扇形的面积是5,那么,圆形纸片的面积是.13.四年级的两个班共有学生72人,其中有女生35人,四(1)班有学生36人,四(2)班有男生19人,则四(1)班有女生人.14.(8分)有10张卡片,上面分别写着1,2,3,…,9,10.那么至少取出6张卡片,才能保证取出的卡片中,有两张卡片上的数字之和为11.15.(8分)杨树、柳树、槐树、桦树和梧桐树各一棵树种成一排,相邻两颗树之间的距离都是1米.杨树与柳树、槐树之间的距离相等,桦树与杨树、槐树之间的距离相等.那么梧桐树与桦树之间的距离是米.【参考答案】一、拓展提优试题1.解:(100﹣4)÷3=96÷3=32(棵)答:她已经有了32棵三叶草.故答案为:32.2.解:设梨每千克x元,则每千克苹果x+0.55×2=(x+1.1)元6x﹣3=5×(x+1.1)﹣46x﹣3=5x+5.5﹣46x﹣5x=1.5+3x=4.56×4.5﹣3=27﹣3=24(元)答:小红买水果共带了24元.故答案为:24.3.解:[(12﹣8)×4+6]÷(12﹣10),=[16+6]÷2,=22÷2,=11(人);10×11+6=116(个);答:一共计划做116颗幸运星.故答案为:116.4.解:200÷9=22…2,所以22×3+1=67(个),答:前200个圆中有67个空心圆.故答案为:67.5.【分析】我们通过画图进行解决,向西走15米,然后再向东走23米其实,从C点到A点的距离是就是23米与15米的差.解:画图如下:从C点到A点的距离是:23﹣15=8(米),答:从C点到A点的距离是8米.6.【分析】把第一杯饮料的原价看作单位“1”,则第二杯饮料的价钱是第一杯的,由题意可知:第一杯饮料价钱的(1+)是13.5元,根据已知一个数的几分之几是多少,求这个数,用除法解答.解:13.5÷(1+),=13.5÷1.5,=9(元);答:一杯饮料的原价是9元;故答案为:9.【点评】解答此题的关键是:判断出单位“1”,进而根据已知一个数的几分之几是多少,求这个数,用除法解答.7.解:因为,所以(b+10a)×65=4800+10a+b,即10a+b=75,因此b=5,a=7.即=75.故答案为:75.8.解:160×3﹣90,=480﹣90,=390(米),答:山洞长390米.故答案为:390.9.解:假设24辆全是4个轮子的汽车,则三轮车有:(24×4﹣86)÷(4﹣3),=10÷1,=10(辆),答:三轮车有10辆.故答案为:10.10.【分析】两人从出发到相遇用了10分钟,也就是二人相遇时都行了10分钟,行了两个单程,因此先求出两人的速度和,再乘上相遇时间,再除以2,解决问题.解:(50+60)×10÷2=110×10÷2=1100÷2=550(米)答:甲、乙两地相距550米.故答案为:550.【点评】此题根据关系式:速度和×相遇时间=路程,进而解决问题.11.【分析】根据题意,把甲乙两个油桶的共存油看作5份,可以计算出每份是多少千克油,将乙桶中的15千克油注入甲桶后,甲桶占了其中的4份,乙桶占了其中的1份,1份即100÷5=20千克,可以计算出注入后各个油桶的千克,再用乙桶的油减去15千克,甲桶的油加上15千克,即是甲乙两桶原存油的数量,再用甲桶原存油的数量减去一桶原存油的数量,列式解答即可解:100÷(1+4)=20(千克)注入后的甲桶:4×20=80(千克)倒出后的乙桶:1×20=20(千克)原甲桶存油:80﹣15=65(千克)原乙桶存油:20+15=35(千克)甲桶中油比乙桶中的油多:65﹣35=30(千克)答:原来甲桶中油比乙桶中的油多30千克.故答案为:30.【点评】解答此题的关键是分清注入后甲乙两桶油的关系,即甲桶存油等于乙桶存油的4倍,然后可计算出注入后甲乙两桶油的存量,再计算出注入前两桶油的重量,二者相减即可.12.【分析】把这张圆形纸片对折1次,折成的角是以这张圆形纸片的圆心为顶点,两条半径为边的平角,平角=180°,再对折1次,就是把平角平均分成2分,每份是90°,再对折1次,就是把90°的角再平均分成2份,每份是45°,第六次对折后,平均分成了(2×2×2×2×2×2)=64份,得到的扇形的面积是圆面积的;由此解答即可.解:5=320答:圆形纸片的面积是320;故答案为:320.【点评】本题是考查简单图形的折叠问题,明确把圆对折6次后,得到的图形的面积是圆面积的.13.【分析】先用两个班的总人数减去四(1)班的人数,求出四(2)班的人数,再用四(2)班的人数减去四(2)班男生的人数,求出四(2)班女生的人数,再用女生的总人数35人,减去四(2)班的女生人数,就是四(1)班的女生人数.解:35﹣(72﹣36﹣19)=35﹣17=18(人)答:四(1)班有女生 18人.故答案为:18.【点评】解决本题注意理解题意,把总人数按照两种方法进行分类:总人数=四(1)班人数+四(2)班人数=男生人数+女生人数.14.解:10÷2=5(个)5+1=6(个)故填615.解:杨树与柳树、槐树之间的距离相等,所有三种树的位置有可能是:柳□杨□槐,柳杨槐□□,□柳杨槐□,□□柳杨槐,其中□表示暂时不知道.而桦树与杨树、槐树之间的距离相等,所以只有可能是:柳□杨桦槐,剩余的一个位置是梧桐树,所以梧桐树和桦树间的距离是2米.故答案为:2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学四年级数学竞赛试卷及答案
一、填空。

(共20分,每小题2分)
1.被除数是3320,商是150,余数是20,除数是()。

2.3998是4个连续自然数的和,其中最小的数是()。

3.有一个两位数,在它的某一位数字的前面加上一个小数点,再和这个两位数相加,得数是20.9。

这个两位数是()
4.填一个最小的自然数,使225×525×()积的末尾四位数字都是0。

5.在下面的式子中填上括号,使等式成立。

5×8+16÷4-2=20
6.从1、2、3、4、5、6、7、8、9九个数中,任取3个数组成一组,使它的平均数是5,有()
种取法。

7.某地的邮政编码可用ABCCDD表示,已知这六个数字的和是8,A与B的和等于2个D,A是
最小的自然数。

这个邮政编码是()。

8.两个数之和是444,大数除以小数商11,且没有余数,大数是()。

9.把5、11、14、15、21、22六个数填入下面的括号内,使等式成立。

()×()×()=()×()×()
二、判断。

(对的在括号内画“√”,错的画“×”,共10分,每小题2分) 11.大于0.9997而小于0.9999的小数只有0.9998。

()
12.一张长方形彩纸长21厘米,宽15厘米,先剪下一个最大的正方形,再从余下的纸上剪下
一个最大的正方形。

这时纸的长是6厘米。

()
13.一个箱子里放着几顶帽子,除2顶以外都是红的,除2顶以外都是蓝的,除2顶以外都是
黄的。

箱子中一共有3顶帽子。

()
14.一个占地1公顷的正方形苗圃,边长各加长100米,苗圃的面积增加3公顷。

() 15.有铅笔180支,分成若干等份,每份不得少于7支,也不能多于25支,共有7种不同的分法。

三、选择。

(把正确答案的序号填在括号里,共10分,每小题2分)
16.5÷7的商用循环小数表示,这个小数的小数点后面第200位数字是()。

A、7
B、1
C、2
D、5
17.两根同样长的绳子,第一根剪去它的一半,第二根剪去0.5米,剩下的两段绳子()。

A、第一根长 B、第二根长 C、同样长 D、不一定哪根长
18.用一根长38厘米的铁丝围长方形,使它们的长和宽都是整厘米数,可以有()种围法。

A、7 B、8 C、9 D、10
19.一个数的小数点向右移动一位,比原数大59.94,这个数是()。

A、6.66 B.11.66 C.66.6 D.116.6
20.用100个盒子装杯子,每盒装的个数都不相同,并且盒盒不空,那么至少要()个杯子。

A、100 B、500 C、1000 D、5050
四、简算与计算。

(21~24题写出简算过程,共25分,每小题5分) 21.395-283+154+246-117 22.8795-4998+2994-3002-2008 23.125×198÷(18÷8) 24.2772÷28+34965÷35
25.三个正方形叠放在一起,如图所示。

求:∠1的度数。

五、解决问题。

(共35分,每小题7分)。

26.祖父今年75岁,3个孙子的年龄分别是17岁、15岁和13岁,多少年后3个孙子的年龄和等于祖父的年龄?
27.王雪读一本故事书,第一天读了8页,以后每天都比前一天多读3页,最后一天读了32页正好读完。

她一共读了多少天?
28.学校买来一些毽子,分给全校各班。

如果每班16个,恰好分完;如果少给2个班,每个班多分1个,还剩10个。

班级和毽子各多少个?
29.花店有菊花、玫瑰、郁金香共78支,其中菊花是玫瑰的2倍多4支,玫瑰是郁金香的3倍少2支。

问这三种花各有多少支?
30.从甲城往乙城运58吨货物,如果用载重5吨的大卡车运一趟,运费150元;用载重2吨的中卡车运一趟,运费80元;用载重1吨的小卡车运一趟,运费50元。

要想用最少的钱一次运完这批货物,需大、中、小卡车各多少辆?(只填写得数,不写算式)
大卡车()辆,中卡车()辆小卡车()辆
参考答案:
一、填空。

(共20分,每小题2分)
1.22 2.998 3.19 4.225×525×(16) 5.5×[(8+16)÷4-2]=20 6.8 7.130022 8.407 9.(5)×(21)×(22)=(11)×(14)×(15) 10.略二、判断。

(共10分,每小题2分) 11.× 12.× 13.√ 14.√ 15.×三、选择。

(共10分,每小题2分) 16.B 17.D 18.C 19.A 20.D 四、简算与计算。

(共25分,每小题5分) 21.395-283+154+246-117
=395-(283+117)+(154+246) =395-400+400 =395
22.8795-4998+2994-3002-2008
=8800-5000+3000-3000-2000-5+2-6-2-8=1800-19 =1781
23.125×198÷(18÷8) =125×8×(198÷18) =1000×11 =11000
24.2772÷28+34965÷35 =2772÷4÷7+34965÷5÷7 =693÷7+6993÷7 =(693+6993)÷7
=7686÷7 =1098
25.90°-45°=45° 90°-30°=60° 45°+60°-90°=15°
(共35分,每小题7分) 26.(75-17-15-13)÷(3-1) =30÷2 =15(年)答:五、解决问题。

(略) 27.(32-8)÷3+1 =24÷3+1 =9(天)答:(略) 28.(16×2-10)+2 =(32-10)+2 =24(个) 16×24=384(个)答:(略)
29.(78+2×3-4)÷(1+3+3×2)=8(支) 3×8-2=22(支) 22×2+4=48(支)答:(略)
30.用大卡车(11)辆,中卡车(1)辆,小卡车(1)辆。

相关文档
最新文档