不定积分的性质
定积分和不定积分的计算方法总结

定积分和不定积分的计算方法总结一、不定积分的定义和基本性质不定积分是函数积分的一种形式,表示为∫f(x)dx,其中f(x)为被积函数,dx表示自变量。
1.不定积分的定义不定积分是求导运算的逆运算。
如果F(x)是f(x)的一个原函数,那么F(x) + C也是f(x)的一个原函数,其中C为常数。
因此,∫f(x)dx = F(x) + C。
2.基本性质(1) 常数因子法则:若c是常数,则有∫cf(x)dx = c∫f(x)dx。
(2) 线性法则:若f(x)和g(x)都有原函数,则有∫(f(x) ±g(x))dx = ∫f(x)dx ± ∫g(x)dx。
(3) 逐项积分法则:若f(x)的原函数为F(x),g(x)的原函数为G(x),则有∫(f(x) ± g(x))dx = F(x) ± G(x)。
(4) 分部积分法则:若f(x)和g(x)都具有原函数,则有∫f(x)g(x)dx = F(x)g(x) - ∫(F(x)g'(x))dx,其中F(x)为f(x)的一个原函数,g'(x)为g(x)的导数。
二、定积分的定义和计算方法定积分是计算函数在一个有限区间上的面积的数值,表示为∫[a,b]f(x)dx,其中f(x)为被积函数,[a,b]为积分区间。
1.定积分的定义设f(x)在区间[a,b]上有定义,将[a,b]分为n个小区间,长度为Δx,选择每个小区间上一点ξi,记为Δx = (b-a)/n,ξi = a + iΔx (i = 0,1,2,...,n)。
定义Riemann和为S(f, Δx, ξ) = Σf(ξi)Δx =f(ξ1)Δx + f(ξ2)Δx + ... + f(ξn)Δx。
当n趋于无穷大时,Riemann和的极限称为函数f(x)在区间[a,b]上的定积分,记为∫[a,b]f(x)dx。
2.计算方法(1)几何意义:定积分表示函数f(x)在区间[a,b]上曲线与x轴之间的面积。
《高等数学(上)》不定积分(全)

23
第二讲 第一换元积分法
例3
求不定积分 cos3 xsin5 xdx.
解
cos3 xsin5 xdx cos2 xsin5 xdsin x
(1 sin2 x)sin5 xd sin x
sin5 xdsin x sin7 xdsin x
1 sin6 x 1 sin8 x C.
接积分法和第一换元法计算的题目.
31
第二讲 第二换元积分法
例 1 求 a2 x2 dx (a 0).
解
令x a sin t( π t π),则dx a costdt,于是有 22
a2 x2 dx a cost a costdt a2 cos2 tdt a2 1 cos 2tdt 2
类似可得
x2
1
a2
dx
1 2a
ln
|
a a
x x
|
C.
20
第二讲 第一换元积分法
例2
求 csc xdx.
解法一
csc
xdx
sin
x
dx
sin
x
sin
xdx
cos
d x
cos
x
利用例结论,得
原式 ln cos x cos x
C ln
( cos x) cos x
C
ln cos x C ln | csc x cot x | C sin x
1
3.
1dx x
ln
|
x
|
C;
6. sin xdx cos x C;
12
五、基本积分公式
7. cos xdx sin x C;
11. cot x csc xdx csc x C;
04第四章--不定积分

第四章不定积分'、不定积分的概念和性质1 •原函数:若F (x) = f (x),则称F (x)为f (x)的一个原函数. 2.不定积分:若 F (x)二 f (x),则 f (x)dx = F (x) • C • 3 .不定积分的基本性质:(1) [ f(x)dx]" = f(x)或 d f (x)dx = f (x)dx ;(2) F (x)dx=F(x) C 或 dF(x) =F(x) C . 例1 (1 )若xln x 是f (x)的一个原函数,求 f (x);(2) 若F(x)是 叱 的一个原函数,求dF(x 2);x(3)若e »是f (x)的一个原函数,求e xf (x)dx ;1 1(4)若 f (x) e xdx =e xC ,求 f (x);(5) 求■ f (x 3)dJ ;(6) 若 f(x)二 e*,求f (lnx)dx . x解(1)因为 f (x) =(xln x)" = ln x 1,所以f (x)J .xsin x(2)因为F (x)-——,所以x (3)因为 f(x) =(e»)〔则 f (x)= ,所以e xf (x)dx 二 e x e»dx 二 dx 二 x C .f (x)g x. 2 dF(x 2) =[F (x 2) 2x]d^Sin ^x - x 22xdx 二 2sin x 2dx . (4) 1因为 f(x)e x= 1e11 —e x,所以■ f(x 3)dJ = f (x 3).f (ln x) dx 二 f (In x)d(ln x)二 f (In x) C = e " xc =丄 C . x x(5) (6)、直接积分法被积函数经过恒等变形后,能用基本积分公式和不定积分的性质计算不定积分的方法,称为直接积分法.例2 (1) (3) (5) (7) (9) 解(1)(2)(3)(4)(5)(6)(7)(8)(9) 计算下列不定积分:(x 1)2 .rr dx;2-^pdx;1 x24也pdx;1 x2cos2x ,dx ;sin x cosxsin4 x cos4 x 门2 2dx.sin xcos x2 3j—LdxW vxx x xa e dx = (ae) dx(2)(4)(6)a x e x dx ;2(12x2)dx;x (1 x )sin2 -dx ;2cos2x ,dx ;xsin212x21x"2)dx52 2 4x25-2 2-x2 2x2 C .3—- dx = 11 x2 1 x21 2x2.—厂dx 二x2(1 x2)4x2dx1 x2cIn (ae)1 px = x - arctanx +C .1 1 12 2 dx 二arctan x -x x1 3dx x x arcta nx C .3_1亠1x1 —cosx ’1 .dx(x - sin x) C .2 22. 2.cos x - sin x .dx dx = (cos x - sinx)dx' sin x + cosx二sin x cosx C .,「1 —2sin2 x , rdx 2 dx =si n2 x--cot x -2x C ..4 亠 4sin x cos xcos2xsin x cosxcos2x・2sin x-2 dxsin2 xcos2 x 血二・4sin x・2 2~sin xcos x4cos x2+・2 2 ' sinxcos x ydx=(ta n 2x cot 2x)dx= (sec x csc x -2)dx=tan x - cot x - 2x C .三、换元积分法1 •第一换元积分法(凑微分法)设 f (u)du = F(u) • C ,则u (x)f[ (x)] : (x)dx 二 f [ :(x)]d :(x) f(u)du^F(u) C u一(x)F[「(x)] C .常用的凑微分公式:f (ax b)dx =1 f (ax b)d(ax b);a • f(ax n b)x nJL dx 二丄 f(ax n b)d(ax nb); na Lf (lnx)2dx= f (ln x)d(ln x); xr J 1十J f — pdx=-J f (7) f(e ")e "d ^-: f (e")d(e");(8) f (sin x)cosxdx= f (sin x)d(sin x);(9) f (cosx)sin xdx - - f (cosx)d (cos x);2(10) f (tanx)sec xdx 二 f (tanx)d(tanx); (11)f (cot x) csc 2xdx = - f (cot x) d (cot x);(12) f (secx)secx tanxdx 二 f (secx)d(secx); (13) f (cscx)cscxcotxdx 二-f (cscx)d(cscx);(14)『f= f f (arcsin x)d (arcsinx);W —x 2(1)(2)(3) (4) (5) (6) dx =2 f (. x)d(.. x)f (e x)e xdx 二 f(e x )d(e x);iL 2 (15) -1 -x dx - - f (arccosx)d (arccosx); (16) f (arctanix)d^ f (arctanx)d(arctanx); b1 +x2 ' (17) f (arcc(ot x)d^ _ f (arccot x)d (arccot x). 1 +x 注 ①结合导数、微分基本公式理解这些凑微分公式及后面例题中出现 的较复杂凑微分公式; ② 熟练掌握这些常用的凑微分公式和熟记基本积分公式; ③ 分部积分法中也会用到凑微分公式.例3(1) (3) 计算下列不定积分:sin xdx ; sin 4 xdx ; (2) (4) (5)(6) (7)tan 5 xsec 3xdx(8)sin 3 xdx ; sin 5 xdx ; arcta n 、、x ,ExT ;. cos2x (9)(x -1)e x2^xdx (10) dx ;1 sin xcosx ” dx(11) sin x cosx ..44 dx; sin x cos x(12) (13) sin 4x cos2xdx ;(14)sin 2 x 2 cos 2 x ' sin x , dx ;1 si nx. dxI 2~x 2x 5(15)dx解(1)x2x \e (1 e )r■ 2 . J —cos2x .sin xdxdx 1sin2x C . 4(2)1x -2 2sin 3 xdx - - sin 2 xd(cosx)二(cos 2x —1)d(cosx)」cos 3x - cosx C .3(3) (4)2 [ 2 dx (1 -2cos2x cos 2x)dx / 4 L1 1 cos4x(1-2cos2x )dx 4 2 3 1 c 1 ,小x sin 2x sin4x C . 8 4 32 sin 5 xdx - - sin 4 xd(cosx) - - (1 - cos 2 x)2d(cosx)sin 4xdx=匚吨 I 2=_(1 _2cos 2 x cos 4x)d(cosx) 注注意区分以上积分中cosx ,解法相同. In In x , dx =xln x J —arctan . x . J肩丙取切sin x 换为 (5) (6) (7)(8)(9) (10)(11) (12) 2 3 1 5 - --cosx — cos x - - cos X 亠 C . 3 5 sinx 的幕指数为奇数或偶数时的解法•若将 tan 5 xseC 3cos2x x 1 2 d(ln x) = In In xd(ln In x) In ln x C .In x 2 严呦匕x dgG) =2 [arctan 仮d(arctan^'G) 1 (x)2=(arctan . x) C .xdx = tan 4 xsec xd(secx)2 2 2二(sec x -1) sec xd (secx)二(sec 6 x 「2sec 4 x sec x) d (secx)In In 1 sin xcosx 1 7 sec 7 1 dx 二2 1 5 13x sec x sec x C . 5 3 1 d(sin 2x) sin 2x 1d(2 sin 2x)二 ln(2 sin 2x)C . 2 sin 2x 1 2 dx 二一 e x /x d(x 2-2x) 2 • 被积函数的分子、分母同除以 cos 2x 2f sec xdxdx'2 +tan 2x1 丄 tan x arctan C . sin 2x 6 -cos2x f *2宀(x -1)e x “ sin 2x 2cos 2sin xcosxs^x cos 4x dx1 2 x e 2d (ta n x) 2 tan 2x dx1 cos2xsin 2x 」12 dx 21 cos 2x2 1 cos 2x--arctancos2x C .2 d(cos2x)sin x(1 - sin x) 1^d_(rx)(1g 2, 心n x —sin x , dx 2 dx cos x2 2=secx tanxdx - tan xdx =secx - (sec x -1)dx =secx - tan x x C .「1「(13) sin 4xcos2xdx (si n6x si n2x)dx‘ 2 '1 1cos6x cos2x C . 12 4注 与三角函数有关的积分中,常常使用半角公式和积化和差公式以降低三角函数的幕指数,简称降幕法.是常用的积分方法., . 1 , 1 X+1dx 2 dx arctan C .'(X +1)2+4 2 2 .2xJ 2x、d(e x)二e (1 e ).x+ C . xln x1,所以 x(x 1)dx 二一 [ln(1 x) - ln x] —dxx x 1二-[ln(1 x) —In x]d[ln(1 x) — In x]1 2[ln(1 x) - Inx]2 C .11X\評一R d(e)*例4 计算下列不定积分:(1) 1 I n x * 2 dx ; (xl nx)2(2) (3)2x3x2 3 -dx ; 9x -4x(4)(5) f cos2x . dx ;1 sin xcosx (6)(7)In(x 、1 x 2) 5dx .dx;因为(xln x) =1 In x ,所以1y d(xln x)二丄卫4dx =(xlnx) (xlnx) 因为[In(1 x) -In x] 1 + x x(2) ln(1 x) -Inx(14)(15) e x (1 e 2x ) dX=—e J x解(1) 4X In tan x , dx ; sinxcosx x 21 -arctane x C .ln(1x)T nxdx ; x(x 1)2dx =—lnIn(x 、1 x 2) 5‘ 岚 dx=In(x .1 x 2) 5d [In(x .1 x 2) 5]2-------- 3[In(x J x 2) 5]2 C .32 •第二换元积分法设.f[ (t)p :(t)dt = F(t) C ,则.f(x)dx x _ (t) f[ :(t)]「(t)dt =F(t) (t_(x)F( :*(x)) C .(3) dxIn 2 -In 312x31- 2x3In 3x - 2x x2(1 n2—I n3) 3x —2(4)1因为(In tan x) ,所以sin xcosx (5)(6) ln tan x dx = In tan xd (In tan x) =1In 2 tan xC . sin xcosx 2 因为(1 • sin xcosx) = cos2x ,所以 1dx d(1 sin xcosx) 1 sin xcosx二In(1 sinxcosx) C .x 2,得cos2x 1 sin xcosx 被积函数的分子、分母同除以1+2xdx 二 丄 x 2x 2tdx 1x 4x 2「1辛d x_x(7) 因为 1x -— ___ x + C 石C _ 1【2 [ln(x .1 x 2) 5]"二^1一,所以arctan〜1 arctan x _1 C . 2 2x 1 x 2C1 ln 2注(1 )当被积函数中含有根式时, 一般要通过适当换元, 去掉根号后再积分,这是第二换元积分法的主要作用•常见的代换有:① 含有形如nax b 的根式时,作代换nax b = t ;② 含有形如.a 2-x 2、- a 2x 2、. x 2-a 2( a 0 )的根式时,分 别作三角代换: x=asi nt , x =ata nt , x=ased ;(2)当被积函数中分母关于 x 的次数比分子关于 x 的次数至少大1时,=2ln( 1 -1) -x C •(3)设、1 ln x =t ,则 ln x 二 t 2-1, x lnx_ dx =2 (t 2 -1)dt =?t 3 -2t C x .1 In x 3(1 ln x)仪 1 In x - 2 1 In x C 3(In x -2) 1 In x C . 3(4)设 x =atant ,贝U dx =asec 2tdt ,于是(21 2、2dx V .coftdt 二 1 (x a ) a1可考虑倒代换:x =-;当被积函数为a x 所构成的代数式时,可考虑指数代换: 计算下列不定积分:arctan 、x . dx ;.x(1 x) (3) 例5 (1) (2) (3)(5)dx;x . 1 ln x :~2 2.a ■ ■ xdx (a 0)(4) f ———dx; e x1 r 1 」 J l2 , _2、2 dx ( aA 0); (x a )「Jx 2_9 ddx • x(1) 曰疋设 ardan x = t ,贝 V x =tan t , 2 2x 二 ta n t , dx 二 2ta nt(2)arctan x 2dx 二 2tdt =t C x(1 x)________ QX设、e x 1 二 t ,则 x =1 n(t 2「1), dx2——2二(arctan 、x) C •dt ,于是.e x1dx =2 J dt =ln't 2 —12 2=e , dx 二 2te t 'dt ,于 3t -sin2t C • 2a 3C =C由 x =atant 得x 2ta nt 2axt 二 arctan — , sin 2t 2 22,a 1 ta n t x a 所以 2 12 2 dx 厶 arctan 「2" 2 C - '(x 2+a 22 2a‘I a x 2+a 2 丿 (5)设 x =asint ,贝U dx 二 acostdt ,于是(6)设 x =3sect ,则 dx =3secttantdt ,于是=In I sect tant I -sint C 1 .由 x =3sect 得x 叫X -9 Jx 2-9 sect tan t = -- ——,sin t = -----3 3 x十… —9 x Jx 2 -9 < x 2 —9 所以] ------ 2—dx =ln + ------- +C 1x 3 3 x=lnx + Jx 2 - 9— Jx 2、.x例6计算下列不定积分:由于 2 2 -X~4 x cott=cost sin t dx a 2 j a 2. cos t ~47 sin t cot 21 csc 2tdtcot 2td(cott)二 3acot 31 C .「si n 2t sint所以x 4dx(a 2 x 2)、. a 23a 2x(1)dxx 2 ” x 2 a 2(2) 『 dxx(x 7 2) (3)x 1 dx ; x 2 .. x 2 -1(5) 2x dx 1 2x 4x解(1)令x 彳, 则dx(4)p dx」 x 〃丄 2x\e (1 e )-gdt于是x 2 -9 dx tan 21sectdt = (sect -cost)dtdx x 2 . x 2 a 2dt1 a 2t 2(2) dx x(x 72)(3)(4) 2a 2…1 a 2t 2d(1 a 2t 2)1 a 2t 2C2 ax =1 t t 6 1 2t 7 dt1 1一汕1M C r ln|令e xdxx2x.e (1 e )(5)令 2x2xdx dx —a 2x17d(1 2t 7)14 1 2t 71 x7 21 2ln___ dt 1 -t 21j-t 2dt 2 j_t.X 2-1 1 "-arcs in — x xd(1 -t 2) --arcsint ,1 -t 2C1t ,则 dx dtt 2(1 t 2) t 2 亠dt1 t 21arcta nt C = t-xx—e -arctane则dx — ln2 1dtt 1 2x 4x ln21 t t2 dtIn 2 1 arcta n例7计算下列不定积分:1(1) -------- dx ;x(1 +J x)(3)dx;In 2t4——dt 3 4 (2)(4)arcta n2x1 1C .x 1 2 dx; x — X,x(x 1) dx . • x x 1二x -x 2- arcsin(2x -1) C .2[ dx = ((x 2+x 唧x 2—1)dx = [x 2dx 十[x 寸x 2—1dxx —、x 2—11= gx3 1(X 2 -1)2d(x 2-1)32Jx 3」(x 2 —1)。
同济大学(高等数学)_第四章_不定积分

第四章 不定积分前面讨论了一元函数微分学,从本章开始我们将讨论高等数学中的第二个核心内容:一元函数积分学.本章主要介绍不定积分的概念与性质以及基本的积分方法.第1节 不定积分的概念与性质1.1 不定积分的概念在微分学中,我们讨论了求一个已知函数的导数(或微分)的问题,例如,变速直线运动中已知位移函数为()s s t =,则质点在时刻t 的瞬时速度表示为()v s t '=.实际上,在运动学中常常遇到相反的问题,即已知变速直线运动的质点在时刻t 的瞬时速度()v v t =,求出质点的位移函数()s s t =.即已知函数的导数,求原来的函数.这种问题在自然科学和工程技术问题中普遍存在.为了便于研究,我们引入以下概念.1。
1。
1原函数定义1 如果在区间I 上,可导函数()F x 的导函数为()f x ,即对任一x I ∈,都有()()F x f x '= 或 d ()()d F x f x x =, 那么函数()F x 就称为()f x 在区间I 上的原函数.例如,在变速直线运动中,()()s t v t '=,所以位移函数()s t 是速度函数()v t 的原函数; 再如,(sin )'cos x x =,所以sin x 是cos x 在(,)-∞+∞上的一个原函数.1(ln )'(0),x x x=>所以ln x 是1x在(0,)+∞的一个原函数. 一个函数具备什么样的条件,就一定存在原函数呢?这里我们给出一个充分条件.定理1 如果函数()f x 在区间I 上连续,那么在区间I 上一定存在可导函数()F x ,使对任一∈x I 都有()()'=F x f x .简言之,连续函数一定有原函数.由于初等函数在其定义区间上都是连续函数,所以初等函数在其定义区间上都有原函数.定理1的证明,将在后面章节给出。
关于原函数,不难得到下面的结论:若()()'=F x f x ,则对于任意常数C ,()+F x C 都是()f x 的原函数.也就是说,一个函数如果存在原函数,则有无穷多个.假设()F x 和()φx 都是()f x 的原函数,则[()()]0'-≡F x x φ,必有()()φ-F x x =C ,即一个函数的任意两个原函数之间相差一个常数.因此我们有如下的定理:定理2 若()F x 和()φx 都是()f x 的原函数,则()()-=F x x C φ(C 为任意常数). 若()()'=F x f x ,则()+F x C (C 为任意常数)表示()f x 的所有原函数.我们称集合{}()|F x C C +-∞<<+∞为()f x 的原函数族.由此,我们引入下面的定义.1。
5[1].3.1-2不定积分的概念与性质
![5[1].3.1-2不定积分的概念与性质](https://img.taocdn.com/s3/m/61c7b2e19b89680203d82560.png)
的原函数有
A m
cos t ,
A m
sin t C
m A sin t C v (t ) m
4
问题: 1. 在什么条件下, 一个函数的原函数存在 ? 2. 若原函数存在, 它如何表示 ? 定理 存在原函数 .
(下章证明)
初等函数在定义区间上连续
初等函数在定义区间上有原函数
5
定理 1 原函数都在函数族 证: 1) 即 ( C 为任意常数 ) 内 .
不定积分
微分法: 积分法:
F ( x ) ( ? )
互逆运算
( ? ) f ( x )
1
第一节 不定积分的概念与性质
一、 原函数与不定积分的概念 二、 基本积分表 三、不定积分的性质
2
一、 原函数与不定积分的概念
引例: 已知加速度 试求质点的运动速度 因此问题转化为: 已知
v ( t ) A m sin t ,
12
例3. 求 解: 原式 =
x
4 3
x 3 dx 4 C 3 1
4 1
3x
1 3
C
例4. 求
解: 原式=
1 sin 2
x dx 1 cos x C 2
13
三、不定积分的性质
1. 2.
k f ( x) dx k f ( x)dx
(k 0)
求 v(t ) ?
3
(antiderivative)
定义 1 . 若在区间 I 上定义的两个函数 F (x) 及 f (x) 满足 则称 F (x) 为f (x)
A A sin t cos t m m
A cos t
高等数学第四章不定积分习题课

xdx
de x
或 exdx d(ex 1) ,然后进行计算。 另外,由于
f
(x)
1 1 ex
中含有
1
e x,不能直接计算,可以考虑
换元 t ex 或 t 1 ex,然后再进行计算。
解法1:因为
1
ex
1 e x e x (1 e x )
所以
1
ex
二、基本计算方法
1.直接积分法 首先要对被积函数进行恒等变形,然后利用不定
积分的基本性质和基本积分表求出不定积分。
2.第一类换元法(凑微分法): 设 F(u) f (u) ,则
f ((x))(x)dx f ((x))d(x) F((x)) C
3.第二类换元法(变量置换法):
2
2
注意 运算中综合使用不同方法往往更有效.]。
【例12】 求不定积分
I
arcsin
x dx
x
分析:由于被积函数中含有根式 x ,所以首先要令
t x 把根式去掉,然后选择合适的方法计算。
另外,观察被积表达式的特点,由于
arcsin xdx arcsin x( dx ) 2arcsin xd( x )
2 dx 1 u2 du
2u sin x 1 u2
1 u2 cos x 1 u2
从而
2u 1 u2 2
R(sin x,cos x)dx
R( 1
u2
,
1
u2
)
1
u2
du
☆ 在具体计算不定积分的过程中,不是一种方法就可
以解决,要熟练掌握几种积分法并融会贯通,综合应用。
不定积分的概念和性质教案

注意:原函数和不定积分是个体与全体的关系(强调常数 的重要性).
三、举例利用定义求简单积分
例1:求 .
解:由于 ,所以 是 的一个原函数.因此
例2:求 .
结论:微分运算与积分运算是互逆的(给出基本积分表).
例4:求 .(积分表的应用)
解:
五、不定积分的性质
(1)性质1:设函数 的原函数存在,则 .
性质2:设函数 的原函数存在, 为非零常数,则 .
(2)利用不定积分的性质去求简单函数的不定积分
例4:求
解:
例5:求
解:
四、根据微分运算与积分运算是互逆的性质给出基本的积分,并尝试应用其求一些积分.
定理1:……
定理2:……
例4:求
例5:求
例6:求
课堂小结:……
不定积分
已知 ,求函数 ,使得 .
定义1:(原Leabharlann 数的定义)…….(1)(2) 与 的关系?
的全体原函数
定义2:(不定积分的定义)……
例1:求 .
例2:求 .
例3:设曲线通过点(1,2),且其上任一点处的切线斜率等于这点横坐标的两倍,求此曲线的方程.
五、尝试利用不定积分的性质去求简单函数的不定积分
教学过程
例6:求
解:
六、课堂小结
(1)原函数及不定积分的概念
(2)能够利用不定积分的定义求简单积分
(3)基本积分表
(4)不定积分的性质
六、与教师一起进行总结
板书设计
;
由于 是 的原函数,则有
不定积分的性质

第二讲不定积分的性质【教学内容】1. 不定积分的性质2. 直接积分法【教学目标与要求】理解不定积分的性质,掌握直接积分法【教学重点与难点】1 .不定积分的性质2.直接积分法【教学过程】一定积分的性质性质1非零常数因子可提到积分号外,即Jkf (x)dx =k J f (x)dx (k 芒0)性质2两个函数的代数和的不定积分,等于各个函数不定积分的代数和,即[f (x) _g(x) dx 二f (x)dx_ g(x)dx本性质可以推广到有限个函数的情形。
例 1 求J(1+ 丈+ c cxs-e d)x解J(1 +3x2 +cosx -e x)dx = Jdx + 3 J x2dx + Jcosxdx - f e x dx二x x3 sin xC注意:逐项积分后,每个积分结果中都含有一个任意常数,由于任意常数之和仍是任意常数,因此,只要在末尾加一个积分常数C就可以了。
另外,.1dx二.dx。
二、直接积分法在求积分问题时,有时可以直接按积分的基本公式和两个基本性质求出结果;有时则须将被积函数经过适当的恒等变形,再利用积分的两个基本性质和积分公式求出结果,这样的积分方法叫做直接积分法。
例 2 求xx —1 3 1 3 3 3 ( )dx = (1 一 )dx = (1 一 x XX1 1=dx -3 -dx 3 —dx -L x X 3 1= x-3ln x | ——+ — +Cx 2x 2求 3x e x dxxxx()3edx= .MdX] n (e 产注:分子中加1减1 (或加上一个式子再减去同一个式子)是积分中常见的基本技巧。
x 4例 5求 1,x 2dx.)dx 二 x 2dx - dx12dx十 x 21 3x -x arctanx C 3求 tan 2 xdx2 2 2tan xdx 二 (sec x -1)dx 二 sec xdx - dx = tan x -利用1 tan 2x =sec x 公式,使被积函数 tan 2 x 转化成积分表中的已知函数例 7 求 Jcos 2 —dx岀)cI n 3 1x 2 1 x 2dx =(1 x 2) -1 1 x 2 dxdx 二 dx ' ---------- 2二 x - arctan x C T+x 241;2恥x 4 -11 ,----- 厂dx 1 x 22 2(x 1)(x -1)1 , dx1 x 2复习三角函数公式:(1) 2 21 tan x =sec x (2)2 2cos2x 二 2cos x -1 = 1「2sin x(3) sin 2 x cos 2x 二 1注:2sec x , 再应用积分公式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不定积分的性质
不定积分是数学中的重要知识点,是微积分中的一项重要工具。
在数学和物理学等学科中,不定积分被广泛地应用。
对于一个函数,不定积分可以表示出其原函数的形式,同时,不定积分也具
有一些特殊的性质。
一、不定积分的定义
不定积分是对原函数的求解过程,即将一个函数进行“逆运算”,使其得到一个原函数。
通过对于函数的不定积分,可以得到一族
与原函数只相差一个常数的函数。
二、不定积分的存在性
在数学中,不定积分具有存在性,即对于一个函数,它的不定
积分存在且唯一。
这主要是由于积分的线性与微积分基本定理的
存在性可以保证的。
这保证了不定积分的正确性与实用性。
三、不定积分的特殊性质
在不定积分的求解过程中,可以利用其特殊性质来计算。
下面
简单介绍不定积分的特殊性质:
1. 线性性质
不定积分具有线性性质,即若f(x)和g(x)的不定积分分别为F(x)和G(x),则f(x)+g(x)的不定积分为F(x)+G(x)。
对于k为任意常数,即kf(x)的不定积分为kF(x)。
2. 积分上下限的性质
不定积分与定积分有不同的性质,其中,不定积分不存在积分
上下限,即无法计算一个具体区间上的积分值。
这是因为不定积
分表示的是一个函数的原函数,而原函数并没有积分上下限的概念。
3. 可加性质
不定积分具有可加性质,即如下方程成立:
∫(a,b) f(x)dx = ∫(a,c) f(x)dx + ∫(c,b) f(x)dx
这里,c是a和b之间的任意常数。
简单来说,不定积分可以通过将函数f(x)分成多个区间来进行求解。
四、不定积分的应用
不定积分在数学和物理学等学科中都有着广泛的应用。
其中,一个重要的应用就是求解定积分。
与不定积分不同的是,定积分存在积分上下限,并可以求解一个具体的积分值。
通过将一个函数求出它的不定积分,进而求出在一个区间上的定积分。
此外,不定积分还可用于求解变化率以及其他类型的微积分问题。
在计算中,可以利用泰勒级数展开等方法,将不定积分转换为更容易计算的形式。
总结起来,不定积分是微积分中的核心知识点。
它具有不错的存在性、特殊性质以及广泛的应用。
掌握不定积分对于学习微积分以及其它相关学科具有重要的意义。