拓展_用样本的数字特征估计总体的数字特征-优质公开课-人教A版必修3精品

合集下载

2019-2020学年度最新高中数学新人教版必修3教案:第2章 2-2-2 用样本的数字特征估计总体的数字特征-含答案

2019-2020学年度最新高中数学新人教版必修3教案:第2章 2-2-2 用样本的数字特征估计总体的数字特征-含答案

2019-2020学年度最新高中数学新人教版必修3教案:第2章2-2-2 用样本的数字特征估计总体的数字特征-含答案1.会求样本的众数、中位数、平均数、标准差、方差.(重点)2.理解用样本的数字特征来估计总体数字特征的方法.(重点)3.会应用相关知识解决实际统计问题.(难点)[基础·初探]教材整理1众数、中位数、平均数阅读教材P72~P73的内容,完成下列问题.1.众数:在一组数据中,出现次数最多的数叫做众数.如果有两个或两个以上数据出现的最多且出现的次数相等,那么这些数据都是这组数据的众数;如果一组数据中,所有数据出现的次数都相等,那么认为这组数据没有众数.2.中位数:将一组数据按从小到大的顺序依次排列,当数据有奇数个时,处在最中间的那个数是这组数据的中位数;当数据有偶数个时,处在最中间的两个数的平均数是这组数据的中位数.3.平均数:一组数据的总和除以这组数据的个数取得的商叫做这组数据的平均数,一般记为x=1n(x1+x2+…+x n).4.三种数字特征的比较1.判断(正确的打“√”,错误的打“×”)(1)中位数一定是样本数据中的某个数.()(2)在一组样本数据中,众数一定是唯一的.()【答案】(1)×(2)×2.已知一组数据为20,30,40,50,50,60,70,80.其中平均数、中位数和众数的大小关系是()A.平均数>中位数>众数B.平均数<中位数<众数C.中位数<众数<平均数D.众数=中位数=平均数【解析】众数为50,平均数x=18(20+30+40+50+50+60+70+80)=50,中位数为12(50+50)=50,故选D.【答案】 D3.一组观察值4,3,5,6出现的次数分别为3,2,4,2,则样本平均值为( ) A .4.55 B .4.5 C .12.5 D .1.64【解析】x =4×3+3×2+5×4+6×23+2+4+2≈4.55.【答案】 A教材整理2 频率分布直方图中的众数、中位数、平均数 阅读教材P 72~P 73的内容,完成下列问题.在频率分布直方图中,众数是最高矩形中点的横坐标,中位数左边和右边的直方图的面积应该相等,平均数的估计值等于频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和.教材整理3 标准差、方差阅读教材P 74~P 77例2上面的内容,完成下列问题. 1.标准差的计算公式标准差是样本数据到平均数的一种平均距离,一般用s 表示, s =1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2]. 2.方差的计算公式 标准差的平方s 2叫做方差.s 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2].其中,x i (i =1,2,…,n )是样本数据,n 是样本容量,x 是样本平均数.某学员在一次射击测试中射靶10次,命中环数如下:7,8,7,9,5,4,9,10,7,4. 则:(1)平均命中环数为________; (2)命中环数的标准差为________.【解析】 (1)x =7+8+7+9+5+4+9+10+7+410=7.(2)s 2=110[(7-7)2+(8-7)2+(7-7)2+(9-7)2+(5-7)2+(4-7)2+(9-7)2+(10-7)2+(7-7)2+(4-7)2]=4,∴s=2.【答案】(1)7(2)2[小组合作型](2)这个问题中,平均数能客观地反映该工厂的工资水平吗?为什么?【精彩点拨】先结合众数、中位数、平均数的意义求出众数、中位数、平均数,再结合影响平均数的因素作答.【尝试解答】(1)由题中表格可知:众数为1 200,中位数为1 220,平均数为(2 200+1 250×6+1 220×5+1 200×10+490)÷23=1 230(元/周).(2)虽然平均数为1 230元/周,但从题中表格中所列出的数据可见,只有经理在平均数以上,其余的人都在平均数以下,故用平均数不能客观真实地反映该厂的工资水平.1.众数、中位数、平均数都是刻画数据特征的,但任何一个样本数据改变都会引起平均数的改变,而众数、中位数不具有这个性质.所以平均数可以反映出更多的关于样本数据全体的信息,它是样本数据的重心.2.在样本中出现极端值的情况下,众数、中位数更能反映样本数据的平均水平.[再练一题]1.已知一组数据按从小到大排列为-1,0,4,x,6,15,且这组数据的中位数是5,那么数据的众数是________,平均数是________.【解析】 ∵中位数为5,∴4+x2=5,即x =6.∴该组数据的众数为6,平均数为-1+0+4+6+6+156=5.【答案】 6 5甲、乙两机床同时加工直径为100 cm 的零件,为检验质量,从中抽取6件测量数据为:甲:99 100 98 100 100 103 乙:99 100 102 99 100 100 (1)分别计算两组数据的平均数及方差;(2)根据计算说明哪台机床加工零件的质量更稳定. 【精彩点拨】【尝试解答】 (1)x 甲=16[99+100+98+100+100+103]=100, x 乙=16[99+100+102+99+100+100]=100,s2甲=16[(99-100)2+(100-100)2+(98-100)2+(100-100)2+(100-100)2+(103-100)2]=73,s2乙=16[(99-100)2+(100-100)2+(102-100)2+(99-100)2+(100-100)2+(100-100)2]=1.(2)由(1)知x甲=x乙,比较它们的方差,∵s2甲>s2乙,故乙机床加工零件的质量更稳定.1.在实际问题中,仅靠平均数不能完全反映问题,还要研究其偏离平均值的离散程度(即方差或标准差),方差大说明取值分散性大,方差小说明取值分散性小或者取值集中、稳定.2.关于统计的有关性质及规律(1)若x1,x2,…,x n的平均数为x,那么mx1+a,mx2+a,…,mx n+a的平均数是m x+a;(2)数据x1,x2,…,x n与数据x1+a,x2+a,…,x n+a的方差相等;(3)若x1,x2,…,x n的方差为s2,那么ax1,ax2,…,ax n的方差为a2s2.[再练一题]2.某校高二年级在一次数学选拔赛中,由于甲、乙两人的竞赛成绩相同,从而决定根据平时在相同条件下进行的六次测试确定出最佳人选,这六次测试的成绩数据如下:求两人比赛成绩的平均数以及方差,并且分析成绩的稳定性,从中选出一位参加数学竞赛.【解】 设甲、乙两人成绩的平均数分别为x 甲,x 乙, 则x 甲=130+16(-3+8+0+7+5+1)=133, x 乙=130+16(3-1+8+4-2+6)=133,s 2甲=16[(-6)2+52+(-3)2+42+22+(-2)2]=473, s 2乙=16[(02+(-4)2+52+12+(-5)2+32]=383. 因此,甲与乙的平均数相同,由于乙的方差较小,所以乙的成绩比甲的成绩稳定,应该选乙参加竞赛比较合适.125 121 123 125 127 129 125 128 130129 126 124 125 127 126 122 124 125 126 128 (1)填写下面的频率分布表:(2)(3)根据频率分布直方图或频率分布表求这组数据的众数、中位数和平均数. 【精彩点拨】 将数据分组后依次填写分布表.然后画出直方图,最后根据数字特征在直方图中的求法求解.【尝试解答】 (1)(3)在[124.5,126.5)中的数据最多,取这个区间的中点值作为众数的近似值,得众数为125.5,事实上,众数的精确值为125.图中虚线对应的数据是124.5+2×58=125.75,事实上中位数为125.5.使用“组中值”求平均数:x -=121.5×0.1+123.5×0.15+125.5×0.4+127.5×0.2+129.5×0.15=125.8,事实上平均数的精确值为x -=125.75.1.利用频率分布直方图求数字特征 (1)众数是最高的矩形的底边的中点;(2)中位数左右两侧直方图的面积相等;(3)平均数等于每个小矩形的面积乘以小矩形底边中点的横坐标之和.2.利用直方图求众数、中位数、平均数均为近似值,往往与实际数据得出的不一致,但它们能粗略估计其众数、中位数和平均数.[再练一题]3.某中学举行电脑知识竞赛,现将高一参赛学生的成绩进行整理后分成五组,绘制成如图2-2-20所示的频率分布直方图,已知图中从左到右的第一、二、三、四、五小组的频率分别是0.30,0.40,0.15,0.10,0.05.求:图2-2-20(1)高一参赛学生的成绩的众数、中位数;(2)高一参赛学生的平均成绩.【解】(1)由题图可知众数为65,又∵第一个小矩形的面积为0.3,∴设中位数为60+x,则0.3+x×0.04=0.5,得x=5,∴中位数为60+5=65.(2)依题意,平均成绩为:55×0.3+65×0.4+75×0.15+85×0.1+95×0.05=67,∴平均成绩约为67.[探究共研型]探究【提示】一组数据的平均数、中位数都是唯一的,众数不唯一,可以有一个,也可以有多个,还可以没有.如果有两个数据出现的次数相同,并且比其他数据出现的次数都多,那么这两个数据都是这组数据的众数.探究2如何从样本的数字特征中了解数据中是否存在极端数据?【提示】中位数不受几个极端数据的影响,而平均数受每个数据的影响,“越离群”的数据,对平均数的影响越大,因此如果样本平均数大于样本中位数,说明数据中存在许多较大的极端值;反之,说明数据中存在许多较小的极端值.在实际应用中,如果同时知道样本中位数和样本平均数,可以了解样本数据中极端数据的信息.探究3众数、中位数有哪些应用?【提示】(1)众数只与这组数据中的部分数据有关,当一组数据中有不少数据重复出现时,众数往往更能反映问题.(2)中位数仅与数据的排列位置有关,中位数可能在所给数据中,也可能不在所给数据中.当一组数据中的个别数据变动较大时,可用中位数描述其集中趋势.探究4【提示】(1)数据的离散程度可以通过极差、方差或标准差来描述,极差反映了一组数据变化的最大幅度,它对一组数据中的极端值极为敏感,一般情况下,极差大,则数据波动性大;极差小,则数据波动性小.极差只需考虑两个极端值,便于计算,但没有考虑中间的数据,可靠性较差.(2)标准差和方差则反映了一组数据围绕平均数波动的大小,方差、标准差的运算量较大.因为方差与原始数据单位不同,且平方后可能夸大了偏差程度,所以虽然标准差与方差在体现数据离散程度上是一样的,但解决问题时一般用标准差.探究5【提示】(1)样本的数字特征具有随机性,这种随机性是由样本的随机性引起的.(2)样本的数字特征具有规律性,在很广泛的条件下,简单随机样本的数字特征(如众数、中位数、平均数和标准差等)随样本容量的增加而稳定于总体相应的数字特征(总体的数字特征是一定的,不存在随机性).某班4个小组的人数为10,10,x,8,已知该组数据的中位数与平均数相等,求这组数据的中位数.【精彩点拨】x的大小未知,可根据x的取值不同分别求中位数.【尝试解答】该组数据的平均数为14(x+28),中位数一定是其中两个数的平均数,由于x不知是多少,所以要分几种情况讨论:(1)当x≤8时,原数据按从小到大的顺序排列为x,8,10,10,其中位数为12×(10+8)=9.若14(x+28)=9,则x=8,此时中位数为9.(2)当8<x≤10时,原数据按从小到大的顺序排列为8,x,10,10,其中位数为12(x+10).若14(x+28)=12·(x+10),则x=8,而8不在8<x≤10的范围内,所以舍去.(3)当x>10时,原数据按从小到大的顺序排列为8,10,10,x,其中位数为12×(10+10)=10.若14(x +28)=10,则x =12,此时中位数为10.综上所述,这组数据的中位数为9或10.当在数据中含有未知数x ,求该组数据的中位数时,由于x 的取值不同,所以数据由小到大(或由大到小)排列的顺序不同,由于条件的变化,问题的结果有多种情况,不能用同一标准或同一种方法解决,故需分情况讨论,讨论时要做到全面合理,不重不漏.[再练一题]4.为了考察某校各班参加课外书法小组的人数,从全校随机抽取5个班级,把每个班级参加该小组的人数作为样本数据.已知样本平均数为7,样本方差为4,且样本数据互不相同,则样本数据中的最大值为____________.【解析】 设5个班级中参加的人数分别为x 1,x 2,x 3,x 4,x 5,则由题意知x 1+x 2+x 3+x 4+x 55=7,(x 1-7)2+(x 2-7)2+(x 3-7)2+(x 4-7)2+(x 5-7)2=20,五个整数的平方和为20,则必为0+1+1+9+9=20,由|x -7|=3可得x =10或x =4.由|x -7|=1可得x =8或x =6,由上可知参加的人数分别为4,6,7,8,10,故最大值为10.【答案】 101.样本101,98,102,100,99的标准差为( ) A.2B .0C.1 D.2【解析】样本平均数x=100,方差为s2=2,∴标准差s=2,故选A.【答案】 A2.甲乙两名学生六次数学测验成绩(百分制)如图2-2-21所示.图2-2-21①甲同学成绩的中位数大于乙同学成绩的中位数;②甲同学的平均分比乙同学高;③甲同学的平均分比乙同学低;④甲同学成绩的方差小于乙同学成绩的方差.上面说法正确的是()A.③④B.①②④C.②④D.①③【解析】甲的中位数81,乙的中位数87.5,故①错,排除B、D;甲的平均分x=16(76+72+80+82+86+90)=81,乙的平均分x′=16(69+78+87+88+92+96)=85,故②错,③对,排除C,故选A.【答案】 A3.甲、乙、丙、丁四名射手在选拔赛中所得的平均环数x及其方差s2如下表所示,则选送决赛的最佳人选应是()【解析】∵x乙=x丙>x甲=x丁,且s2甲=s2乙<s2丙<s2丁,∴应选择乙进入决赛.【答案】 B4.为了调查某厂工人生产某种产品的能力,随机抽查了20位工人某天生产该产品的数量得到频率分布直方图如图2-2-22,则图2-2-22(1)这20名工人中一天生产该产品数量在[55,75)的人数是________.(2)这20名工人中一天生产该产品数量的中位数为________.(3)这20名工人中一天生产该产品数量的平均数为________.【解析】(1)(0.040×10+0.025×10)×20=13.(2)设中位数为x,则0.2+(x-55)×0.04=0.5,x=62.5.(3)0.2×50+0.4×60+0.25×70+0.1×80+0.05×90=64.【答案】(1)13(2)62.5(3)645.甲、乙两人在相同条件下各打靶10次,每次打靶的成绩情况如图2-2-23所示:图2-2-23(1)填写下表:①从平均数和方差结合分析偏离程度;②从平均数和中位数结合分析谁的成绩好些;③从平均数和命中9环以上的次数相结合看谁的成绩好些;④从折线图上两人射击命中环数及走势分析谁更有潜力.【解】(1)乙的射靶环数依次为2,4,6,8,7,7,8,9,9,10.所以x乙=110(2+4+6+8+7+7+8+9+9+10)=7;乙的射靶环数从小到大排列为2,4,6,7,7,8,8,9,9,10,所以中位数是7+82=7.5;甲的射靶环数从小到大排列为5,6,6,7,7,7,7,8,8,9,所以中位数为7.于是填充后的表格如下表所示:(2)①甲、乙的平均数相同,均为7,但s甲乙小,而乙偏离平均数的程度大.②甲、乙的平均水平相同,而乙的中位数比甲大,说明乙射靶成绩比甲好.③甲、乙的平均水平相同,而乙命中9环以上(包含9环)的次数比甲多2次,可知乙的射靶成绩比甲好.④从折线图上看,乙的成绩呈上升趋势,而甲的成绩在平均线上波动不大,说明乙的状态在提升,更有潜力.学业分层测评(十三)用样本的数字特征估计总体的数字特征(建议用时:45分钟)[学业达标]一、选择题1.甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图2-2-24所示,则( )图2-2-24A .甲的成绩的平均数小于乙的成绩的平均数B .甲的成绩的中位数等于乙的成绩的中位数C .甲的成绩的方差小于乙的成绩的方差D .甲的成绩的极差小于乙的成绩的极差【解析】 由题意可知,甲的成绩为4,5,6,7,8,乙的成绩为5,5,5,6,9.所以甲、乙的成绩的平均数均为6,A 错;甲、乙的成绩的中位数分别为6,5,B 错;甲、乙的成绩的方差分别为15×[(4-6)2+(5-6)2+(6-6)2+(7-6)2+(8-6)2]=2,15×[(5-6)2+(5-6)2+(5-6)2+(6-6)2+(9-6)2]=125,C 对;甲、乙的成绩的极差均为4,D 错.【答案】 C2.若样本1+x 1,1+x 2,1+x 3,…,1+x n 的平均数是10,方差为2,则对于样本2+x 1,2+x 2,…,2+x n ,下列结论正确的是( )A .平均数是10,方差为2B .平均数是11,方差为3C .平均数是11,方差为2D .平均数是10,方差为3【解析】 若x 1,x 2,…,x n 的平均数为x ,方差为s ,那么x 1+a ,x 2+a ,…,x n +a 的平均数为x +a ,方差为s .【答案】 C3.如图2-2-25是某赛季甲、乙两名篮球运动员每场比赛得分的茎叶图,甲、乙两人这几场比赛得分的平均数分别为x 甲,x 乙;标准差分别是s 甲,s 乙,则有( )图2-2-25A.x 甲>x 乙,s 甲>s 乙B.x 甲>x 乙,s 甲<s 乙C.x 甲<x 乙,s 甲>s 乙D.x 甲<x 乙,s 甲<s 乙【解析】 观察茎叶图可大致比较出平均数与标准差的大小关系,或者通过公式计算比较.【答案】 C4.已知一组数据x 1,x 2,x 3,x 4,x 5的平均数是x =2,方差是13,那么另一组数据3x 1-2,3x 2-2,3x 3-2,3x 4-2,3x 5-2的平均数和方差分别为( )A .2,13 B .2,1 C .4,13D .4,3【解析】 平均数为x ′=3x -2=3×2-2=4,方差为s ′2=9s 2=9×13=3.【答案】 D5.为了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图,如图2-2-26所示.由于不慎将部分数据丢失,但知道前4组的频数成等比数列,后6组的频数成等差数列,设最大频率为a ,视力在4.6到5.0之间的学生数为b ,则a ,b 的值分别为( )图2-2-26A .0.27,78B .0.27,83C .2.7,78D .2.7,83【解析】 由题意,4.5到4.6之间的频率为0.09,4.6到4.7之间的频率为0.27,后6组的频数成等差数列,设公差为d ,则6×0.27+15d =1-0.01-0.03-0.09,∴d =-0.05.∴b =(0.27×4+6d )×100=78,a =0.27. 【答案】 A 二、填空题6.一个样本数据按从小到大的顺序排列为:13,14,19,x,23,27,28,31,中位数为22,则x =________.【解析】 由题意知x +232=22,则x =21. 【答案】 217.甲、乙两位同学某学科的连续五次考试成绩用茎叶图表示如图2-2-27所示,则平均分数较高的是________,成绩较为稳定的是________.图2-2-27【解析】x甲=70,x乙=68,s 2甲=15×(22+12+12+22)=2,s 2乙=15×(52+12+12+32)=7.2.【答案】甲甲8.已知样本9,10,11,x,y的平均数是10,标准差为2,则xy=________.【解析】由平均数得9+10+11+x+y=50,∴x+y=20.又由(9-10)2+(10-10)2+(11-10)2+(x-10)2+(y-10)2=(2)2×5=10,得x2+y2-20(x+y)=-192,(x+y)2-2xy-20(x+y)=-192,∴xy=96.【答案】96三、解答题9.从高三抽出50名学生参加数学竞赛,由成绩得到如图2-2-28的频率分布直方图.图2-2-28由于一些数据丢失,试利用频率分布直方图求:(1)这50名学生成绩的众数与中位数;(2)这50名学生的平均成绩.【解】(1)由众数的概念可知,众数是出现次数最多的数.在直方图中高度最高的小长方形的底边中点的横坐标即为所求,所以众数应为75.由于中位数是所有数据中的中间值,故在频率分布直方图中体现的是中位数的左右两边频数应相等,即频率也相等,从而就是小矩形的面积和相等.因此在频率分布直方图中将所有小矩形的面积一分为二的垂直于横轴的直线与横轴交点的横坐标所对应的成绩即为所求.∵0.004×10+0.006×10+0.02×10=0.04+0.06+0.2=0.3,∴前三个小矩形面积的和为0.3.而第四个小矩形面积为0.03×10=0.3,0.3+0.3>0.5,∴中位数应约位于第四个小矩形内.设其底边为x ,高为0.03,∴令0.03x =0.2得x ≈6.7, 故中位数应约为70+6.7=76.7.(2)样本平均值应是频率分布直方图的“重心”,即所有数据的平均值,取每个小矩形底边的中点的横坐标乘以每个小矩形的面积求和即可.∴平均成绩为45×(0.004×10)+55×(0.006×10)+65×(0.02×10)+75×(0.03×10)+85×(0.021×10)+95×(0.016×10)=73.65.10.对甲、乙两名自行车赛手在相同条件下进行了6次测试,测得他们的最大速度(单位:m/s)的数据如下:(1)(2)分别求出甲、乙两名自行车赛手最大速度(m/s)数据的平均数、极差、方差,并判断选谁参加比赛比较合适?【解】 (1)画茎叶图如下:中间数为数据的十位数.从茎叶图上看,甲、乙的得分情况都是分布均匀的,只是乙更好一些.乙发挥比较稳定,总体情况比甲好.(2)x 甲=27+38+30+37+35+316=33.x 乙=33+29+38+34+28+366=33.s 2甲=16[(27-33)2+(38-33)2+(30-33)2+(37-33)2+(35-33)2+(31-33)2]≈15.67.s 2乙=16[(33-33)2+(29-33)2+(38-33)2+(34-33)2+(28-33)2+(36-33)2]≈12.67.甲的极差为11,乙的极差为10.综合比较以上数据可知,选乙参加比赛较合适.[能力提升]1.有一笔统计资料,共有11个数据如下(不完全以大小排列):2,4,4,5,5,6,7,8,9,11,x ,已知这组数据的平均数为6,则这组数据的方差为( )A .6 B.6 C .66D .6.5【解析】 ∵x =111(2+4+4+5+5+6+7+8+9+11+x )=111(61+x )=6,∴x =5.方差为:s 2=42+22+22+12+12+02+12+22+32+52+1211=6611=6.【答案】 A2.将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91,现场作的9个分数的茎叶图后来有1个数据模糊,无法辨认,在图2-2-29中以x 表示:89⎪⎪⎪7 74 0 1 0 x 9 1图2-2-29则7个剩余分数的方差为( )A.1169B.367C .36D.677【解析】 根据茎叶图,去掉1个最低分87,1个最高分99, 则17[87+94+90+91+90+(90+x )+91]=91, ∴x =4.∴s 2=17[(87-91)2+(94-91)2+(90-91)2+(91-91)2+(90-91)2+(94-91)2+(91-91)2]=367.【答案】 B3.若40个数据的平方和是56,平均数是22,则这组数据的方差是________,标准差是________.【解析】 设这40个数据为x i (i =1,2,…,40),平均数为x . 则s 2=140×[(x 1-x )2+(x 2-x )2+…+(x 40-x )2] =140[x 21+x 22+…+x 240+40x 2-2x (x 1+x 2+…+x 40)] =140⎣⎢⎡⎦⎥⎤56+40×⎝ ⎛⎭⎪⎫222-2×22×40×22=140×⎝ ⎛⎭⎪⎫56-40×12=0.9. ∴s =0.9=910=31010. 【答案】 0.9310104.某地区100位居民的人均月用水量(单位:t)的分组及各组的频数如下: [0,0.5),4;[0.5,1),8;[1,1.5),15;[1.5,2),22;[2,2.5),25;[2.5,3),14;[3,3.5),6;[3.5,4),4;[4,4.5),2.(1)列出样本的频率分布表;(2)画出频率分布直方图,并根据直方图估计这组数据的平均数、中位数、众数;(3)当地政府制定了人均月用水量为3t的标准,若超出标准加倍收费,当地政府说,85%以上的居民不超过这个标准,这个解释对吗?为什么?【解】(1)频率分布表(2)频率分布直方图如图:众数:2.25,中位数:2.02,平均数:2.02.(3)人均月用水量在3t以上的居民所占的比例为6%+4%+2%=12%,即大约有12%的居民月用水量在3t以上,88%的居民月用水量在3t以下,因此政府的解释是正确的.。

数学课件(新教材人教A版强基版)第九章统计与成对数据的统计分析92用样本估计总体

数学课件(新教材人教A版强基版)第九章统计与成对数据的统计分析92用样本估计总体

∵(0.001 5+0.011 0+0.022 5+0.030 0+a+0.008 0+0.002 0)×10=1, ∴a=0.025 0,众数为185+2 195=190, 设中位数为x,∵(0.001 5+0.011 0 +0.022 5)×10=, (0.001 5+0.011 0+0.022 5+0.030 0) ×10=, 则185<x<195, +0.030 0×(x-185)=,
甲 82 81 79 78 95 88 93 84 乙 92 95 80 75 83 80 90 85 (1)求两位学生预赛成绩的平均数和方差;
x 甲=18×(82+81+79+78+95+88+93+84)=85,
x 乙=18×(92+95+80+75+83+80+90+85)=85,
s2甲=18×[(82-85)2+(81-85)2+(79-85)2+(78-85)2+(95-85)2+(88 -85)2+(93-85)2+(84-85)2]=,
把10名旗手的身高从小到大排列为175,175,176,176,178,179,179,179, 180,180, 则178+2 179=178.5,所以所求中位数为 178.5.

二 部 分
探究核心题型
题型一 样本的数字特征和百分位数的估计

数据92出现了3次,出现的次数最多,所以众数是92;这组数据已经 按照由小到大的顺序排列,计算10×25%=,取第三个数,所以第25 百分位数是88.
思维升华
频率分布直方图中的数字特征 (1)众数:最高矩形的底边中点的横坐标. (2)中位数:中位数左边和右边的矩形的面积和应该相等. (3)平均数:平均数在频率分布直方图中等于各组区间的中点值与对 应频率之积的和.

2019-2020学年人教A版高中数学必修三湖北新课改专用课件:第1章 统计1.2.2

2019-2020学年人教A版高中数学必修三湖北新课改专用课件:第1章 统计1.2.2
答案 (1)7 (2)2
课后限时作业
-x 是_______样_本_数_据_的_平_均_数_____________.
思考: (1)若在一组数据中,x1 出现的频率是 p1, x2 出现的频率是 p2,……,xn 出现的频率是 pn,应怎样 计时,若各样本数据加上或减去一个 常数,标准差的值会变化吗?
(2)平均数是-x =313×(30 000+20 000+3 500×2+3 000+2 500×5+2 000×3+1 500×20)≈3 288(元),中位 数是 1 500 元,众数是 1 500 元.
(3)在这个问题中,中位数或众数均能反映该公司员 工的工资水平.因为公司中少数人的工资额与大多数人 的工资额差别较大,这样导致平均数与中位数偏差较大, 所以平均数不能反映这个公司员工的工资水平.
解析 (1)利用平均数计算公式得-x =418×(82×27+ 80×21)≈81.13(分).
(2)因为男同学的中位数是 75 分, 所以至少有 14 人得分不超过 75 分. 又因为女同学的中位数是 80 分, 所以至少有 11 人得分不超过 80 分. 所以全班至少有 25 人得分在 80 分以下(含 80 分).
• 【例题1】 据报道,某公司的33名职工的月工资(单位:元) 如表所示.
职务 董事长 副董事长 董事 总经理 经理 管理员 职员
人数 1
1
2 1 5 3 20
工• (资1)求5该5公00司职工5 月00工0 资的3 平50均0 数3、0中00位数2 5、0众0 数2;000 1 500
• (2)假设副董事长的工资从5 000元提升到20 000元,董事长 的工资从5 500元提升到30 000元,那么新的平均数、中位 数、众数又是什么?(精确到元)

高中数学人教A版必修三习题第二章-用样本的数字特征估计总体的数字特征含答案

高中数学人教A版必修三习题第二章-用样本的数字特征估计总体的数字特征含答案

;x =
5

5
=30,
2.所以-x 甲<-x 乙,s 甲>s 乙.
答案:B 二、填空题 6.甲、乙两位同学某学科连续五次的考试成绩用茎叶图表示如图所示,则平均分数较 高的是________,成绩较为稳定的是________.
解析:-x
甲=70,-x 乙
=68,s甲2
=1 5
×(22+12+12+22)=2,s乙2
11
= =6. 11
答案:A
2.甲、乙两同学在高考前各做了 5 次立定跳远测试,测得甲的成绩如下(单位:米):
2.20, 2.30, 2.30, 2.40, 2.30, 若 甲 、 乙 两 人 的 平 均 成 绩 相 同 , 乙 的 成 绩 的 方 差 是
0.005,那么甲、乙两人成绩较稳定的是________. 解析:求得甲的平均成绩为 2.30米,甲的成绩的方差是 0.004.由已知得甲、乙平均成
而 2(k1-3),2(k2-3),…,2(k6-3)的平均数为 2(k -3),则所求方差为
16[4(k1--k )2+4(k2--k )2+…+4(k6-
- k )2]=4×3=12.
答案:12
8.若有一个企业,70%的员工年收入 1 万元,25%的员工年收入 3 万元,5%的员工年收
入 11万元,则该企业员工的年收入的平均数是________万元,中位数是________万元,众
乙品种的样本平均数也为 10,样本方差为
[(9.4-10)2+(10.3-10)2+(10.8-10)2+(9.7-10)2)+(9.8-10)2]÷5=0.24.
因为 0.24>0.02,所以,由这组数据可以认为甲种水稻的产量比较稳定.

新教材高中数学第六章统计4用样本估计总体数字特征4-1样本的数字特征4-2分层随机抽样的均值与方差4

新教材高中数学第六章统计4用样本估计总体数字特征4-1样本的数字特征4-2分层随机抽样的均值与方差4

2.计算一组n个数据的p分位数的一般步骤如下:
第一步,按照从小到大排列原始数据;
第二步,计算i=np;
第三步,若i不是整数,大于i的最小整数为j,则p分位数为第j项数据;若i是整
数,则p分位数为第i项与第(i+1)项数据的平均数.
过关自诊
1.判断正误.(正确的画√,错误的画×)
(1)50%分位数就是中位数.( √ )
i=1
2.分层随机抽样的方差
设样本中不同层的平均数分别为x1 , x2 ,…,xn ,方差分别为s12 , s22 ,…,sn2 ,相应的
n
权重分别为 w1,w2,…,wn,则这个样本的方差为 s2= ∑ wi[si2 +(xi − x)2],其中x为
i=1
这个样本的平均数.
过关自诊
1.判断正误.(正确的画√,错误的画×)
第六章
4.1 样本的数字特征
4.2 分层随机抽样的均值与方差
4.3 百分位数
课标要求
1.会求样本的平均数、中位数、众数、百分位数.
2.会求样本的极差、标准差与方差.
3.通过应用相关知识解决实际统计问题,培养数据分析的核心素养.




01
基础落实•必备知识全过关
02
重难探究•能力素养全提升
03
Байду номын сангаас
学以致用•随堂检测全达标
5
5
5
=
42
.
5
2
2
2
2
2
2
2 1
又甲 =[(10-8) +(9-8) +(8-8) +(7-8) +(8-8) +(6-8) ]×6

高中数学《用样本估计总体》教案1 新人教A版必修3

高中数学《用样本估计总体》教案1 新人教A版必修3

2.2.2用样本的数字特征估计总体的数字特征(2课时)教学目标:知识与技能(1)正确理解样本数据标准差的意义和作用,学会计算数据的标准差。

(2)能根据实际问题的需要合理地选取样本,从样本数据中提取基本的数字特征(如平均数、标准差),并做出合理的解释。

(3)会用样本的基本数字特征估计总体的基本数字特征。

(4)形成对数据处理过程进行初步评价的意识。

过程与方法在解决统计问题的过程中,进一步体会用样本估计总体的思想,理解数形结合的数学思想和逻辑推理的数学方法。

情感态度与价值观会用随机抽样的方法和样本估计总体的思想解决一些简单的实际问题,认识统计的作用,能够辨证地理解数学知识与现实世界的联系。

重点与难点重点:用样本平均数和标准差估计总体的平均数与标准差。

难点:能应用相关知识解决简单的实际问题。

教学设想【创设情境】在一次射击比赛中,甲、乙两名运动员各射击10次,命中环数如下﹕甲运动员﹕7,8,6,8,6,5,8,10,7,4;乙运动员﹕9,5,7,8,7,6,8,6,7,7.观察上述样本数据,你能判断哪个运动员发挥的更稳定些吗?为了从整体上更好地把握总体的规律,我们要通过样本的数据对总体的数字特征进行研究。

——用样本的数字特征估计总体的数字特征(板出课题)。

【探究新知】<一>、众数、中位数、平均数〖探究〗:P62(1)怎样将各个样本数据汇总为一个数值,并使它成为样本数据的“中心点”?(2)能否用一个数值来描写样本数据的离散程度?(让学生回忆初中所学的一些统计知识,思考后展开讨论)初中我们曾经学过众数,中位数,平均数等各种数字特征,应当说,这些数字都能够为我们提供关于样本数据的特征信息。

例如前面一节在调查100位居民的月均用水量的问题中,从这些样本数据的频率分布直方图可以看出,月均用水量的众数是2.25t(最高的矩形的中点)(图略见课本第62页)它告诉我们,该市的月均用水量为2. 25t的居民数比月均用水量为其他值的居民数多,但它并没有告诉我们到底多多少。

2015届高三数学一轮复习教案:6用样本的数字特征估计总体的数字特征 必修三

必修Ⅲ-06 用样本的数字特征估计总体的数字特征
1、在一组数据中,出现次数 的数叫做众数,如果有两个或两个以上数据出现 且出现的次数 ,那么这些数据都是这组数据的众数;如果一组数据中,若有数据出现的 ,那么认为这组数据没有众数。

2、将一组数据按 的顺序依次排列,当数据有奇数个时,处在 是这组数据的中位数;当数据有偶数个时,处在 是这组数据的中位数。

3、一组数据的 除以这组数据的 所得的商叫做这组数据的平均数,一般记为 。

4、在一组数据中,各数据与它们的平均数的差的 ,叫做这组数据的方差,方差的 称为标准差。

5、设样本是12,,,n x x x ,样本的平均数是x ,样本的方差为2s = ,样本的标准差为s = 。

6、平均数、众数、中位数都是描述数据的 的特征数;极差、方差、标准差都是描述数据的 特征数。

7、众数在频率分布直方图中对应的是 ,中位数左边和右边的直方图的 相等。

平均数是频率分布直方图的
“重心”,它等于频率分布直方图中每个小矩形的面积乘以 之和。

8、总体方差是反映总体波动大小的特征数,样本方差等于 ,当 时,样本方差就接近总体方差。

例1、在某次考试中,10名同学得分如下:84,77,84,83,58,78,70,85,79,95,则这一组数据的众数和中位数分别为()
A、84,68
B、84,78
C、84,81
D、78,81
例2、对甲、乙的学习成绩进行抽样分析,各抽5门功课,得到的观测值如下:
(1)甲、乙的平均成绩谁最好?
(2)谁的各门功课发展较平衡(利用方差比较)?。

2.2.1 用样本的频率分布估计总体分布 课件(人教A版必修3) (1)


)
【做一做 2-2】 在画频率分布直方图时, 某组的频数为 10, 样本容量为 50, 总体容量为 600, 则该组的频率是( A.
1 5
) C.
1 10
B.

1 6 10 1
D.不确定
解析: 该组的频率是50 = 5. 答案: A
3.频率分布折线图和总体密度曲线 ( 1) 类似于频数分布折线图, 连接频率分布直方图中各个小长方形上端的中 点, 就得到频率分布折线图. 一般地, 当总体中的个体数较多时, 抽样时样本容量就不能太小.例如, 如果 要抽样调查一个省乃至全国的居民的月均用水量, 那么样本容量就应比调查一 个城市的时候大.可以想像, 随着样本容量的增加, 作图时所分的组数增加, 组距 减小, 相应的频率折线图会越来越接近于一条光滑曲线, 统计中称这条光滑曲线 为总体密度曲线.
频率分布折线图反映了数据的变化趋势.总体密度曲线反映了总体在各个范围 内取值的百分比, 它能给我们提供更加精细的信息.
( 2) 估计方法: 实际上, 尽管有些总体密度曲线是客观存在的, 但是在实际应 用中我们并不知道它的具体表达形式, 需要用样本来估计.由于样本是随机的, 不同的样本得到的频率分布折线图不同; 即使对于同一个样本, 不同的分组情况 得到的频率分布折线图也不同.频率分布折线图是随样本容量和分组情况的变 化而变化的, 因此不能用样本的频率分布折线图得到准确的总体密度曲线.
2.2
用样本估计总体
2.2.1
用样本的频率分布估计总体分布
1.了解分析数据的方法,知道估计总体频率分布的方法. 2.了解频率分布折线图和总体密度曲线,会画频率分布直方图和茎叶图. 3.理解频率分布直方图和茎叶图及其应用.
1.分析数据的方法 ( 1) 借助于图形. 用图将各个数据画出来, 作图可以达到两个目的, 一是从数据中提取信息; 二是利用图形传递信息. ( 2) 借助于表格. 用紧凑的表格改变数据的构成方式, 为我们提供解释数据的新方式.

高中数学人教A版必修三课时习题:第2章 统计 2.2.2.2含答案

2.2.2 用样本的数字特征估计总体的数字特征第2课时方差、标准差课时目标1.理解方差、标准差的意义,会计算一组数据的方差和标准差,掌握用样本方差或标准差去估计总体方差或总体标准差的方法.2.会用平均数和方差对数据进行处理与比较.识记强化标准差及方差考察样本数据的分散程度的大小,最常用的统计量是标准差.标准差是样本数据到平均数的一种平均距离,一般用s表示.标准差的平方s2叫做方差,也为测量样本数据分散程度的工具.若样本数据是x1,x2,…,x n,x表示这组数据的平均数,则s=1n[x1-x2+x2-x2+…+x n-x2];s2=1n[(x1-x)2+(x2-x)2+…+(x n-x)2].课时作业一、选择题1.下列说法正确的是( )A.在两组数据中,平均值较大的一组方差较大C .2x -+3和s 2D .2x -+3和4s 2+12s +9 答案:B解析:由平均数、方差的求法可得.6.甲、乙两位同学都参加了由学校举办的篮球比赛,他们都参加了全部的7场比赛,平均得分均为16分,标准差分别为5.09和3.72,则甲、乙两同学在这次篮球比赛活动中,发挥得更稳定的是( )A .甲B .乙C .甲、乙相同D .不能确定 答案:B解析:方差或标准差越小,数据的离散程度越小,表明发挥得越稳定.∵5.09>3.72,故选B.二、填空题7.已知样本9、10、11、x 、y 的平均数是10,方差是2,则xy =________. 答案:96解析:由平均数得9+10+11+x +y =50,∴x +y =20,又由(9-10)2+(10-10)2+(11-10)2+(x -10)2+(y -10)2=(2)2×5=10,得x 2+y 2-20(x +y )=-192,(x +y )2-2xy -20(x +y )=-192,xy =96.8.如图是某学校一名篮球运动员在五场比赛中所得分数的茎叶图,则该运动员在这五场比赛中得分的方差为________.答案:6.8解析:x =15(8+9+10+13+15)=11,s 2=15[(8-11)2+(9-11)2+(10-11)2+(13-11)2+(15-11)2]=6.8.9.若k 1,k 2,…,k 8的方差为3,则2(k 1-3),2(k 2-3),…,2(k 8-3)的方差为________. 答案:12解析:设k 1,k 2,…,k 8的平均数为k ,则18[(k 1-k )2+(k 2-k )2+…+(k 8-k )2]=3,而2(k 1-3),2(k 2-3),…,2(k 8-3)的平均数为2(k -3),解析:x 9=x 8+19(x 9-x 8)=5+19×(4-5)=449,s 29=89[s 28+19(x 9-x 8)2]=89[22+19(4-5)2]=29681. 13.下图为我国10座名山的“身高”统计图,请根据图中信息回答下列问题。

人教a版必修三:《2.2.1用样本的频率分布估计总体分布(1)》ppt课件(38页)


填要点、记疑点
主目录
探要点、究所然
当堂测、查疑缺
探要点、究所然
2.2.1(一)
探究点二:频率分布直方图
跟踪训练 2 下表给出了某校 500 名 12 岁男孩中用随机抽样得出的 120 人的身高(单位:cm).
区间界限 人数 区间界限 人数
[122,126) [126,130) [130,134) [134,138) [138,142) 5 8 10 22 33
明目标、知重点
填要点、记疑点
主目录
探要点、究所然
当堂测、查疑缺
探要点、究所然
2.2.1(一)
探究点一:频率分布表
分组 [150.5,153.5) [153.5,156.5) [156.5,159.5) [159.5,162.5) [162.5,165.5) [165.5,168.5) [168.5,171.5) [171.5,174.5)
主目录
频率 0.025 0.075 0.15 0.225 0.35 0.075 0.075 0.025 1
探要点、究所然 当堂测、查疑缺
探要点、究所然
2.2.1(一)
探究点二:频率分布直方图
(2)频率分布直方图如图所示.
明目标、知重点
填要点、记疑点
主目录
探要点、究所然
当堂测、查疑缺
探要点、究所然
明目标、知重点 填要点、记疑点
频数 5 8 10 22 33 20 11 6 5 120
主目录
频率 0.04 0.07 0.08 0.18 0.28 0.17 0.09 0.05 0.04 1
探要点、究所然 当堂测、查疑缺
探要点、究所然
2.2.1(一)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档