数值积分的方法计算定积分,matlab实验

数值积分的方法计算定积分,matlab实验
数值积分的方法计算定积分,matlab实验

实验报告

教师姓名:时间:

用递推公式计算定积分(matlab版)

用递推公式计算定积分 实验目的: 1.充分理解不稳定的计算方法会造成误差的积累,在计算过程中会导致误差的迅速增加,从而使结果产生较大的误差。 2.在选择数值计算公式来进行近似计算时,应学会选用那些在计算过程中不会导致误差迅速增长的计算公式。 3.理解不稳定的计算公式造成误差积累的来源及具体过程; 4.掌握简单的matlab语言进行数值计算的方法。 实验题目: 对n=0,1,2,…,20,计算定积分: 实验原理: 由于y(n)= = – 在计算时有两种迭代方法,如下: 方法一: y(n)=– 5*y(n-1),n=1,2,3, (20) 取y(0)= = ln6-ln5 ≈ 0.182322 方法二: 利用递推公式:y(n-1)=-*y(n),n=20,19, (1) 而且,由 = * ≤≤* =

可取:y(20)≈*()≈0.008730. 实验容: 对算法一,程序代码如下: function [y,n]=funa() syms k n t; t=0.182322; n=0; y=zeros(1,20); y(1)=t; for k=2:20 y(k)=1/k-5*y(k-1); n=n+1; end y(1:6) y(7:11) 对算法二,程序代码如下: %计算定积分; %n--表示迭代次数; %y用来存储结果; function [y,n]=f(); syms k y_20;

y=zeros(21,1); n=1; y_20=(1/105+1/126)/2; y(21)=y_20; for k=21:-1:2 y(k-1)=1/(5*(k-1))-y(k)/5; n=n+1; end 实验结果: 由于计算过程中,前11个数字太小,后9个数字比较大,造成前面几个数字只显示0.0000的现象,所以先输出前6个,再输出7—11个,这样就能全部显示出来了。 算法一结果: [y,n]=funa %先显示一y(1)—y(6) ans = 0.1823 -0.4116 2.3914 -11.7069 58.7346

定积分的方法总结

定积分的方法总结 定积分是新课标的新增内容,其中定积分的计算是重点考查的考点之一,下面例析定积分计算的几种常用方法. 一、定义法 例1、求 s i n b a x d x ? , (b a <) 解:因为函数s i n x 在],[b a 上连续,所以函数sin x 在],[b a 上可积,采用特殊的 方法作积分和.取h = n a b -,将],[b a 等分成n 个小区间, 分点坐标依次为 ?=+<<+<+

【数学建模学习】Matlab的数值积分

Matlab 的数值积分问题 (1)求和命令sum 调用格式. 如果x 是向量,则sum(x) 给出x 的各个元素的累加和;如果x 是矩阵,则sum(x)是一个元素为x 的每列列和的行向量. 例3.1 调用命令sum 求向量x 的各个元素的累加和。 解:输入 x=[1,2,3,4,5,6,7,8,9,10]; sum(x) 得到 ans=55 例3.2 调用命令sum 求矩阵x 的各列元素的累加和。 解:输入 x=[1,2,3;4,5,6;7,8,9] x= 1 2 3 4 5 6 7 8 9 sum(x) 得到 ans=12 15 18 2.定积分的概念. 定积分是一个积分和的极限. 例如取x e x f =)(,求定积分?10dx e x 的近似值。 积分区间为[0,1],等距划分为20个子区间, x=linspace(0,1,21); 选取每个子区间的端点,并计算端点处的函数值. y=exp(x); 取区间的左端点处的函数值乘以区间长度全部加起来. y1=y(1:20); s1=sum(y1)/20 s1=1.6757 s1可作为定积分?10dx e x 的近似值。 若选取右端点: y2=y(2:21); s2=sum(y2)/20 s2=1.7616 s2也可以作为定积分?10dx e x 的近似值。 下面我们画出图象. plot(x,y);hold on for i=1:20 fill([x(i),x(i+1),x(i+1),x(i),x(i)],[0,0,y(i),y(i),0],'b')

end 如果选取右端点,则可画出图象. for i=1:20 fill([x(i),x(i+1),x(i+1),x(i),x(i)],[0,0,y(i+1),y(i+1),0],'b') hold on end plot(x,y,'r') 在上边的语句中,for … end 是循环语句,执行语句体内的命令20次,fill 命令可以填充多边形,在本例中,用的是兰色(blue)填充. 可试取50个子区间看一看结果怎样.下面按等分区间计算。 syms k n s=symsum(exp(k/n)/n,k,1,n); limit(s,n,inf) 得结果 ans=exp(1)-1 3.计算定积分 例3.6 计算?10dx e x . 解:输入命令: syms x; int(exp(x),0,1) 得结果 ans=exp(1)-1. 这与我们上面的运算结果是一致的. ⒈ 由给定数据进行梯形求积 假设已经建立起向量T N T N y y y y x x x x ],,,[,],,,[2121 ==,则可用以下语句进行梯形求积: sum((2*y(1:end-1,:)+diff(y)).*diff(x))/2 MATLAB 提供的trapz()函数也可直接用梯形法求解积分问题,该函数调用格式为 S=trapz(x,y) [例1-6-17] 试用梯形法求出),0(π∈x 区间内,函数sin(x),cos(x),sin(x/2)的定积分值。 [求解] >> x1=[0:pi/30:pi]'; y=[sin(x1) cos(x1) sin(x1/2)]; x=[x1 x1 x1]; S=sum((2*y(1:end-1,:)+diff(y)).*diff(x))/2 >> S1=trapz(x1,y) [例1-6-18] 用定步长方法求解积分?2 /30)15cos(πdx x 。 [求解] 鉴于求解区域内被积函数有很强的振荡,可先用下述语句绘制被积函数的曲线。 >> x=[0:0.01:3*pi/2,3*pi/2]; y=cos(15*x); plot(x,y) 采用不同的步距,可分别得到积分近似结果。 >> syms x, A=int(cos(15*x),0,3*pi/2) % 求理论值 >> h0=[0.1,0.01,0.001,0.0001,0.00001,0.000001]; v=[]

几种定积分的数值计算方法

几种定积分的数值计算方法 摘要:本文归纳了定积分近似计算中的几种常用方法,并着重分析了各种数值方法的计 算思想,结合实例,对其优劣性作了简要说明. 关键词:数值方法;矩形法;梯形法;抛物线法;类矩形;类梯形 Several Numerical Methods for Solving Definite Integrals Abstract:Several common methods for solving definite integrals are summarized in this paper. Meantime, the idea for each method is emphatically analyzed. Afterwards, a numerical example is illustrated to show that the advantages and disadvantages of these methods. Keywords:Numerical methods, Rectangle method, Trapezoidal method, Parabolic method, Class rectangle, Class trapezoid

1. 引言 在科学研究和实际生产中,经常遇到求积分的计算问题,由积分学知识可知,若函数 )(x f 在区间],[b a 连续且原函数为)(x F ,则可用牛顿-莱布尼茨公式 ?-=b a a F b F x f ) ()()( 求得积分.这个公式不论在理论上还是在解决实际问题中都起到了很大的作用. 在科学研究和实际生产中,经常遇到求积分的计算问题,由积分学知识可知,若函数)(x f 在区间],[b a 连续且原函数为)(x F ,则可用牛顿-莱布尼茨公式 ?-=b a a F b F x f ) ()()( 求得积分.这个公式不论在理论上还是在解决实际问题中都起到了很大的作用.另外,对于求导数也有一系列的求导公式和求导法则.但是,在实际问题中遇到求积分的计算,经常会有这样的情况: (1)函数)(x f 的原函数无法用初等函数给出.例如积分 dx e x ?-1 02 , ? 1 sin dx x x 等,从而无法用牛顿-莱布尼茨公式计算出积分。 (2)函数)(x f 使用表格形式或图形给出,因而无法直接用积分公式或导数公式。 (3)函数)(x f 的原函数或导数值虽然能够求出,但形式过于复杂,不便使用. 由此可见,利用原函数求积分或利用求导法则求导数有它的局限性,所以就有了求解数值积分的很多方法,目前有牛顿—柯特斯公式法,矩形法,梯形法,抛物线法,随机投点法,平均值法,高斯型求积法,龙贝格积分法,李查逊外推算法等等,本文对其中部分方法作一个比较. 2.几何意义上的数值算法 s 在几何上表示以],[b a 为底,以曲线)(x f y =为曲边的曲边梯形的面积A ,因此,计 算s 的近似值也就是A 的近似值,如图1所示.沿着积分区间],[b a ,可以把大的曲边梯形分割成许多小的曲边梯形面积之和.常采用均匀分割,假设],[b a 上等分n 的小区间 ,x 1-i h x i +=b x a x n ==,0,其中n a b h -= 表示小区间的长度. 2.1矩形法

数值积分的matlab实现

实验10 数值积分 实验目的: 1.了解数值积分的基本原理; 2.熟练掌握数值积分的MATLAB 实现; 3.会用数值积分方法解决一些实际问题。 实验内容: 积分是数学中的一个基本概念,在实际问题中也有很广泛的应用。同微分一样,在《微积分》中,它也是通过极限定义的,由于实际问题中遇到的函数一般都以列表形式给出,所以常常不能用来直接进行积分。此外有些函数虽然有解析式,但其原函数不是初等函数,所以仍然得不到积分的精确值,如不定积分?1 0 d sin x x x 。这时我们一般考虑用数值方法计算其 近似值,称为数值积分。 10.1 数值微分简介 设函数()y f x =在* x 可导,则其导数为 h x f h x f x f h ) ()(lim )(**0* -+='→ (10.1) 如果函数()y f x =以列表形式给出(见表10-1),则其精确值无法求得,但可由下式求得其近似值 h x f h x f x f ) ()()(*** -+≈' (10.2) 表 10-1 一般的,步长h 越小,所得结果越精确。(10.2)式右端项的分子称为函数()y f x =在 *x 的差分,分母称为自变量在*x 的差分,所以右端项又称为差商。数值微分即用差商近似 代替微商。常用的差商公式为: 000()() ()2f x h f x h f x h +--'≈ (10.3) h y y y x f 243)(2 100-+-≈ ' (10.4)

h y y y x f n n n n 234)(12+-≈ '-- (10.5) 其误差均为2 ()O h ,称为统称三点公式。 10.2 数值微分的MATLAB 实现 MATLAB 提供了一个指令求解一阶向前差分,其使用格式为: dx=diff(x) 其中x 是n 维数组,dx 为1n -维数组[]21321,, ,n x x x x x x ---,这样基于两点的数值导 数可通过指令diff(x)/h 实现。对于三点公式,读者可参考例1的M 函数文件diff3.m 。 例1 用三点公式计算()y f x =在=x 1.0,1.2,1.4处的导数值,()f x 的值由下表给 解:建立三点公式的M 函数文件diff3.m 如下: function f=diff3(x,y) n=length(x);h=x(2)-x(1); f(1)=(-3*y(1)+4*y(2)-y(3))/(2*h); for j=2:n-1 f(j)=(y(j+1)-y(j-1))/(2*h); end f(n)=(y(n-2)-4*y(n-1)+3*y(n))/(2*h); 在MATLAB 指令窗中输入指令: x=[1.0,1.1,1.2,1.3,1.4];y=[0.2500,0.2268,0.2066,0.1890,0.1736];diff3(x,y) 运行得各点的导数值为:-0.2470,-0.2170,-0.1890,-0.1650,-0.0014。所以()y f x =在=x 1.0,1.2,1.4处的导数值分别为-0.2470,-0.1890和-0.0014。 对于高阶导数,MATLAB 提供了几个指令借助于样条函数进行求导,详细使用步骤如下: step1:对给定数据点(x,y ),利用指令pp=spline(x,y),获得三次样条函数数据pp ,供后面ppval 等指令使用。其中,pp 是一个分段多项式所对应的行向量,它包含此多项式的阶数、段数、节点的横坐标值和各段多项式的系数。 step2:对于上面所求的数据向量pp ,利用指令[breaks,coefs,m,n]=unmkpp(pp)进行处理,生成几个有序的分段多项式pp 。 step3:对各个分段多项式pp 的系数,利用函数ppval 生成其相应导数分段多项式的系数,再利用指令mkpp 生成相应的导数分段多项式 step4:将待求点xx 代入此导数多项式,即得样条导数值。 上述过程可建立M 函数文件ppd.m 实现如下: function dy=ppd(pp) [breaks,coefs,m]=unmkpp(pp);

数值积分算法与MATLAB实现陈悦5133201讲解

东北大学秦皇岛分校 数值计算课程设计报告 数值积分算法及MATLAB实现 学院数学与统计学院 专业信息与计算科学 学号5133201 姓名陈悦 指导教师姜玉山张建波 成绩 教师评语: 指导教师签字: 2015年07月14日

1 绪论 数值分析是计算数学的一个主要部分,计算数学是数学科学的一个分支,它研究用计算机求解各种数学问题的数值检索方其理论与软件的实现.而数值分析主要研究数值计算. 现科学技术的发展与进步提出了越来越多的复杂的数值计算问题,这些问题的圆满解决已远人工手算所能胜任,必须依靠电子计算机快速准确的数据处理能力.这种用计算机处理数值问题的方法,成为科学计算.今天,科学计算的应用范围非常广泛,天气预报、工程设计、流体计算、经济规划和预测以及国防尖端的一些科研项目,如核武器的研制、导弹和火箭的发射等,始终是科学计算最为活跃的领域. 1.1 数值积分介绍 数值积分是数值分析的重要环节,实际问题当中常常需要计算积分,有些数值方法,如微分方程和积分方程的求解,也都和积分计算相联系. 求某函数的定积分时,在多数情况下,被积函数的原函数很难用初等函数表达出来,因此能够借助微积分学的牛顿-莱布尼兹公式计算定积分的机会是不多的.另外,许多实际问题中的被积函数往往是列表函数或其他形式的非连续函数,对这类函数的定积分,也不能用不定积分方法求解.由于以上原因,数值积分的理论与方法一直是计算数学研究的基本课题.对微积分学做出杰出贡献的数学大师,如I.牛顿、L.欧拉、C.F.高斯、拉格朗日等人都在数值积分这个领域作出了各自的贡献,并奠定了这个分支的理论基础. 构造数值积分公式最通常的方法是用积分区间上的n 次插值多项式代替被积函数,由此导出的求积公式称为插值型求积公式.特别在节点分布等距的情形称为牛顿-科特斯公式,例如梯形公式(Trapezoidal Approximations)与抛物线公式(Approximations Using Parabolas)就是最基本的近似公式.但它们的精度较差.龙贝格算法是在区间逐次分半过程中,对梯形公式的近似值进行加权平均获得准确程度较高的积分近似值的一种方法,它具有公式简练、计算结果准确、使用方便、稳定性好等优点,因此在等距情形宜采用龙贝格求积公式(Rhomberg Integration).当用不等距节点进行计算时,常用高斯型求积公式计算,它在节点数目相同情况下,准确程度较高,稳定性好,而且还可以计算无穷积分.数值积分还是微分方程数值解法的重要依据.许多重要公式都可以用数值积分方程导出.现探讨数值积分算法以及运用MATLAB软件的具体实现

数值分析实验指导 - 7 积分

数值分析实验指导 潘志斌 2014年3月

实验七 数值积分 数值实验综述:通过数值积分实验掌握数值积分的实现,理解各种数值积分公式的特性,并能用数值积分求解积分方程和微分方程。 基础实验 7.1 Newton-cotes 型求积公式 实验目的:学会Newton-cotes 型求积公式,并应用该算法于实际问题. 实验内容:求定积分 ? π cos xdx e x 实验要求:选择等分份数n ,用复化Simpson 求积公式求上述定积分的误差不超过810-的近似值,用MATLAB 中的内部函数int 求此定积分的准确值,与利用复化Simpson 求积公式计算的近似值进行比较。 7.2 Romberg 算法 实验目的:学会数值求积的Romberg 算法,并应用该算法于实际问题. 实验内容:求定积分 ? 1 5 .0dx x 实验要求: (1)要求程序不断加密对积分区间的等分,自动地控制Romberg 算法中的加速收敛过程,直到定积分近似值的误差不超过610-为止,输出求得的定积分近似值。 (2)可用MATLAB 中的内部函数int 求得此定积分的准确值与Romberg 算法计算的近似值进行比较。 7.3 Gauss 型求积公式 实验目的:学会Gauss 型求积公式,并应用该算法于实际问题. 实验内容:求定积分 ? -+4 42 1x dx 实验要求: (1)把Gauss 点的表格存入计算机,以Gauss-Legendre 求积公式作为本实验的例子,要求程序可以根据不同的阶数n ,自动地用n 阶Gauss-Legendre 求积

公式计算上述定积分的近似值.体会Gauss型求积公式是具有尽可能高的代数精度的数值求积公式。 (2)可用MATLAB中的内部函数int求得此定积分的准确值与Gauss型求积公式求得的值进行比较。

matlab求定积分之实例说明

一、符号积分 符号积分由函数int来实现。该函数的一般调用格式为: int(s):没有指定积分变量和积分阶数时,系统按findsym函数指示的默认变量对被积函数或符号表达式s求不定积分; int(s,v):以v为自变量,对被积函数或符号表达式s求不定积分; int(s,v,a,b):求定积分运算。a,b分别表示定积分的下限和上限。该函数求被积函数在区间[a,b]上的定积分。a和b可以是两个具体的数,也可以是一个符号表达式,还可以是无穷(inf)。当函数f关于变量x在闭区间[a,b]上可积时,函数返回一个定积分结果。当a,b中有一个是inf时,函数返回一个广义积分。当a,b中有一个符号表达式时,函数返回一个符号函数。 例: 求函数x^2+y^2+z^2的三重积分。内积分上下限都是函数,对z积分下限是sqrt(x*y),积分上限是x^2*y;对y积分下限是sqrt(x),积分上限是x^2;对x的积分下限1,上限是2,求解如下: >>syms x y z %定义符号变量 >>F2=int(int(int(x^2+y^2+z^2,z,sqrt(x*y),x^2*y),y,sqrt(x),x^2),x,1,2) %注意定积分的书写格式 F2 = 1610027357/6563700-6072064/348075*2^(1/2)+14912/4641*2^(1/4)+64/225*2 ^(3/4) %给出有理数解 >>VF2=vpa(F2) %给出默认精度的数值解 VF2 = 224.92153573331143159790710032805 二、数值积分 1.数值积分基本原理 求解定积分的数值方法多种多样,如简单的梯形法、辛普生(Simpson)?法、牛顿-柯特斯(Newton-Cotes)法等都是经常采用的方法。它们的基本思想都是将整个积分区间[a,b]分成n个子区间[xi,xi+1],i=1,2,…,n,其中x1=a,xn+1=b。这样求定积分问题就分解为求和问题。 2.数值积分的实现方法 基于变步长辛普生法,MATLAB给出了quad函数来求定积分。该函数的调用格式为: [I,n]=quad('fname',a,b,tol,trace) 基于变步长、牛顿-柯特斯(Newton-Cotes)法,MATLAB给出了quadl函数来求定积分。该函数的调用格式为: [I,n]=quadl('fname',a,b,tol,trace) 其中fname是被积函数名。a和b分别是定积分的下限和上限。tol用来控制积分精度,缺省时取tol=0.001。trace控制是否展现积分过程,若取非0则展现积分过程,取0则不展现,缺省时取trace=0。返回参数I即定积分值,n为被积函数的调用次数。 例: 求函数'exp(-x*x)的定积分,积分下限为0,积分上限为1。 >>fun=inline('exp(-x.*x)','x'); %用内联函数定义被积函数fname

数值积分用matlab实现

数值积分用m a t l a b实 现

东北大学秦皇岛分校 数值计算课程设计报告 数值积分及Matlab实现 学院数学与统计学院 专业信息与计算科学 学号5133117 姓名楚文玉 指导教师张建波姜玉山 成绩 教师评语: 指导教师签字: 2015年07月14日

1 绪论 在科研计算中,经常会碰到一些很难用公式定理直接求出精确解的积分问题,对于这类问题,我们一般转化为数值积分问题,用计算机来实现求解问题. 1.1 课题的背景 对于定积分()b a f x dx ?在求某函数的定积分时,在一定条件下,虽然有牛顿-莱布里 茨公式()()()b a I f x dx F b F a ==-?可以计算定积分的值,但在很多情况下的原函数() f x 不易求出或非常复杂.被积函数的原函数很难用初等函数表达出来,例如 2 sin (),x x f x e x -= 等;有的函数()f x 的原函数()F x 存在,但其表达式太复杂,计算量太大,有的甚至无法有解析表达式.因此能够借助牛顿-莱布尼兹公式计算定积分的情形是不多的.另外,许多实际问题中的被积函数()f x 往往是列表函数或其他形式的非连续函数,对这类函数的定积分,也不能用不定积分方法求解,只能设法求其近似值.因此,探讨近似计算的数值积分方法是有明显的实际意义的,即有必要研究定积分的数值计算方法,以解决定积分的近似计算.而数值积分就是解决此类问题的一种有效的方法,它的特点是利用被积函数在一些节点上的信息求出定积分的近似值.微积分的发明是人类科学史上一项伟大的成就,在科学技术中,积分是经常遇到的一个重要计算环节数值积分是数学上重要的课题之一,是数值分析中重要的内容之一.随着计算机的出现,近几十年来,对于数值积分问题的研究已经成为一个很活跃的研究领域.现在,数值积分在计算机图形学,积分方程,工程计算,金融数学等应用科学领域都有着相当重要的应用,所以研究数值积分问题有着很重要的意义.国内外众多学者在数值积分应用领域也提出了许多新方法.在很多实际应用中,只能知道积分函数在某些特定点的取值,比如天气测量中的气温、湿度、气压等,医学测量中的血压、浓度等等.通过这个课题的研究,我们将会更好地掌握运用数值积分算法求出特殊积分函数的定积分的一些基本方法、理论基础;并且通过Matlab 软件编程的实现,应用于实际生活中. 1.2 课题的主要内容框架

用MATLAB算多元函数积分

用MATLAB 计算多元函数的积分 三重积分的计算最终是化成累次积分来完成的,因此只要能正确的得出各累次积分的积分限,便可在MA TLAB 中通过多次使用int 命令来求得计算结果。但三重积分的积分域Ω是一个三维空间区域,当其形状较复杂时,要确定各累次积分的积分限会遇到一定困难,此时,可以借助MATLAB 的三维绘图命令,先在屏幕上绘出Ω的三维立体图,然后执行命令 rotate3d on ↙ 便可拖动鼠标使Ω的图形在屏幕上作任意的三维旋转,并且可用下述命令将Ω的图形向三个坐标平面进行投影: view(0,0),向XOZ 平面投影; view(90,0),向YOZ 平面投影; view(0,90),向XOY 平面投影. 综合运用上述方法,一般应能正确得出各累次积分的积分限。 例11.6.1计算zdv Ω ???,其中Ω是由圆锥曲面222z x y =+与平面z=1围成的闭区域 解 首先用MA TLAB 来绘制Ω的三维图形,画圆锥曲面的命令可以是: syms x y z ↙ z=sqrt(x^2+y^2); ↙ ezsurf(z,[-1.5,1.5]) ↙ 画第二个曲面之前,为保持先画的图形不会被清除,需要执行命令 hold on ↙ 然后用下述命令就可以将平面z=1与圆锥面的图形画在一个图形窗口内: [x1,y1]=meshgrid(-1.5:1/4:1.5); ↙ z1=ones(size(x1)); ↙ surf(x1,y1,z1) ↙ 于是得到Ω的三维图形如图:

由该图很容易将原三重积分化成累次积分: 111zdv dy -Ω=???? 于是可用下述命令求解此三重积分: clear all ↙ syms x y z ↙ f=z; ↙ f1=int(f,z.,sqrt(x^2+ y^2),1); ↙ f2=int(f1,x,-sqrt(1- y^2), sqrt(1- y^2)); ↙ int(f2,y,-1,1) ↙ ans= 1/4*pi 计算结果为4 π 对于第一类曲线积分和第一类曲面积分,其计算都归结为求解特定形式的定积分和二重积分,因此可完全类似的使用int 命令进行计算,并可用diff 命令求解中间所需的各偏导数。 例11.6.2用MATLAB 求解教材例11.3.1 解 求解过程如下 syms a b t ↙ x=a*cos(t); ↙ y=a*sin(t); ↙ z=b*t; ↙ f=x^2 +y^2+z^2; ↙ xt=diff(x,t); ↙ yt=diff(y,t); ↙ zt=diff(z,t); ↙ int(f*sqrt(xt^2 +yt^2+zt^2),t,0,2*pi) ↙ ans= 2/3*( a^2 +b^2)^1/2*a^2*pi+8/3*( a^2 +b^2)^1/2*b^2*pi^3 对此结果可用factor 命令进行合并化简: factor (ans ) ans= 2/3*( a^2 +b^2)^1/2*pi*(3* a^2 +4*b^2*pi^2) 例11.6.3用MATLAB 求解教材例11.4.1 解 求解过程如下 syms x y z1 z2↙ f= x^2 +y^2; ↙ z1=sqrt(x^2 +y^2); ↙ z2=1; ↙ z1x=diff(z1,x); ↙ z1y=diff(z1,y); ↙ z2x=diff(z2,x); ↙ z2y=diff(z2,y); ↙

详解Matlab求积分的各种方法

详解Matlab求积分的各种方法 一、符号积分由函数int来实现。 该函数的一般调用格式为: int(s): 没有指定积分变量和积分阶数时,系统按findsym函数指示的默认变量对被积函数或符号表达式s求不定积分;int(s,v): 以v为自变量,对被积函数或符号表达式s求不定积分;int(s,v,a,b): 求定积分运算。 a,b分别表示定积分的下限和上限。 该函数求被积函数在区间[a,b]上的定积分。 a和b可以是两个具体的数,也可以是一个符号表达式,还可以是无穷(inf)。 当函数f关于变量x在闭区间[a,b]上可积时,函数返回一个定积分结果。 当a,b中有一个是inf时,函数返回一个广义积分。 当a,b中有一个符号表达式时,函数返回一个符号函数。 例: 求函数x^2+y^2+z^2的三重积分。 内积分上下限都是函数,对z积分下限是sqrt(x*y),积分上限是x^2*y;对y积分下限是sqrt(x),积分上限是x^2;对x的积分下限1,上限是2,求解如下: >>syms x y z %定义符号变 量>>F2=int(int(int(x^2+y^2+z^2,z,sqrt(x*y),x^2*y),y,sqrt(x),x^2),x,1,2) %注意定积分的书写格式F2 =57/-

/348075*2^(1/2)+14912/4641*2^(1/4)+64/225*2^(3/4) %给出有理数 解>>VF2=vpa(F2) %给出默认精度的数值解VF2 = 224.9 232805二、数值积分 1.数值积分基本原理求解定积分的数值方法多种多样,如简单的梯形法、辛普生(Simpson)?法、牛顿-柯特斯(Newton-Cotes)法等都是经常采用的方法。 它们的基本思想都是将整个积分区间[a,b]分成n个子区间[xi,xi+1], i=1,2,…,n,其中x1=a,xn+1=b。 这样求定积分问题就分解为求和问题。 2.数值积分的实现方法基于变步长辛普生法,MATLAB给出了quad函数来求定积分。 该函数的调用格式为: [I,n]=quad('fname',a,b,tol,trace)基于变步长、牛顿-柯特斯(Newton-Cotes)法,MATLAB给出了quadl函数来求定积分。 该函数的调用格式为: [I,n]=quadl('fname',a,b,tol,trace)其中fname是被积函数名。 a和b分别是定积分的下限和上限。 tol用来控制积分精度,缺省时取tol= 0.0 01。 trace控制是否展现积分过程,若取非0则展现积分过程,取0则不展现,缺省时取trace= 0。

数值积分的算法比较及其MATLAB实现

编号: 审定成绩: 重庆邮电大学 毕业设计(论文) 设计(论文)题目:数值积分算法与MATLAB实现 学院名称:数理学院 学生姓名: 专业:数学与应用数学 班级: 学号: 指导教师: 答辩组负责人: 填表时间:年月 重庆邮电大学教务处制

摘要 在求一些函数的定积分时,由于原函数十分复杂难以求出或用初等函数表达,导致积分很难精确求出,只能设法求其近似值,因此能够直接借助牛顿-莱布尼兹公式计算定积分的情形是不多的。数值积分就是解决此类问题的一种行之有效的方法。积分的数值计算是数值分析的一个重要分支;因此,探讨近似计算的数值积分方法是有着明显的实际意义的。本文从数值积分问题的产生出发,详细介绍了一些数值积分的重要方法。 本文较详细地介绍了牛顿-科特斯求积公式,以及为了提高积分计算精度的高精度数值积分公式,即龙贝格求积公式和高斯-勒让德求积公式。除了研究这些数值积分算法的理论外,本文还将这些数值积分算法在计算机上通过MATLAB软件编程实现,并通过实例用各种求积公式进行运算,分析比较了各种求积公式的计算误差。 【关键词】数值积分牛顿-科特斯求积公式高精度求积公式MATLAB软件

ABSTRACT When the solution of the definite integral of some function values,because the original function is very complex and difficult to find the elementary function expression, the integral is difficult to accurately calculate, only managed to find the approximate value, and the case is small that allows to direct interface with the Newton - Leibniz formula to calculate the definite integral. Numerical integration is an effective method to solve such problems. The numerical integration is an important branch of numerical analysis; therefore, exploring the approximate calculation of the numerical integration method has obvious practical significance. This article departure from the numerical integration problem, described in detail some important numerical integration methods. This paper has introduced detail the Newton - Coates quadrature formula, and in order to improve the calculation accuracy of numerical integration formulas, More precise formulas have Romberg quadrature formulas and the Gauss - Legendre quadrature formula. In addition to the study of these numerical integration algorithm theory, the article also involve what these numerical integration algorithm be programmed by matlab software on the computer, and an example is calculated with a variety of quadrature formulas, finally analysis and comparison to various quadrature formulas calculation error. 【Key words】Numerical integration Newton-Cotes quadrature formula High-precision quadrature formula Matlab software

数值积分算法与MATLAB实现

数值积分算法与MATLAB实现 本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意! 摘要:在求一些函数的定积分时,由于原函数十分复杂难以求出或用初等函数表达,导致积分很难精确求出,只能设法求其近似值,因此能够直接借助牛顿-莱布尼兹公式计算定积分的情形是不多的。数值积分就是解决此类问题的一种行之有效的方法。积分的数值计算是数值分析的一个重要分支;因此,探讨近似计算的数值积分方法是有着明显的实际意义的。本文从数值积分问题的产生出发,详细介绍了一些数值积分的重要方法。 本文较详细地介绍了牛顿-科特斯求积公式,以及为了提高积分计算精度的高精度数值积分公式,即龙贝格求积公式和高斯-勒让德求积公式。除了研究这些数值积分算法的理论外,本文还将这些数值积分算法在计算机上通过MATLAB软件编程实现,并通过实例用各种求积公式进行运算,分析比较了各种求积公式的计算误差。 【关键词】数值积分牛顿-科特斯求积公式高精度求积公式MATLAB软件

前言 对于定积分,在求某函数的定积分时,在一定条件下,虽然有牛顿-莱布里茨公式可以计算定积分的值,但在很多情况下的原函数不易求出或非常复杂。被积函数的原函数很难用初等函数表达出来,例如等;有的函数的原函数存在,但其表达式太复杂,计算量太大,有的甚至无法有解析表达式。因此能够借助牛顿-莱布尼兹公式计算定积分的情形是不多的。另外,许多实际问题中的被积函数往往是列表函数或其他形式的非连续函数,对这类函数的定积分,也不能用不定积分方法求解,只能设法求其近似值。因此,探讨近似计算的数值积分方法是有明显的实际意义的,即有必要研究定积分的数值计算方法,以解决定积分的近似计算。而数值积分就是解决此类问题的一种有效的方法,它的特点是利用被积函数在一些节点上的信息求出定积分的近似值。 微积分的发明是人类科学史上一项伟大的成就,在科学技术中,积分是经常遇到的一个重要计算环节。数值积分是数学上重要的课题之一,是数值分析中重要的内容之一,也是应用数学研究的重点。随着计算机的出现,近几十年来,对于数值积分问题的研究已经成为一个很活跃的研究领域。现在,数值积分在计算

基础实验二 定积分数值计算

基础实验二 定积分数值计算 一、实验目的 学习定积分的数值计算方法,理解定积分的定义,掌握牛顿-莱布尼兹公式。 二、实验材料 2.1定积分的数值计算 计算定积分?b a dx x f )(的近似值,可将积分区间n 等分而得矩形公式 n a b n a b i a f dx x f n i b a ---+≈∑?=]) 1([)(1 或 n a b n a b i a f dx x f n i b a --+≈∑?=][)(1 也可用梯形公式近似计算 n a b b f a f n a b i a f dx x f n i b a -++-+≈∑?-=]2)()()([)(11 如果要准确些,可用辛普森公式 n a b b f a f a b i a f n a b i a f dx x f n i n i b a 6)]()()2)21((4)(2[)(111-++--++-+≈∑∑?=-= 对于?1 0sin xdx ,矩形公式、梯形公式、辛普森公式的Mathematica 程序为 a=0;b=1;k=10; f[x_]:=Sin[x]; d=N[Integrate[f[x],{x,a,b}],k];(计算精确值) s1[m_]:=N[Sum[f[a+i*(b-a)/m]*(b-a)/m,{i,0,m-1}],k];(取小区间左端点的矩形公式) s2[m_]:=N[Sum[f[a+(i+1/2)*(b-a)/m]*(b-a)/m,{i,0,m-1}],k]; (取小区间中点的矩形公式) s3[m_]:=N[Sum[f[a+i*(b-a)/m]*(b-a)/m,{i,1,m}],k]; (取小区间右端点的矩形公式) s4[m_]:=N[Sum[(f[a+i*(b-a)/m]+f[a+(i+1)*(b-a)/m])/2*(b-a)/m,{i,0,m-1}],k]; (梯形公式) s5[m_]:=N[(b-a)/m/6*((f[a]+f[b])+2*Sum[f[a+i*(b-a)/m],{i,1,m-1}]

MATLAB计算积分

函数的积分和椭圆的周长 1.正弦函数的积分 [问题]求正弦函数从0到π的积分 y = sin x 当x = 0时,积分为0,画出积分的函数曲线。 [数学模型] 定积分的结果为 ππ00 sin d cos 2S x x x ==-=? 不定积分的结果为 sin d cos I x x x C ==-+? 其中C 是积分常量,由初始条件决定。当x = 0时,积分为I = 0,必有C = 1。结果为 I = -cos x + 1 [算法]根据积分的基本概念,将积分区域分为多份,用矩形法求曲线下的近似面积表示积分的近似值 1()n i i S f x x ==?∑ 矩形法的函数是sum(f)。 用梯形法求曲线下的近似面积表示积分的近似值 1 101[()()]2 n i i i S f x f x x -+==+?∑ 梯形法的函数是trapz(f)。 用数值积分的函数是quad 和quadl ,常用使用格式是 S = quad(f,a,b) 其中,f 表示被积函数,a 表示积分的下限,b 表示积分的下限。 用符号的函数是int ,常用使用格式是 S = int(f,a,b) [程序]zqy4_1.m 如下。 %正弦函数的积分 clear %清除变量 x=linspace(0,pi); %自变量向量 dx=x(2); %间隔 y=sin(x); %被积函数 s1=sum(y)*dx %矩形法积分 s2=trapz(y)*dx %梯形法积分 f=inline('sin(x)'); %被积的内线函数 s3=quad(f,0,pi) %数值定积分

s4=int('sin(x)',0,pi) %符号积分 sc1=cumsum(y)*dx; %矩形法累积积分(精度稍差) sc2=cumtrapz(y)*dx; %梯形法累积积分 figure %创建图形窗口 plot(x,-cos(x)+1,x,sc1,'.',x,sc2,'o') %画解析式和矩阵法以及梯形法积分曲线 s=int('sin(x)') %符号积分 sc3=subs(s,'x',x); %替换数值求符号积分的值 C=-sc3(1) %求积分常数 hold on %保持图像 plot(x,sc3+C,'c*') %画符号法积分曲线 grid on %加网格 fs=16; %字体大小 xlabel('\itx','FontSize',fs) %横坐标 ylabel('\intsin\itx\rmd\itx','FontSize',fs)%纵坐标 title('正弦函数的积分','FontSize',fs) %标题 legend('解析解','矩形法','梯形法','符号法')%图例 zqy4.1图 zqy4.2图 2.三角函数和指数的积分 [问题]求如下函数的积分 y = e ax sin bx 其中a = 0.5,b = 2。积分下限为0。画出积分的函数曲线。 [数学模型] 设 11e sin d sin de {e sin e cos d }ax ax ax ax I bx x bx bx b bx x a a == =-??? 11{e sin cos de }{e sin [e cos e sin d ]}ax ax ax ax ax b b bx bx bx bx b bx x a a a a =-=-+?? 因此不定积分为 221e (sin cos )ax I a bx b bx C a b =-++ 当x = 0时,I 应该为零,所以 22b C a b =+

相关文档
最新文档