三维搅拌器数值模拟上课讲义

三维搅拌器数值模拟上课讲义
三维搅拌器数值模拟上课讲义

三维搅拌器数值模拟

搅拌器数值模拟

1 引 言

搅拌混合是一种常规的单元操作,具有广泛的应用背景,搅拌可以使物料混合均匀、使气体在液相中很好地分散、使固体粒子(如催化剂)在液相中均匀地悬浮、使不相溶的另一液相均匀悬浮或者充分乳化,并可以强化相间的传质、传热。作为工业生产中工艺过程的一部分,搅拌效果直接影响到其它后续生产过程。

在利用超临界流体对废旧橡胶进行脱硫的课题中,脱硫反应釜中应用四叶涡轮搅拌器加强脱硫剂对溶胀橡胶的渗透作用。本文即对搅拌器在反应釜中产生的流场进行数值计算,分析搅拌流场特性,通过模拟得到流场结构及搅拌桨的速度矢量分布。

2 搅拌器流场数值模拟

2.1 四叶涡轮搅拌器solidworks 建模

四叶涡轮搅拌器桨叶直径mm 106=D ,叶片宽mm 20=a ,厚mm 2=b ,轮毂直径20mm 。三维模型建好后,保存为jiaobanqi.IGS 文件。

图1 四叶涡轮搅拌器

2.2 四叶涡轮搅拌器Gambit 建模

(1)将生成的jiaobanqi.IGS 文件导入Gambit 中,得到volume1。

(2)建立搅拌槽模型

本文采用平底圆柱形槽体,内径mm

H=;搅拌

210

T,槽内液位高度T

=

器安装在轴径mm

d的搅拌轴上,桨叶中心线离槽底高度3

=

16

C=。

T

图2 搅拌槽尺寸

1)建立圆柱体模型,此模型作为搅拌器的动区域,圆柱体尺寸高为60mm,半径60mm。之后需对圆柱体进行平移,由于圆柱体的基准面都是建立在坐标原点所处的面上,本模型需使圆柱体沿着Z轴平移,设定Z轴的平移量为-20,得到volume2。

2)以同样的方法分别建立高为40mm,半径为8mm,高为210mm,半径为105mm,高为110mm,半径为8mm的3个圆柱体,分别为volume3,volume4,volume5,其中volume3无需平移,volume4沿Z轴平移-60,volume5沿Z轴平移40。最终得到搅拌槽的模型如图3所示。

图3 搅拌槽模型

(3)布尔运算

本次模拟采用多重参考系模型( Multi-Reference Frame, MRF )。即在计算时,将计算域分成两大部分:一部分包含运动的叶片,即转子区,另一部分包含静止的槽体,称为定子区;两个区域的计算分别采用两个参考坐标系来进行,叶片所在区域(转子区)采用以叶片速度旋转的参考系,另一部分区域(定子区)使用静止参考系,具体设置见图4,参考系边界可以直接进行数据交换。

a:转子区(采用旋转坐标系) b:定子区(采用静止坐标系) Es:两部分的界面

图4 多重参考系模型示意图

因此在建立Gambit模型时进行布尔减操作,即将搅拌槽的整体分为转子区和定子区两部分,同时在转子区去除搅拌器。首先搅拌槽整体区域与转子区相减,需保留转子区。以同样的方法完成搅拌槽整体区域与搅拌轴上部相减,转子区与搅拌器相减,转子区与搅拌轴下部相减。

(4)网格划分

目前,在复杂区域内生成网格的方法总的来说可以分为两大类:结构化网格和非结构化网格。当计算区域的几何结构形状比较规则时,可以实现应用结构化网格进行划分区域,在结构化网格中,每一节点及控制容积的几何信息必须加以存储,但该节点与其相邻点关系则可依据网格编号规律自动得出,因而不必存储这类信息,这是结构化网格的一大优点。

当计算区域比较复杂时,即使应用专门的网格生成技术也难以处理所求解的不规则区域,这时采用非结构化网格进行区域划分。在非结构化网格中,由于一个节点与其邻点的关系不是固定不变的,因此这种联结信息必须对每一个节点都显式地确定下来并加以存储。非结构化网格的这一特点对于网格的自动

生成、自适应处理及平行计算的实施带来不少方便,因此这种网格被普遍使用。

本次模拟采用结构化网格,即六面体网格,此种网格计算过程较容易,便于控制。首先对搅拌槽体即定子区进行网格划分,网格间距为2。对于转子区网格的划分,由于靠近搅拌轴,搅拌速度较快,因此转子区网格需较定子区的网格密,因此网格间距改为1,其他条件与定子区网格划分的条件相同。最后如图5所示为完成网格划分的搅拌槽。

图5 搅拌槽网格图

(5)设定边界条件

1)搅拌器和搅拌轴都设为壁面WALL。即搅拌器Name设为jbq-w,Type 选择WALL;搅拌轴分为上下两个区域,靠近搅拌器的区域的搅拌轴Name设为shaft-down,Type同样选择WALL;另一区域的搅拌轴Name设为shaft-up,Type同样选择WALL。

2)搅拌槽底部和侧面都设为WALL,Name为jbc-w;搅拌槽顶部为自由液面,因此Type选择SYMMETRY,Name为jbc-top。

3)搅拌槽中定子区和转子区的交接面为转子区的外表面,此表面处为两层面重合,因此选用Type为INTERFACE,Name分别为in-1,in-2,in-3,out-1,out-2,out-3,分别代表转子区外侧,转子区上表面,转子区下表面,定子区与转子区交界面的侧面,定子区与转子区交界面的上表面,定子区与转子区交界面的下表面。

(7)定义实体区域

如上文所述搅拌槽整体区域分为转子区和定子区,因此需对其进行设置。

将静区域Name定为jing,动区域Name定为dong,Type都选为FLUID。

(8)保存Mesh文件,将网格输出为为jbq.msh。

2.3 Fluent求解计算

以三维单精度( 3d )方式启动Fluent,将在Gambit中建好的物理模型及网格导入Fluent求解器中,进行数值求解。具体求解步骤如下:

(1)网格操作

1)导入jbq.msh文件;在将网格导入Fluent后,必须对网格进行检查,检查最小网格体积是否小于0,以便确定是否可直接用于CFD 求解。选择Grid→Check 命令,Fluent会自动完成网格检查,同时报告计算域、体、面、节点的统计信息。若发现有错误存在, Fluent会给出相关提示。

2)设置计算区域的尺寸和单位制。Fluent默认的长度单位为m,改为Gambit默认的单位mm;同时需把角速度angluar velocity的单位设置为rpm。

3)依次点击Grid→Swmooth/Swap Grid,分别点击Smooth,Swap循环,直至Swap信息中出现Number faces swaps: 0为止;这步操作是对网格光顺以及对等角倾斜度(skewness)高的地方交换网格以便于后面的运算。

(2)模型设置

1)求解器的选择。因为后面所用的MRF为稳态处理法,假设流动是稳定的,转子-定子的作用效果是近似的平均,这种模型可用于转子定子之间的只有微弱的相互作用,或只需要求系统的近似解的场合,因此选取默认的3维稳态求解器即可。

2)选择湍流模型。选则k-epsilon[2eqn],k-e模型是最简单的完整湍流模型,是两个方程的模型,要解两个变量,速度和长度尺度。在Fluent中,标准k-e模型自从被Launder and Spalding提出之后,就变成工程流场计算中主要的工具了。适用范围广、经济、精度合理,所以它在工业流场和热交换模拟中广泛应用。k-e是个半经验的公式,是从实验现象中总结出来的,主要是基于湍流动能和扩散率。k方程是个精确方程,e方程是个由经验公式导出的方程。k-e 模型假定流场完全是湍流,分子间的粘性可以忽略。标准k-e 模型只对完全是湍流的流场有效。

3)设置物料特性。为简化模拟过程,本文中选用水为搅拌介质。

4)操作条件的设置。由于本计算的问题需要计及重力影响,故设定Z 方

m。

向上的重力加速度分量值为-9.812

(3)设置边界条件。由于应用MRF 方法进行模拟,所以将转子区内的流体设定与搅拌桨相同转速进行旋转,而定子区内的流体则是静止的。槽内壁面定义为静止壁面条件,搅拌轴及桨叶设为运动壁面,模型的自由液面处采用自

小型搅拌器三维造型设计及关键零部件工艺设计

小型搅拌器三维设计及关键零部件工艺分析 摘要 搅拌设备使用历史悠久,应用范围广。在化学工业、石油工业、建筑行业等等传统工业中均有广泛的使用。搅拌操作看来似乎简单,但实际上,它所涉及的内容却极为广泛。本文介绍了小型搅拌器设计的基本思路和基本理论,分析了搅拌器的基本结构及其相关内容及搅拌器的运动和其动力装置。通过对搅拌器的基本设备的描述和对其基本工作原理、作用和功能等相关文献的参考,从而对小型搅拌器的设计加以综述。用pro/e 设计软件对搅拌器的零部件和整体进行三维设计。并对关键的零部件进行了工艺分析。 关键词:传动装置,联轴器,支承装置,电动机,减速器

The 3D Design of Small Blender and the Process analysis for the Key components Author:Du Bing Tutor:Yang Hansong Abstract The equipment of pulsator have a long history and are used in most areas. meawhile pulsator are used in tradition industry such as chemistry industry,petroleum industry,architecture industry and so on. The operation of mix round looks as if simpleness,but actually,the ingredient it involved are plaguy complexity. Tht text introduces the basic consider way and the basic theoretics of small pulsator design,and analyzed the basic configuration of pulsator and interfix content and analyzed the athletics and motivity equipment of describe the basic fixture of pulsator and consult its basic employment principle,function and operation,thereby summarize the design of small https://www.360docs.net/doc/f613431388.html,ing Pro/e software to draw a stirrer on the components and the overall three-dimensional image.And the analysis of key parts of the process. Key word: Gearing,Join shaft ware,Bearing device,Electromotor,Reducer 目录

六斜叶式搅拌器流场数值模拟

大学 Zhengzhou University Cae课程论文 六斜叶式搅拌器流场数值模拟 Numerical Simulation of Shell-side Fluid-flow in the Six pitched blade stirrer 专业班级:过程装备与控制工程3班 作者:郝苒杏 作者学号:20090360310 完成时间:2012年12月16日

目录 摘要 (1) Abstract (1) 1、背景与意义 (1) 2、研究现状 (2) 3、数学物理模型 (2) 3.1基本控制方程 (2) 3.2湍流模型介绍 (3) 4、六斜叶搅拌器fluent数值模拟 (3) 4.1搅拌器结构 (3) 4.2几何建模 (4) 4.3网格划分 (4) 4.4模型求解设置 (5) 4.5边界条件设置 (6) 4.6残差设置 (7) 4.7初始化并且迭代求解 (8) 5结果分析 (8) 5.1网格独立性考核 (8) 5.2搅拌器流场速度矢量分析 (9) 5.3搅拌器压力场分析 (10) 6结论 (11) 7参考文献 (11)

六斜叶式搅拌器流场数值模拟 摘要 本文以常规六斜叶搅拌器设备为研究对象,采用数值模拟的方法,研究了搅拌器搅拌釜的流场特性的分布规律。研究结果表明:六斜叶搅拌器流动呈现为一个位于搅拌叶片外侧的大漩涡和一个位于叶片下方的小漩涡,两个漩涡之间存在流体和能量的交换,在六斜叶搅拌器中,桨叶区湍动能较大,能量耗散率高。将CFD技术应用于搅拌器搅拌流场的分析,基于Naives-Stokes方程和标准k-e 紊流模型,求解搅拌器的湍流场,数值模拟的结果对搅拌器水力优化设计具有指导意义。 Abstract In this paper, numerical simulation is eateries out to study the flow fields in three stirred tanks such as the general Pitched blade turbines(PDT),the standard RUSHTON,and a stirred equipment with special usage. The results show that there is a large-scale vortex in the outer of the blade and a small vortex below the blade. The ruction stirred is vary little flow exchange between the vortices. The region of the stirred bale has a relative large turbulence and high turbulence dissipation rate. Stirrer CFD technology is applied to the analysis of the flow field, which is based on the Naives-Stokes equations and the standard k-e turbulence model and to solve agitator turbulence field. The numerical simulation results of the agitator is helpful to guide the design of its hydraulic optimization. 1、背景与意义 搅拌与混合是应用最广泛的过程操作之一,搅拌设备也大量应用于化工、轻工、医药、食品、造纸、冶金、生物、废水处理等行业中。由于相际接触面积大、传热传质效率高、操作稳定、结构简单、制造方便等优点,使得搅拌设备既可以当做反应器应用于很多场合,例如在合成橡胶,合成纤维和合成塑料这三大合成材料的生产中,搅拌设备作为反应器的约占反应器总数的85%一90%。同时也有大量的搅拌设备并不是仅用在化学反应中应用物料的混合、传热、传质以及制备乳液、悬浮液等。在很多化工过程中,例如水煤浆和原油的输送是煤化工,石油化的重要特征,这种高浓度的液体输送前需要有相应的搅拌过程来防止进行前可能的沉淀。 在发酵工业中,搅拌操作同样占有非常重要的地位。发酵工业涉及到很多有氧呼吸的微生物,同时氧气在发酵液中的溶解度一般都很低。为了保证微生物基本代活动所需要的氧气,氧气的迅速有效的供给尤为重要。有氧发酵过程中所涉及到的搅拌操作主要是气液传质和分散。此外,(l)发酵过程中一般都伴随有中间补给,搅拌操作可以使补给原料和基料迅速混合,避免了局部的浓度过高。(2)微生物的代活动和搅拌过程都能产生大量的热,这些可以通过搅拌来强化传热从而使搅拌釜的物料温度保持均匀。(3)可以使发酵液中的菌体和固体基质均匀的悬浮。 在实现混合操作的过程中,转轮的搅拌推流形式起着很重要的作用。不同的转轮造成的搅拌推流效果差别很大,而不同的生产过程有不同的搅拌推流目的。本文将CFD软件应用于搅拌器的搅拌流场分析,对以后的设计和分析具有指导性的意义。

三维搅拌器数值模拟

搅拌器数值模拟 1 引 言 搅拌混合是一种常规的单元操作,具有广泛的应用背景,搅拌可以使物料混合均匀、使气体在液相中很好地分散、使固体粒子(如催化剂)在液相中均匀地悬浮、使不相溶的另一液相均匀悬浮或者充分乳化,并可以强化相间的传质、传热。作为工业生产中工艺过程的一部分,搅拌效果直接影响到其它后续生产过程。 在利用超临界流体对废旧橡胶进行脱硫的课题中,脱硫反应釜中应用四叶涡轮搅拌器加强脱硫剂对溶胀橡胶的渗透作用。本文即对搅拌器在反应釜中产生的流场进行数值计算,分析搅拌流场特性,通过模拟得到流场结构及搅拌桨的速度矢量分布。 2 搅拌器流场数值模拟 2.1 四叶涡轮搅拌器solidworks 建模 四叶涡轮搅拌器桨叶直径mm 106=D ,叶片宽mm 20=a ,厚mm 2=b ,轮毂直径20mm 。三维模型建好后,保存为jiaobanqi.IGS 文件。 图1 四叶涡轮搅拌器 2.2 四叶涡轮搅拌器Gambit 建模 (1)将生成的jiaobanqi.IGS 文件导入Gambit 中,得到volume1。 (2)建立搅拌槽模型 本文采用平底圆柱形槽体,内径 mm 210=T ,槽内液位高度T H =; 搅拌

器安装在轴径mm 16=d 的搅拌轴上,桨叶中心线离槽底高度 3T C = 。 图2 搅拌槽尺寸 1)建立圆柱体模型,此模型作为搅拌器的动区域,圆柱体尺寸高为60mm ,半径60mm 。之后需对圆柱体进行平移,由于圆柱体的基准面都是建立在坐标原点所处的面上,本模型需使圆柱体沿着Z 轴平移,设定Z 轴的平移量为-20,得到volume2。 2)以同样的方法分别建立高为40mm ,半径为8mm ,高为210mm ,半径为105mm ,高为110mm ,半径为8mm 的3个圆柱体,分别为volume3,volume4,volume5,其中volume3无需平移,volume4沿Z 轴平移-60,volume5沿Z 轴平移40。最终得到搅拌槽的模型如图3所示。 图3 搅拌槽模型 (3)布尔运算 本次模拟采用多重参考系模型( Multi-Reference Frame, MRF )。即在计算时,

基于SolidWorks的搅拌器结构优化设计

基于SolidWorks的搅拌器结构优化设计 搅拌器的设计一直采用经验设计方法,本文通过SolidWorks对其进行了建模和参数化设计,并运用Simulation仿真分析功能对其所建立的模型进行了有限元分析。最后通过SolidWorks的优化功能对半搅拌器模型进行了优化设计,得到了搅拌板的最优厚度。该方法为半搅拌器结构分析和优化设计提供了一种新思路。 全自动液压制砖机简称液压砖机,液压制砖机是采用液压动力制砖的免烧砖机。蒸压粉煤灰砖是以粉煤灰、石灰或水泥为主要原料,掺加适量石膏、外加剂、颜料和集料等,经坯料制备、坯体成型和高压蒸汽养护等工序制成的实心粉煤灰砖。蒸压粉煤灰砖是国家建设部推荐的新型墙体材料品种之一。搅拌器是全自动液压制砖机布料的主要工作装置,其主要功能是保证粉煤灰混合料均匀性的前提下,当粉煤灰混合料从上料斗落到下料斗时,在振动装置和下料斗内搅拌器共同作用下,使粉煤灰混合料在下料斗内均匀分布,在布料小车的运动过程中,行走到制砖模具上方时,使其均匀落到模具模腔内,让每个砖腔都有足够的料,才能保证各块砖重量一致。 搅拌器结构如图1所示,由两个半搅拌器组成一个搅拌器,下料斗内有两个搅拌器,当粉煤灰混合料从上料斗落入下料斗时,两个搅拌器相互运动,同时振动机构使下料斗做往复运动,让物料在下料斗内均匀分布。实际粉煤灰砖生产中发现,搅拌器在工作过程中,搅拌板向外侧弯曲。分析认为,搅拌器轴带动搅拌器做旋转运动,搅拌粉煤灰混合料,并使其分布均匀,粉煤灰混合料高度高于搅拌器,也就是说,搅拌器整个埋在粉煤灰混合料里,在搅拌的过程中,不断与粉煤灰混合料相摩擦。可能由于搅拌器结构强度不够,使得搅拌器的搅拌板产生弯曲。 图1 搅拌器结构图 本文以全自动液压制砖机搅拌器为例,基于SolidWorks产品设计平台,对搅拌器进行仿真设计和优化设计,通过分析结果和优化方案,缩短设计周期,增加产品的可靠性,降低材料消耗和成本;并模拟各种试验方案,提前发现潜在的问题,减少试验时间和生产经费。 搅拌器结构一直采用传统的设计方法——类比设计和经验设计,产品质量主要依靠设计人员的经验,需要进行方案设计、样机试制,样机试验,方案修改,然后多次循环才能完成。这种设计方法可靠性较差,设计成本高。现代基于三维软件的CAD/CAE设计模式在设计阶段就可以对各种方案进行分析比较和优化,减少或消除样机的制作。通过有限元分析便可了解设备在高压作用下零件的应力分布、变形情况;零件之间的接触力;判定产品的安全性;找出产品经济性与安全性的最佳平衡点。

三维搅拌器数值模拟

三维搅拌器数值模拟 搅拌器数值模拟 1 引言 搅拌混合是一种常规的单元操作,具有广泛的应用背景,搅拌可以使物料混合均匀、使气体在液相中很好地分散、使固体粒子(如催化剂)在液相中均匀地悬浮、使不相溶的另一液相均匀悬浮或者充分乳化,并可以强化相间的传质、传热。作为工业生产中工艺过程的一部分,搅拌效果直接影响到其它后续生产过程。 在利用超临界流体对废旧橡胶进行脱硫的课题中,脱硫反应釜中应用四叶涡轮搅拌器加强脱硫剂对溶胀橡胶的渗透作用。本文即对搅拌器在反应釜中产生的流场进行数值计算,分析搅拌流场特性,通过模拟得到流场结构及搅拌桨的速度矢量分布。 2 搅拌器流场数值模拟 2.1 四叶涡轮搅拌器solidworks建模 b,2mmD,106mm四叶涡轮搅拌器桨叶直径,叶片宽a,20mm,厚,轮毂直径 20mm。三维模型建好后,保存为jiaobanqi.IGS文件。 图1 四叶涡轮搅拌器 2.2 四叶涡轮搅拌器Gambit建模

(1)将生成的jiaobanqi.IGS文件导入Gambit中,得到volume1。 (2)建立搅拌槽模型 H,T本文采用平底圆柱形槽体,内径 T,210mm,槽内液位高度; 搅拌 d,16mm器安装在轴径的搅拌轴上,桨叶中心线离槽底高度。 C,T3 图2 搅拌槽尺寸 1)建立圆柱体模型,此模型作为搅拌器的动区域,圆柱体尺寸高为60mm,半径60mm。之后需对圆柱体进行平移,由于圆柱体的基准面都是建立在坐标原点所处的面上,本模型需使圆柱体沿着Z轴平移,设定Z轴的平移量为-20,得到 volume2。 2)以同样的方法分别建立高为40mm,半径为8mm,高为210mm,半径为 105mm,高为110mm,半径为8mm的3个圆柱体,分别为volume3,volume4,volume5,其中volume3无需平移,volume4沿Z轴平移-60,volume5沿Z轴平移40。最终得到搅拌槽的模型如图3所示。

搅拌器设计

搅拌器设计选型 绪论 搅拌可以使两种或多种不同的物质在彼此之中互相分散,从而达到均匀混合;也可以加速传热和传质过程。在工业生产中,搅拌操作时从化学工业开始的,围绕食品、纤维、造纸、石油、水处理等,作为工艺过程的一部分而被广泛应用。 搅拌操作分为机械搅拌与气流搅拌。气流搅拌是利用气体鼓泡通过液体层,对液体产生搅拌作用,或使气泡群一密集状态上升借所谓上升作用促进液体产生对流循环。与机械搅拌相比,仅气泡的作用对液体进行的搅拌时比较弱的,对于几千毫帕·秒以上的高粘度液体是难于使用的。但气流搅拌无运动部件,所以在处理腐蚀性液体,高温高压条件下的反应液体的搅拌时比较便利的。在工业生产中,大多数的搅拌操作均系机械搅拌,以中、低压立式钢制容器的搅拌设备为主。搅拌设备主要由搅拌装置、轴封和搅拌罐三大部分组成。其结构形式如下图:

搅拌装置结构图 第一章搅拌装置 第一节搅拌装置的使用范围及作用 搅拌设备在工业生产中的应用范围很广,尤其是化学工业中,

很多的化工生产都或多或少地应用着搅拌操作。搅拌设备在许多场合时作为反应器来应用的。例如在三大合成材料的生产中,搅拌设备作为反应器约占反应器总数的99%。。搅拌设备的应用范围之所以这样广泛,还因搅拌设备操作条件(如浓度、温度、停留时间等)的可控范围较广,又能适应多样化的生产。 搅拌设备的作用如下:①使物料混合均匀;②使气体在液相中很好的分散;③使固体粒子(如催化剂)在液相中均匀的悬浮;④使不相溶的另一液相均匀悬浮或充分乳化;⑤强化相间的传质(如吸收等);⑥强化传热。 搅拌设备在石油化工生产中被用于物料混合、溶解、传热、植被悬浮液、聚合反应、制备催化剂等。例如石油工业中,异种原油的混合调整和精制,汽油中添加四乙基铅等添加物而进行混合使原料液或产品均匀化。化工生产中,制造苯乙烯、乙烯、高压聚乙烯、聚丙烯、合成橡胶、苯胺燃料和油漆颜料等工艺过程,都装备着各种型式的搅拌设备。 第二节搅拌物料的种类及特性 搅拌物料的种类主要是指流体。在流体力学中,把流体分为牛顿型和非牛顿型。非牛顿型流体又分为宾汉塑性流体、假塑性流体和胀塑性流体。在搅拌设备中由于搅拌器的作用,而使流体运动。 第三节搅拌装置的安装形式 搅拌设备可以从不同的角度进行分类,如按工艺用途分、搅拌器结构形式分或按搅拌装置的安装形式分等。一下仅就搅拌装置的各种安装

卧式搅拌机的结构设计

卧式搅拌机的结构设计 摘要 卧式搅拌机具有悠久的历史,它的应用范围极其广泛,在化学,机械,建筑,轻工业,重金属领域都会看见搅拌机的应用。从不同的角度可以把搅拌机分为立式和卧式两种,其中卧式搅拌机主要是指搅拌机的轴线与搅拌机回旋轴线都在水平的位置。 本文设计的卧式搅拌器在分析国内外搅拌机械的发展的基础上,设计一种新的卧式搅拌器,这种新的新的结构设计可用于面粉,饲料等粒状物质的搅拌和混合,相比传统的搅拌装置更加快速简单并且工作效率高。设计的搅拌器具有两个水平的传送方式,第一个是V型皮带和齿轮结合的第一主变速器,以实现混合操作。第二个是采用楔带和凸轮组成的传动方式,以提高搅拌工作效率。 在该课题中,对卧式搅拌器的基本结构,基本尺寸的详细设计和对搅拌器结构的建模和运动模拟,更为真实简单的体现设计的过程和结构分析,再进行安全分析校核的计算,搅拌器结构设计,参数计算,功率检查,从而确保该搅拌器稳定可靠的运转。 关键词卧式搅拌器;混合设备;搅拌机;上料装置

Structure Design of Horizontal Mixer Abstract This design introduced the development course of the domestic and foreign mixer machinery and domestic and foreign research trends,and the design of the mixer. Based on this topic agitator in the domestic and foreign research and development,design a new with vibratory mixing and row material function of horizontal agitator structure design scheme to be used for dry mixing operation.The horizontal mixer has two transmission systems,the first main drive system uses V belt and gear drive to achieve mixing operation. In this paper, the design of horizontal agitator in the analysis of the domestic and foreign mixing based on the development of mechanical, design a new horizontal mixer, this new structure design can be used for flour, feed and other particulate matter and stir the mixture compared to the traditional stirring device is more simple and fast and high work efficiency. The design of the mixer has two levels of transmission, the first is the V type belt and gear combination of the first main transmission, in order to realize the mixed operation. The second is the use of the drive mode of the wedge and the cam to improve the efficiency of mixing In the paper, the basic structure of horizontal agitator, the detailed design of the basic dimensions and the agitator structure modeling and motion simulation, more simple and true embodiment of the design process and structural analysis, and security analysis and checking calculation, agitator structure design, parameter calculation, check power, so as to ensure the stirrer is stable and

三维搅拌器数值模拟

搅拌器数值模拟 1 引 言 搅拌混合是一种常规的单元操作,具有广泛的应用背景,搅拌可以使物料混合均匀、使气体在液相中很好地分散、使固体粒子(如催化剂)在液相中均匀地悬浮、使不相溶的另一液相均匀悬浮或者充分乳化,并可以强化相间的传质、传热。作为工业生产中工艺过程的一部分,搅拌效果直接影响到其它后续生产过程。 在利用超临界流体对废旧橡胶进行脱硫的课题中,脱硫反应釜中应用四叶涡轮搅拌器加强脱硫剂对溶胀橡胶的渗透作用。本文即对搅拌器在反应釜中产生的流场进行数值计算,分析搅拌流场特性,通过模拟得到流场结构及搅拌桨的速度矢量分布。 2 搅拌器流场数值模拟 2.1 四叶涡轮搅拌器solidworks 建模 四叶涡轮搅拌器桨叶直径 mm 106=D ,叶片宽mm 20=a ,厚mm 2=b ,轮毂直径20mm 。三维模型建好后,保存为jiaobanqi.IGS 文件。

图1 四叶涡轮搅拌器 2.2 四叶涡轮搅拌器Gambit建模 (1)将生成的jiaobanqi.IGS文件导入Gambit中,得到volume1。 (2)建立搅拌槽模型 本文采用平底圆柱形槽体,内径mm H=;搅拌 210 T,槽内液位高度T = 器安装在轴径mm d的搅拌轴上,桨叶中心线离槽底高度3 16 = C=。 T 图2 搅拌槽尺寸 1)建立圆柱体模型,此模型作为搅拌器的动区域,圆柱体尺寸高为60mm,半径60mm。之后需对圆柱体进行平移,由于圆柱体的基准面都是建立在坐标原点所处的面上,本模型需使圆柱体沿着Z轴平移,设定Z轴的平移量为-20,得到volume2。 2)以同样的方法分别建立高为40mm,半径为8mm,高为210mm,半径为105mm,高为110mm,半径为8mm的3个圆柱体,分别为volume3,volume4,

搅拌器毕业设计很实用

搅拌器毕业设计很 实用

搅拌器毕业设计 第一章绪论 搅拌能够使两种或多种不同的物质在彼此之中互相分散,从而达到均匀混合;也能够加速传热和传质过程。在工业生产中,搅拌操作时从化学工业开始的,围绕食品、纤维、造纸、石油、水处理等,作为工艺过程的一部分而被广泛应用。 搅拌操作分为机械搅拌与气流搅拌。气流搅拌是利用气体鼓泡经过液体层,对液体产生搅拌作用,或使气泡群一密集状态上升借所谓上升作用促进液体产生对流循环。与机械搅拌相比,仅气泡的作用对液体进行的搅拌时比较弱的,对于几千毫帕·秒以上的高粘度液体是难于使用的。但气流搅拌无运动部件,因此在处理腐蚀性液体,高温高压条件下的反应液体的搅拌时比较便利的。在工业生产中,大多数的搅拌操作均系机械搅拌,以中、低压立式钢制容器的搅拌设备为主。搅拌设备主要由搅拌装置、轴封和搅拌罐三大部分组成。其结构形式如下:(结构图) 第一节搅拌设备在工业生产中的应用范围很广,特别是化学工业中,很多的化工生产都或多或少地应用着搅拌操作。搅拌设备在许多场合时作为反应器来应用的。例如在三大合成材料的生产中,搅拌设备作为反应器约占反应器总数的99%。。搅拌设备的应用范围之因此这样广泛,还因搅拌设备操作条件(如浓度、温度、停留时间等)的可控范围较广,又能适应多样化的生产。 搅拌设备的作用如下:①使物料混合均匀;②使气体在液相中很

好的分散;③使固体粒子(如催化剂)在液相中均匀的悬浮;④使不相溶的另一液相均匀悬浮或充分乳化;⑤强化相间的传质(如吸收等);⑥强化传热。 搅拌设备在石油化工生产中被用于物料混合、溶解、传热、植被悬浮液、聚合反应、制备催化剂等。例如石油工业中,异种原油的混合调整和精制,汽油中添加四乙基铅等添加物而进行混合使原料液或产品均匀化。化工生产中,制造苯乙烯、乙烯、高压聚乙烯、聚丙烯、合成橡胶、苯胺燃料和油漆颜料等工艺过程,都装备着各种型式的搅拌设备。 第二节搅拌物料的种类及特性 搅拌物料的种类主要是指流体。在流体力学中,把流体分为牛顿型和非牛顿型。非牛顿型流体又分为宾汉塑性流体、假塑性流体和胀塑性流体。在搅拌设备中由于搅拌器的作用,而使流体运动。 第三节搅拌装置的安装形式 搅拌设备能够从不同的角度进行分类,如按工艺用途分、搅拌器结构形式分或按搅拌装置的安装形式分等。一下仅就搅拌装置的各种安装形式进行分类说明。 一、立式容器中心搅拌 将搅拌装置安装在历史设备筒体的中心线上,驱动方式一般为皮带传动和齿轮传动,用普通电机直接联接。一般认为功率 3.7kW 一下为小型,5.5~22kW为中型。本次设计中所采用的电机功率为

双曲面搅拌机流场的数值模拟研究

双曲面搅拌机流场的数值模拟研究彭珍珍1, 赵恒文1, 郭聪聪1, 汪文生2, 曾德全2 (1.河海大学水利水电工程学院,江苏南京210098;2.南京贝特环保通用设备制造 有限公司,江苏南京210098) 摘 要: 应用计算流体力学(CF D)软件、利用多重参考系法(MRF)对新型的污水搅拌设备———双曲面搅拌机的流场进行数值模拟,考察了搅拌槽内水体的流态特性,并提出了优化建议。结果表明,未加挡板时,切向剪切是搅拌槽内水体的主要流动形式;在搅拌槽周围加上挡板后,可使槽内的水流形态重新分布,使轴向流速显著增加,立体循环运动更明显,更符合污水处理的搅拌形。 关键词: 计算流体力学(CF D); 双曲面搅拌机; 数值模拟 中图分类号:X703 文献标识码:C 文章编号:1000-4602(2009)19-0091-04 Nu m er i ca l S im ul a ti on of Flow F i eld i n Hyperbolo i d Sti rrer PENG Zhen2zhen1, ZHAO Heng2wen1, G UO Cong2cong1, WANG W en2sheng2,  ZENG De2quan2 (1.College of W ater Conservancy and Hyd ropo w er Engineering,Hohai U niversity,N anjing210098, China;2.N anjing B eite Environm en tal P rotection GE M anufacture Co.L td.,N anjing210098,China) Abstract: The computati onal fluid dyna m ics(CF D)s oft w are and multi2reference fra me(MRF) method were app lied t o nu merically si m ulate the fl ow field in a ne w waste water stirring equi pment—hy2 perbol oid stirrer.The fluid fl ow characteristic in the stirred tank was investigated,and the op ti m izati on suggesti on was put f or ward.The results show that the tangential shear is the main fl ow pattern of the waste water in the stirred tank without the baffle.After putting the baffle ar ound the stirred tank,the fl ow patterns in the stirred tank can be redistributed,the axial vel ocity can be increased significantly,and the vertical circulati on of the waste water can be more obvi ous,which is more suitable for the require ment of the stirring pattern and vel ocity in the waste water treat m ent. Key words: co mputati onal fluid dyna m ics(CF D); hy perbol oid stirrer; nu merical si m ulati on 搅拌混合设备作为一种在污水处理中常用的工艺设备,可通过创建水流起到强化搅拌混合作用,防止活性污泥沉淀,被广泛用于混合池、厌氧池、水解生化池等工艺中。但由于搅拌设备在工作时会产生复杂的流体运动,目前搅拌设备的设计和应用对实测和工程师经验的依赖性比较强,这样就存在设计周期长、耗费大、精确度低等问题。将计算流体力学(CF D)数值模拟技术应用到搅拌设备的设计分析中,通过数值模拟软件求解描述过程,可以实现过程设计、优化以及放大。目前国内对CF D用于搅拌过程的研究很多,但是对双曲面搅拌机这种新型的污水处理设备的数值模拟研究还未见报道。因此,笔者采用CF D方法对叶轮直径为300mm的双曲面搅拌机的搅拌流场进行数值模拟,并提出了优化意见,以提升其搅拌混合效果。 1 数值模拟 111 计算方程的选取 旋转的搅拌桨作用于流体产生了复杂的三维湍 第25卷 第19期2009年10月 中国给水排水 CH I N A WATER&WASTE WATER Vol.25No.19 Oct.2009

搅拌器组成及设备介绍

轴封 轴封是搅拌设备的重要组成部分。轴封属于动密封,其作用是保证搅拌设备内处于一定的正压或真空状态,防止被搅拌的物料逸出和杂质的渗入,因而不是所有的转轴密封型式都能用于搅拌设备。在搅拌设备中,最常用的轴封有液封、填料密封和机械密封等。 4.1 液封 当搅拌设备内工作压力为常压,轴封的作用仅是为了防止灰尘与杂质进人内部工作介质,或者隔离工作介质与搅拌设备周围的环境介质相互接触时,可选用液封。液封结构简单,没有与传动轴直接接触引起摩擦的零件。但为保证圆柱形壳体或静止元件与旋转元件之间的间隙符合设计要求,其密封部位零件的加工、安装要求较高。 同时,受结构特点的影响,液封的使用范围较窄。一般适用于工作介质为非易燃易爆或毒性程度轻度危害,设备内工作压力等于大气压力,且温度范围在20-80℃的场合。 值得注意的是,液体工作介质不可充满搅拌设备;而且封液应尽可能采用搅拌设备内工作介质,或与工作介质不发生物理化学作用的中性液体,同时必须极少挥发且不污染大气。 4.2填料密封 是搅拌设备较早采用的一种转轴密封结构,具有结构简单、制造要求低、维护保养方便等优点。但其填料易磨损,密封可靠性较差,一般只适用于常压或低压低转速、非腐蚀性和弱腐蚀性介质,并允许定期维护的搅拌设备。 4.3 机械密封 机械密封是把转轴的密封面从轴向改为径向,通过动环和静环两个端面的相互贴合,并作相对运动达到密封的装置,又称端面密封。机械密封的泄漏率低,密封性能可靠,功耗小,使用寿命长,无需经常维修,且能满足生产过程自动化和高温、低温、高压、高真空、高速以及各种易燃、易爆、腐蚀性、磨蚀性介质和含固体颗粒介质的密封要求。 与填料密封相比,机械密封具有以下优点:

搅拌器 构件的说明

搅拌器构件的说明 2007年12月14日星期五19:13 搅拌容器 搅拌容器常被称作搅拌釜(或搅拌槽),当搅拌设备用作反应器时,又被称为搅拌釜式反应器,有时简称反应釜。 釜体的结构型式通常是立式圆筒形,其高径比值主要依据操作是容器装液高径比以及装料系数大小而定。而容器的装液高径比又视容器内物料的性质、搅拌特征和搅拌器层数而异,一般取1~1.3,最大时可达6。釜底形状有平底、椭圆底、锥形底等有时亦可用方形釜。同时,根据工艺的传热要求,釜体外可加夹套,并通以蒸气、冷却水等载热介质;当传热面积不足时,还可在釜体内部设置盘管等。 在选择搅拌容器时,应根据生产规模(即物料处理量)、搅拌操作目的和物料特性确定搅拌容器的形状和尺寸,在确定搅拌容器的容积时应合理选择装料系数,尽量提高设备的利用率。如果没有特殊需要,釜体一般宜选用最常用的立式圆筒形容器,并选择适宜的筒体高径比(或容器装液高径比)。若有传热要求,则釜体外须设置夹套结构。夹套种类有整体夹套、螺旋挡板夹套、半管夹套、蜂窝夹套,传热效果依次提高但制造成本也相应增加。 当搅拌釜卧式放置时,大多进行半釜操作。因此卧式釜与立式釜相比有更多的气-液接触面积,因而卧式釜常用于气-液传质过程,如气-液吸收或从高粘度液体中脱除少量易挥发物质,另一方面,卧式釜的料层较浅,有利于搅拌器将粉末搅动,并可借搅拌器的高速回转使粉体抛扬起来,使粉体在瞬间失重状态下进行混合。 搅拌容器的材料要满足生产工艺的要求,例如耐压、耐温、耐介质腐蚀,以及保证产品清洁等。由于材料的不同,搅拌容器的制造工艺、结构也有所不同,因此可分为钢制搅拌设备、搪玻璃搅拌设备和带衬里的搅拌设备等。装衬里的目的是为了耐蚀或保护产品的清洁,衬里的种类很多,主要有不锈钢、铝、钛、铅、镍、锆、耐酸瓷砖、辉绿岩板、橡胶等。 搅拌器 搅拌器又被称作叶轮或桨叶,它是搅拌设备的核心部件。根据搅拌器的搅拌釜内产生的流型,搅拌器基本上可以分为轴向流和径向流两种。例如,推进式叶轮、新型翼型叶轮等属于轴向流搅拌器,而各种直叶、弯叶涡轮叶轮则属于径向流搅拌器。 搅拌器通常自搅拌釜顶部中心垂直插入釜内,有时也采用侧面插入,底部伸入或侧面伸入方式。应依据不同的搅拌要求选择不同的安装方式。 搅拌轴 搅拌设备中的电动机输出的动力是通过搅拌轴传递给搅拌器的,因此搅拌轴必须足够的强度。同时,搅拌轴既要与搅拌器连接,又要穿过轴封装置以及轴承、联轴器等零件,所以搅拌轴还应有合理的结构、较高的加工精度和配合公差。 按支承情况,搅拌轴可分为悬臂式和单跨式。悬臂式搅拌轴在搅拌设备内部不设置中间轴承或底轴承,因而维护检修方便,特别对洁净度要求较高的生物、食品或药品搅拌设备,减少了设备内的构件,故应优先选用。 内构件 包括挡板、盘管、导流筒、气体分布器等。 为消除搅拌容器内液体的打旋现象,使被搅拌的液体上下翻腾而达到均匀的混合,通常需要再搅拌容器内加挡板。通常挡板的宽度约为容器内直径的1/12~1/10,其中设备内的附件如温度计、传热蛇管或各种支撑体也可以起到一定的挡板作用的,但往往达不到“全挡板条件”。

三维搅拌器数值模拟上课讲义

三维搅拌器数值模拟

搅拌器数值模拟 1 引 言 搅拌混合是一种常规的单元操作,具有广泛的应用背景,搅拌可以使物料混合均匀、使气体在液相中很好地分散、使固体粒子(如催化剂)在液相中均匀地悬浮、使不相溶的另一液相均匀悬浮或者充分乳化,并可以强化相间的传质、传热。作为工业生产中工艺过程的一部分,搅拌效果直接影响到其它后续生产过程。 在利用超临界流体对废旧橡胶进行脱硫的课题中,脱硫反应釜中应用四叶涡轮搅拌器加强脱硫剂对溶胀橡胶的渗透作用。本文即对搅拌器在反应釜中产生的流场进行数值计算,分析搅拌流场特性,通过模拟得到流场结构及搅拌桨的速度矢量分布。 2 搅拌器流场数值模拟 2.1 四叶涡轮搅拌器solidworks 建模 四叶涡轮搅拌器桨叶直径mm 106=D ,叶片宽mm 20=a ,厚mm 2=b ,轮毂直径20mm 。三维模型建好后,保存为jiaobanqi.IGS 文件。 图1 四叶涡轮搅拌器 2.2 四叶涡轮搅拌器Gambit 建模 (1)将生成的jiaobanqi.IGS 文件导入Gambit 中,得到volume1。 (2)建立搅拌槽模型

本文采用平底圆柱形槽体,内径mm H=;搅拌 210 T,槽内液位高度T = 器安装在轴径mm d的搅拌轴上,桨叶中心线离槽底高度3 = 16 C=。 T 图2 搅拌槽尺寸 1)建立圆柱体模型,此模型作为搅拌器的动区域,圆柱体尺寸高为60mm,半径60mm。之后需对圆柱体进行平移,由于圆柱体的基准面都是建立在坐标原点所处的面上,本模型需使圆柱体沿着Z轴平移,设定Z轴的平移量为-20,得到volume2。 2)以同样的方法分别建立高为40mm,半径为8mm,高为210mm,半径为105mm,高为110mm,半径为8mm的3个圆柱体,分别为volume3,volume4,volume5,其中volume3无需平移,volume4沿Z轴平移-60,volume5沿Z轴平移40。最终得到搅拌槽的模型如图3所示。

搅拌器毕业设计

搅拌器毕业设计 第一章绪论 搅拌可以使两种或多种不同的物质在彼此之中互相分散,从而达到均匀混合;也可以加速传热和传质过程。在工业生产中,搅拌操作时从化学工业开始的,围绕食品、纤维、造纸、石油、水处理等,作为工艺过程的一部分而被广泛应用。 搅拌操作分为机械搅拌与气流搅拌。气流搅拌是利用气体鼓泡通过液体层,对液体产生搅拌作用,或使气泡群一密集状态上升借所谓上升作用促进液体产生对流循环。与机械搅拌相比,仅气泡的作用对液体进行的搅拌时比较弱的,对于几千毫帕·秒以上的高粘度液体是难于使用的。但气流搅拌无运动部件,所以在处理腐蚀性液体,高温高压条件下的反应液体的搅拌时比较便利的。在工业生产中,大多数的搅拌操作均系机械搅拌,以中、低压立式钢制容器的搅拌设备为主。搅拌设备主要由搅拌装置、轴封和搅拌罐三大部分组成。其结构形式如下:(结构图) 第一节搅拌设备在工业生产中的应用范围很广,尤其是化学工业中,很多的化工生产都或多或少地应用着搅拌操作。搅拌设备在许多场合时作为反应器来应用的。例如在三大合成材料的生产中,搅拌设备作为反应器约占反应器总数的99%。。搅拌设备的应用范围之所以这样广泛,还因搅拌设备操作条件(如浓度、温度、停留时间等)的可控范围较广,又能适应多样化的生产。 搅拌设备的作用如下:①使物料混合均匀;②使气体在液相中很好的

分散;③使固体粒子(如催化剂)在液相中均匀的悬浮;④使不相溶的另一液相均匀悬浮或充分乳化;⑤强化相间的传质(如吸收等); ⑥强化传热。 搅拌设备在石油化工生产中被用于物料混合、溶解、传热、植被悬浮液、聚合反应、制备催化剂等。例如石油工业中,异种原油的混合调整和精制,汽油中添加四乙基铅等添加物而进行混合使原料液或产品均匀化。化工生产中,制造苯乙烯、乙烯、高压聚乙烯、聚丙烯、合成橡胶、苯胺燃料和油漆颜料等工艺过程,都装备着各种型式的搅拌设备。 第二节搅拌物料的种类及特性 搅拌物料的种类主要是指流体。在流体力学中,把流体分为牛顿型和非牛顿型。非牛顿型流体又分为宾汉塑性流体、假塑性流体和胀塑性流体。在搅拌设备中由于搅拌器的作用,而使流体运动。 第三节搅拌装置的安装形式 搅拌设备可以从不同的角度进行分类,如按工艺用途分、搅拌器结构形式分或按搅拌装置的安装形式分等。一下仅就搅拌装置的各种安装形式进行分类说明。 一、立式容器中心搅拌 将搅拌装置安装在历史设备筒体的中心线上,驱动方式一般为皮带传动和齿轮传动,用普通电机直接联接。一般认为功率3.7kW一下为小型,5.5~22kW为中型。本次设计中所采用的电机功率为18.5kW,故为中型电机。

搅拌机设计论文

摘要 搅拌机是搅拌设备的心脏。在搅拌机设计及使用过程中,合理的选取搅拌机的结构,运动和工作参数,直接关系到混凝土等材料的搅拌质量和搅拌效率。论文对搅拌臂的排列、搅拌叶片的安装角、拌筒长宽比、搅拌机转速和搅拌时间等主要参数的选取进行分析与试验研究。通过归纳,给出了双卧轴搅拌机的主要参数,包括搅拌臂排列、叶片安装角、拌筒长宽比、搅拌线速度等;给出了评价搅拌机参数合理与否的准则;给出了搅拌臂排列的基本原则。 第1章前言 1.1国内外研究现状及发展趋势 19世纪40年代,在德、美、俄等国家出现了以蒸气机为动力源的白落式搅拌机,其搅拌腔由多面体状的木制筒构成,一直到19世纪80年代,才开始用铁或钢件代替木板,但形状仍然为多面体。1888年法国申请登记了第一个用于修筑战前公路的混凝土搅拌机专利。20世纪初,圆柱形的拌筒自落式搅拌机才开始普及,其工作原理如图1.2所示。形状的改进避免了混凝土在拌筒内壁上的凝固沉积,提高了搅拌质量和效率。1903年德国在斯太尔伯格建造了世界上第一座水泥混凝土的预拌工厂。1908年,在美国出现了第一台内燃机驱动的搅拌机,随后电动机则成为主要动力源。从1913年,美国开始大量生产预拌混凝土,到1 950年,亚洲大陆的日本开始用搅拌机生产预拌混凝土。在这期间,仍然以各种有叶片或无叶片的自落式搅拌机的发明与应用为主?。自落式搅拌机依靠被拌筒提升到一定高度的物料的自落完成搅拌。工作时,随着拌筒的转动,物料被搅拌筒内壁固定的叶片提升到一定高度后,依靠自重下落。由于各物料颗粒下落的高度、时问、速度、落点和滚动距离不同,从而物料各颗粒相互穿插、渗透、扩散,最后达到均匀混合。自落式搅拌机结构简单,可靠性高,维护简单,功率消耗小,拌筒和叶片磨损轻,但搅拌强度不高,生产效率低,搅拌质量不易保证。此种搅拌机适

相关文档
最新文档