题解求动点P点坐标,全面讲解二次函数中,三角形面积最值问题
二次函数与特殊三角形,平行四边形及面积最值问题

专题一:二次函数与特殊三角形,平行四边形及面积最值问题例题讲解:例1.已知抛物线y =ax 2+bx +c 经过A(-1,0)、B(3,0)、C(0,3)三点,直线l 是抛物线的对称轴.(1)求抛物线的解析式和对称轴;(2)设点P 是直线l 上的一个动点,当△PAC 是以AC 为斜边的Rt△时,求点P 的坐标;(3)在直线l 上是否存在点M ,使△MAC 为等腰三角形?若存在,求出点M 的坐标;若不存在,请说明理由;(4)设过点A 的直线与抛物线在第一象限的交点为N ,当△ACN 的面积为158时,求直线AN 的解析式.例2:如图,抛物线与x 轴交于A (1x ,0)、B (2x ,0)两点,且12x x <,与y 轴交于点()0,4C -,其中12x x ,是方程24120x x --=的两个根。
(1)求抛物线的解析式;(2)点M 是BC 所在直线下方该抛物线上的一个动点,过点M 作MN ∥y 轴交线段BC 于点N.设点M 的横坐标为t ,MN 的长度为S.求S 与t 之间的函数关系式,并求S 取最大值时,点M 的坐标;(3)点()4,D k 在(1)中抛物线上,点E 为抛物线上一动点,在x 轴上是否存在点F ,使以A D E F 、、、为顶点的四边形是平行四边形,如果存在,求出所有满足条件的点F 的坐标,若不存在,请说明理由。
作业反馈:1.如图,已知抛物线经过点A(-1,0)、B(3,0)、C(0,3)三点。
(1)求抛物线的解析式。
(2)点M 是线段BC 上的点(不与B ,C 重合),过M 作MN ∥y 轴交抛物线于N 若点M 的横坐标为m ,请用m 的代数式表示MN 的长。
(3)在(2)的条件下,连接NB 、NC ,是否存在m ,使△BNC 的面积最大?若存在,求m 的值;若不存在,说明理由。
2. 如图在直角坐标系XOY 中,抛物线22y x x k =-+与x 轴交于A 、B 两点,与y 轴交于点C (0,-3),顶点为M .(1)求A 、B 两点间的距离; (2)求顶点M 的坐标;(3)求四边形OBMC 的面积;(4)在抛物线上有一动点D ,求四边形OBDC 面积第22题图Y XCBAO MYX23.(12分)(4小题分值:3、3、4、2)解:(1)设抛物线解析式为: 223y x x =-++----------------------------2分对称轴为:直线1x = ------------------------------------------------1分(注:对称轴未写直线二字不扣分)(2)设点P (1,y )是直线l 上的一个动点,作CF ⊥l 于F ,l 交x 轴于E ,则AC 2=AO 2+CO 2=10,CP 2=CF 2+PF 2=1+(3-y )2=2610y y -+AP 2=AE 2+PE 2=4+y 2, ∴由CP 2+AP 2=AC 2, 得:2610y y -++4+y 2=10,解得1y =或2y =∴P 点的坐标为P 1(1,1)、P 2(1, 2) ----------------------------------------3分 (说明: 求得一个点1分、2个点3分,求解过程不必要求过细,看结果为主) (解法二 用△相似解法更简单如下: ∵CP ⊥AP ,∴△CPF ∽△PAE ,∴132yy -=,∴(3)2y y -=∴解得1y =或2y = 同样给分)(3)设点M (1,m ), 与(2)同理可得:AC 2=10,CM 2=2610m m -+,AM 2=4+m 2①当AC =CM 时,10=2610m m -+,解得:m =0或m =6(舍去) ②当AC =AM 时,10=4+m 2, 解得:m =6或m =6- ③当CM =AM 时,2610m m -+=4+m 2,解得:m =1检验:当m =6时,M 、A 、C 三点共线,不合题意,故舍去; 综上可知,符合条件的M 点有4个,M 坐标为(1,0) 、(1,6)、(1,-6)、(1,1) ---------------------4分(每个点1分)(注:求出5个点,未舍去(1,6),不扣分)(4) 设直线AN 的解析式为y kx b =+,且交y 轴于点K ,∵过点A (―1, 0),∴y kx k =+,∴K (0,k ),∵N 是直线AN 与抛物线的交点,∴223kx k x x +=-++,解得x =3―k , 或x =―1(舍去),∴N 点的横坐标为x =3―k (k <3) 由S △ACN =S △ACK +S △CKN =12CK ·OA +12CK ·NJ =12(3―k )×1+12(3―k )2=122(712)k k -+ --------------------------------------------------------1分令158=122(712)k k -+,解得k =112(舍去),或k =32, ∴直线AN 的解析式为3322y x =+-------------------------------------1分24. (本小题满分12分)(1)∵24120x x --=,∴12x =-,26x =∴(2,0)A -,(6,0)B …………2分又∵抛物线过点A 、B 、C ,故设抛物线的解析式为(2)(6)y a x x =+-,将点C的坐标代入,求得13a =∴抛物线的解析式为214433y x x =-- …………2分 (2)∵C(0,-4),B(6,0) ∴432-=x y BC …………1分 ∵MN ∥y 轴∴ N(t,432-t ) 又∵ M (t, 434312--t t )∴MN= )43431(4322----=-t t t y y M N =t t 2312+-∴S=t t 2312+- …………2分当t=3时,S 有最大值,此时M (3,-5). …………1分 (3)∵点D (4,k )在抛物线214433y x x =--上, ∴当4x =时,4k =-,∴点D 的坐标是(4,4-) ① 如图(1),当AF 为平行四边形的边时,AFDE ,∵D (4,4-),∴4DE =∴1(6,0)F -,2(2,0)F …………2分 ② 如图(2),当AF 为平行四边形的对角线时,设(,0)F n , 则平行四边形的对称中心为(22n -,0) ∴E '的坐标为(6n -,4) 把E '(6n -,4)代入214433y x x =--,得216360n n -+= 解得 827n =±3(827,0)F -,4(827,0)F + …………2分22.(本小题满分12分)解:(1)设抛物线的解析式为:y=a (x+1)(x ﹣3),则: a (0+1)(0﹣3)=3,a=﹣1;∴抛物线的解析式:y=﹣(x+1)(x ﹣3)=﹣x 2+2x+3. (2)设直线BC 的解析式为:y=kx+b ,则有:,解得;y xOB2FEA图(1)1FD yxOB3FEA图(2)E 'D4FE '故直线BC的解析式:y=﹣x+3.已知点M的横坐标为m,则M(m,﹣m+3)、N(m,﹣m2+2m+3);∴故N=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m(0<m<3).(3)如图;∵S△BNC=S△MNC+S△MNB=MN(OD+DB)=MN•OB,∴S△BNC=(﹣m2+3m)•3=﹣(m﹣)2+(0<m<3);∴当m=时,△BNC的面积最大,最大值为.感谢您的阅读,祝您生活愉快。
初中数学二次函数动点三角形最大面积同课异构美篇

初中数学二次函数动点三角形最大面积同课异构美篇数学,二次函数动点三角形的最大面积二次函数是中学数学重点内容之一,它是代数学和解析几何学的重要部分。
而与二次函数相关的动点三角形问题更是二次函数的应用之一、下面我们就来探讨一下二次函数动点三角形的最大面积。
首先,我们来了解一下什么是二次函数动点三角形。
二次函数动点三角形是指二次函数图像与坐标轴构成的三角形与坐标轴上的一个点固定在一起,形成的三角形随着这个点的位置的不同而变化。
我们要研究的是,在给定条件下,如何确定这个三角形的最大面积。
假设二次函数的函数式为y=ax^2+bx+c,其中a、b、c分别是实数。
不失一般性,我们可以假设a>0,这样二次函数对称轴为x轴的上方。
假设P为坐标轴上的一个点,不妨设这个点是y轴上的点,坐标为(0,p)。
则三角形的顶点为P(0,p),再由二次函数图像与x轴的交点A(x_1,0)和B(x_2,0)。
要确定三角形的最大面积,我们可以通过数学方法来解决。
首先,我们可以求出AB边的长度。
由于A和B是二次函数图像与x轴的交点,所以它们的横坐标满足二次方程ax^2+bx+c=0。
根据求根公式,我们可以求得x_1和x_2的值。
假设x_1 < x_2,则AB边的长度为x_2 - x_1然后,我们可以求出AP和PB的长度。
由于A和B是二次函数图像与x轴的交点,所以它们的纵坐标都为0,即A(0,0)和B(0,0)。
而P的纵坐标为p,所以AP的长度为p。
PB的长度为0-p,即-p。
接下来,我们可以根据海伦公式来求出三角形的面积。
海伦公式是用三角形的三条边的长度来计算三角形面积的公式。
根据海伦公式,三角形的面积可以表示为面积=√[s(s-a)(s-b)(s-c)]其中,s为半周长,a、b、c为三角形的三条边的长度。
对于我们要求解的动点三角形来说,三条边的长度分别为AB、AP和PB,而半周长s 为这三条边的和的一半。
因此,我们可以将三角形的面积表示为面积=√[s(s-AB)(s-AP)(s-PB)]。
二次函数解决面积最值问题

二次函数解决面积最值问题运用二次函数求图形面积的最值是中考中常见的题目.题目情景的方式丰富多彩,或通过动点移动,或通过图形移动,或通过围矩形等形式呈现.解决这类问题的一般方法是建立图形面积与有关量的二次函数模型,通过配方化成顶点式,结合自变量的取值范围求得最值.我们以2010年的中考题为例进行说明.例1.(2010四川成都改编)如图,在A B C ∆中,90B ∠= ,12m m AB =,24m m B C =,动点P 从点A 开始沿边A B 向B 以2m m /s 的速度移动(不与点B 重合),动点Q 从点B 开始沿边B C 向C 以4m m /s 的速度移动(不与点C 重合).如果P 、Q 分别从A 、B 同时出发,那么经过几秒,四边形APQC 的面积最小,最小值为多少?解析 设运动时间为t ,四边形APQC 的面积的为S .则t AP 2=,t BQ 4=.所以t BP 212-=.A B C ∆的面积为:14424122121=⨯⨯=∙BC AB . BPQ ∆面积为:t t t t BQ BP 2444)212(21212+-=-=∙,所以四边形APQC 的面积为:144244)244(14422+-=+--t t t t . 则108)3(414424422+-=+-=t t t S . 整理得108)3(42+-=t S . 又 t ≤0<6.∴当3=t 时,S 有最小值为108.即经过3秒,四边形APQC 的面积最小,最小值为2108mm .点评 本题通过建立移动时间与四边形面积之间的函数解析式,运用二次函数的性质进行解决.例2.(2010包头)将一条长为20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是 cm 2.解析 设其中的一段长为x ,另一段为20-x .两个正方形的面积和为S ,由题意知 S=224204⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛x x ,整理可以得到225)10(812+-=x S ,显然0<x <10 所以当x =10时,S 有最小值,最小值是252.点评 本题同建立两个正方形面积之和与其中一段长度的函数关系式,运用二次函数求的最小值.自己试一试如图, 东梅中学要在教学楼后面的空地上用40米长的竹篱笆围出一个矩形地块作生物园, 矩形的一边用教学楼的外墙,其余三边用竹篱笆. 这个生物园的最大面积是多少?参考答案:解:设垂直于教学楼的一边长为x 米,则平行于教学楼的一边为)240(x -米. 围成生物园的面积为y .由题意知x x y )240(-= 整理得 200)10(22+--=x y . 又0< x <20.∴当10=x 时,y 有最大值,最大值为200.即这个生物园的最大面积是200平方米.。
初中数学二次函数动点三角形最大面积同课异构美篇

初中数学二次函数动点三角形最大面积同课异构美篇初中数学中,二次函数是一个非常重要的内容,它是解决许多实际问题的数学工具。
而在二次函数的学习中,我们常常会遇到一个问题:如何求二次函数的动点形成的三角形的最大面积呢?为了解决这个问题,我们需要先了解二次函数的性质以及三角形的性质,然后利用数学方法进行推导和计算。
首先,我们先了解一下二次函数的性质。
二次函数的一般形式是y=ax²+bx+c,其中a、b、c为常数,a≠0。
二次函数的图象是一个抛物线,它的开口方向取决于a的正负性。
当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
抛物线的顶点坐标可以通过公式(-b/2a, f(-b/2a))求得。
接下来,我们需要了解三角形的性质。
在平面几何中,三角形是由三条线段组成,其中包括三个内角和三个外角。
三角形的面积可以通过海伦公式进行计算,即S=sqrt(p(p-a)(p-b)(p-c)),其中a、b、c是三角形的三条边,p是半周长。
有了这些基础知识,我们就可以开始解决这个问题了。
首先,我们假设二次函数的顶点是P(p, f(p)),其中p是顶点的横坐标,f(p)是顶点的纵坐标。
然后,我们在x轴上选择两个动点A(x1, 0)和B(x2, 0)(x1<x2),它们与顶点P形成的三角形面积记为S。
根据海伦公式,S=sqrt(p(p-x1)(p-x2))。
接下来,我们需要求出S的最大值。
为了简化计算,我们可以利用二次函数的对称性。
因为二次函数的图象是关于顶点轴对称的,所以S在x轴上的对称点也具有相同的面积。
假设对称点是A'(x1, 0)和B'(x2, 0),则PA'=PA=PB'=PB=p-x1。
根据海伦公式,S'=sqrt(p(p-(p-x1))(p-(p-x2)))=sqrt(x1(x2-p)²)。
由于S=S',所以S²=x1x2(x2-p)²。
二次函数动点问题中面积最值的解法策略

二次函数动点问题中面积最值的解法策略摘要:我国正在实施新的基础教育课程改革,《义务教育数学课程标准(2022年版)》指出要培养学生的数学核心素养,而二次函数和几何图形的综合应用题,能充分的考查学生的数学抽象,逻辑推理,数学运算以及数学建模等综合能力。
这种类型的综合题,通常出现在中考的压轴题中,综合性强,计算强度大,具有较大的难度,在二次函数与几何图形的综合题中,求二次函数面积的最值问题比较常见,本文就此问题解法进行探讨。
关键词:二次函数与几何图形;函数动点问题;二次函数面积最值二次函数动点问题就是通过点的运动生成一种函数关系及函数图象,抛物线上点的运动与直线相结合而产生的三角形面积问题,就是将几何图形与函数图象有机地融合在一起,解决的关键是结合图形通过点坐标衔接函数、方程找到函数关系。
本文就求解二次函数面积最值的问题,浅谈几种解决此类问题的方法策略。
一、割补法在解决二次函数面积最值问题时,不规则多边形的面积往往可以通过割补法把多边形分为几个三角形或者是规则的四边形的面积来求解,当三角形中有一边是在坐标轴上,或者在以坐标轴平行的直线上,那么就可以把这一条边当作三角形的底边,第三个点到这一条边的距离,作为三角形的高,直接利用三角形的面积公式求解,或者过图形的各端点作两坐标轴的平行线,构造与轴平行的最小矩形对所要求面积的图形进行覆盖,然后所求图形的面积即为矩形面积减去多余的几个直角三角形的面积。
最终把多边形面积的最值问题,转化为求三角形面积的最值问题,这也体现了一种“化归”的思想方法。
题目1、(2019枣庄)已知抛物线y=ax2+x+4的对称轴是直线x=3,与x轴相交于A,B两点(点B在点A右侧),与y轴交于点C.(1)求抛物线的解析式和A,B两点的坐标;(2)如图①,若点P是抛物线上B、C两点之间的一个动点(不与B、C重合),是否存在点P,使四边形PBOC的面积最大?若存在,求点P的坐标及四边形PBOC面积的最大值;若不存在,请说明理由.[思路分析](1)由抛物线的对称轴是直线x=3,解出a的值,即可求得抛物线的表达式,再令其y值为0,解一元二次方程即可求出A和B的坐标。
2022年中考数学二次函数压轴突破 专题06 铅垂法求三角形面积最值问题(学生版)

知识导航求三角形的面积是几何题中常见问题之一,可用的方法也比较多,比如面积公式、割补、等积变形、三角函数甚至海伦公式,本文介绍的方法是在二次函数问题中常用的一种求面积的方法——铅垂法.【问题描述】在平面直角坐标系中,已知()1,1A 、()7,3B 、()4,7C ,求△ABC 的面积.【分析】显然对于这样一个位置的三角形,面积公式并不太好用,割补倒是可以一试,比如这样:构造矩形ADEF ,用矩形面积减去三个三角形面积即可得△ABC 面积. 这是在“补”,同样可以采用“割”:()111222ABCACDBCDSSSCD AE CD BF CD AE BF =+=⋅+⋅=+ 此处AE +AF 即为A 、B 两点之间的水平距离. 由题意得:AE +BF =6. 下求CD :根据A 、B 两点坐标求得直线AB 解析式为:1233y x =+由点C 坐标(4,7)可得D 点横坐标为4, 将4代入直线AB 解析式得D 点纵坐标为2, 故D 点坐标为(4,2),CD =5,165152ABCS =⨯⨯=.【方法总结】 作以下定义:A 、B 两点之间的水平距离称为“水平宽”;过点C 作x 轴的垂线与AB 交点为D ,线段CD 即为AB 边的“铅垂高”.如图可得:=2ABCS⨯水平宽铅垂高【解题步骤】(1)求A 、B 两点水平距离,即水平宽;(2)过点C 作x 轴垂线与AB 交于点D ,可得点D 横坐标同点C ; (3)求直线AB 解析式并代入点D 横坐标,得点D 纵坐标; (4)根据C 、D 坐标求得铅垂高; (5)利用公式求得三角形面积.【思考】如果第3个点的位置不像上图一般在两定点之间,如何求面积?铅垂法其实就是在割补,重点不在三个点位置,而是取两个点作水平宽之后,能求出其对应的铅垂高!因此,动点若不在两定点之间,方法类似: 【铅垂法大全】(1)取AB 作水平宽,过点C 作铅垂高CD .(2)取AC 作水平宽,过点B 作BD ⊥x 轴交直线AC 于点D ,BD 即对应的铅垂高, =2ABCABDBCDSSS⨯-=水平宽铅垂高(3)取BC 作水平宽,过点A 作铅垂高AD .甚至,还可以横竖互换,在竖直方向作水平宽,在水平方向作铅垂高.(4)取BC作水平宽,过点A作铅垂高AD.(5)取AC作水平宽,过点B作铅垂高BD.(6)取AB作水平宽,过点C作铅垂高CD.例一、如图,已知抛物线25=++经过(5,0)y ax bxA-,(4,3)B--两点,与x轴的另一个交点为C.(1)求该抛物线的表达式;(2)点P为该抛物线上一动点(与点B、C不重合),设点P的横坐标为m.当点P在直线BC的下方运动时,求PBC∆的面积的最大值.【分析】(1)265=++,y x x(2)取BC两点之间的水平距离为水平宽,过点P作PQ⊥x轴交直线BC于点Q,则PQ即为铅垂高.根据B、C两点坐标得B、C水平距离为4,根据B 、C 两点坐标得直线BC 解析式:y =x +1,设P 点坐标为(m ,m ²+6m +5),则点Q (m ,m +1), 得PQ =-m ²-5m -4,考虑到水平宽是定值,故铅垂高最大面积就最大.当52-时,△BCP 面积最大,最大值为278.【小结】选两个定点作水平宽,设另外一个动点坐标来表示铅垂高. 例二、在平面直角坐标系中,将二次函数2(0)y ax a =>的图像向右平移1个单位,再向下平移2个单位,得到如图所示的抛物线,该抛物线与x 轴交于点A 、B (点A 在点B 的左侧),1OA =,经过点A 的一次函数(0)y kx b k =+≠的图像与y 轴正半轴交于点C ,且与抛物线的另一个交点为D ,ABD ∆的面积为5.(1)求抛物线和一次函数的解析式;(2)抛物线上的动点E 在一次函数的图像下方,求ACE ∆面积的最大值,并求出此时点E 的坐标.EDC BAy【分析】(1)抛物线解析式:21322y x x =--; 一次函数解析式:1122y x =+. (2)显然,当△ACE 面积最大时,点E 并不在AC 之间.已知A (-1,0)、10,2C ⎛⎫⎪⎝⎭,设点E 坐标为213,22m m m ⎛⎫-- ⎪⎝⎭,过点E 作EF ⊥x 轴交直线AD 于F 点,F 点横坐标为m ,代入一次函数解析式得11,22m m ⎛⎫+ ⎪⎝⎭可得213222EF m m =-++考虑到水平宽是定值,故铅垂高最大面积最大.既然都是固定的算法,那就可以总结一点小小的结论了, 对坐标系中已知三点()11,A x y 、()22,B x y 、()33,C x y , 按铅垂法思路,可得:12233121321312ABCSx y x y x y x y x y x y =++--- 如果能记住也不要直接用,可以当做是检验的方法咯.【总结】铅垂法是求三角形面积的一种常用方法,尤其适用于二次函数大题中的三角形面积最值问题,弄明白方法原理,熟练方法步骤,加以练习,面积最值问题轻轻松松.1.已知二次函数2y x bx c =-++和一次函数y mx n =+的图象都经过点(3,0)A -,且二次函数2y x bx c =-++的图象经过点(0,3)B ,一次函数y mx n =+的图象经过点(0,1)C -. (1)分别求m 、n 和b 、c 的值;(2)点P 是二次函数2y x bx c =-++的图象上一动点,且点P 在x 轴上方,写出ACP ∆的面积S 关于点P 的横坐标x 的函数表达式,并求S 的最大值.2.如图,抛物线经过(2,0)A -,(4,0)B ,(0,3)C -三点. (1)求抛物线的解析式;(2)在直线BC 下方的抛物线上有一动点P ,使得PBC ∆的面积最大,求点P 的坐标;(3)点M 为x 轴上一动点,在抛物线上是否存在一点N ,使以A ,C ,M ,N 四点构成的四边形为平行四边形?若存在,求出点N 的坐标;若不存在,请说明理由.3.综合与探究:如图,在平面直角坐标系中,二次函数的图象交坐标轴于(1,0)A -,(3,0)B ,(0,4)C -三点,点(,)P m n 是直线BC 下方抛物线上的一个动点. (1)求这个二次函数的解析式;(2)动点P 运动到什么位置时,PBC ∆的面积最大,求出此时P 点坐标及PBC ∆面积的最大值;(3)在y 轴上是否存在点Q ,使以O ,B ,Q 为顶点的三角形与AOC ∆相似?若存在,请直接写出点Q 的坐标;若不存在,请说明理由.4.如图1,抛物线2y x bx c =-++与x 轴交于A 、B 两点,与y 轴交于点C ,已知点B 坐标为(3,0),点C 坐标为(0,3).(1)求抛物线的表达式;(2)点P为直线BC上方抛物线上的一个动点,当PBC∆的面积最大时,求点P的坐标;(3)如图2,点M为该抛物线的顶点,直线MD x⊥轴于点D,在直线MD上是否存在点N,使点N到直线MC 的距离等于点N到点A的距离?若存在,求出点N的坐标;若不存在,请说明理由.5.如图,抛物线过点(0,1)A和C,顶点为D,直线AC与抛物线的对称轴BD的交点为(3B,0),平行于y轴的直线EF与抛物线交于点E,与直线AC交于点F,点F的横坐标为433,四边形BDEF为平行四边形.(1)求点F的坐标及抛物线的解析式;(2)若点P为抛物线上的动点,且在直线AC上方,当PAB∆面积最大时,求点P的坐标及PAB∆面积的最大值;(3)在抛物线的对称轴上取一点Q,同时在抛物线上取一点R,使以AC为一边且以A,C,Q,R为顶点的四边形为平行四边形,求点Q和点R的坐标.6.在平面直角坐标系xOy中,等腰直角ABC∆的直角顶点C在y轴上,另两个顶点A,B在x轴上,且AB=,抛物线经过A,B,C三点,如图1所示.4(1)求抛物线所表示的二次函数表达式.(2)过原点任作直线l交抛物线于M,N两点,如图2所示.①求CMN∆面积的最小值.②已知3(1,)Q-是抛物线上一定点,问抛物线上是否存在点P,使得点P与点Q关于直线l对称,若存在,2求出点P的坐标及直线l的一次函数表达式;若不存在,请说明理由.。
专题44:第8章几何中的最值问题之三角形的面积-备战2021中考数学解题方法系统训练(解析版)
44第8章几何中的最值问题之三角形的面积一、单选题1.如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M是曲线部分的最低点,则△ABC的面积是()A.12 B.24 C.36 D.48【答案】D【解答】由图2知,AB=BC=10,当BP⊥AC时,y的值最小,即△ABC中,BC边上的高为8(即此时BP=8),即可求解.【解答】解:由图2知,AB=BC=10,当BP⊥AC时,y的值最小,即△ABC中,BC边上的高为8(即此时BP=8),当y=8时,PC===6,△ABC的面积=×AC×BP=×8×12=48,故选:D.【点评】本题是运动型综合题,考查了动点问题的函数图象、解直角三角形、图形面积等知识点.解题关键是深刻理解动点的函数图象,了解图象中关键点所代表的实际意义,理解动点的完整运动过程.2.将一张宽为4cm的长方形纸片(足够长)折叠成如图所示图形,重叠部分是一个三角形,则这个三角形面积的最小值是()A.4cm2B.8cm2C.12cm2D.16cm2【答案】B【分析】当AC⊥AB时,重叠三角形面积最小,此时△ABC是等腰直角三角形,面积为8cm2.【解答】解:如图,当AC⊥AB时,三角形面积最小,∵∠BAC=90°∠ACB=45°∴AB=AC=4cm,∴S△ABC=12×4×4=8cm2.故选:B.【点评】本题考查了折叠的性质,发现当AC⊥AB时,重叠三角形的面积最小是解决问题的关键.3.如图,已知直线5-512y x=与x轴、y轴分别交于B、C两点,点A是以D(0,2)为圆心,2为半径的⊙D上的一个动点,连接AC、AB,则△ABC面积的最小值是()A.30 B.29 C.28 D.27 【答案】B【分析】过D作DM⊥BC于M,连接BD,则由三角形面积公式得,12BC×DM=12OB×CD,可得DM,可知圆D上点到直线5-512y x=的最小距离,由此即可解决问题.【解答】过D作DM⊥BC于M,连接BD,如图,令0y =,则12x =,令0x =,则5y =-,∴B (12,0),C (0,-5),∴OB=12,OC=5,BC=2222125OB OC +=+=13,则由三角形面积公式得,12BC×DM=12OB×CD , ∴DM=8413, ∴圆D 上点到直线5-512y x =的最小距离是845821313-=, ∴△ABC 面积的最小值是1581329213⨯⨯=. 故选:B .【点评】本题考查了一次函数的应用、勾股定理的应用、圆的有关性质,解此题的关键是求出圆上的点到直线BC 的最大距离以及最小距离.4.如图,∠AOB =45°,点M 、N 分别在射线OA 、OB 上,MN =6,△OMN 的面积为12,P 是直线MN 上的动点,点P 关于OA 对称的点为P 1,点P 关于OB 对称点为P 2,当点P 在直线NM 上运动时,△OP 1P 2的面积最小值为( )A .6B .8C .12D .18【答案】B【分析】连接OP,过点O作OH⊥NM交NM的延长线于H.首先利用三角形的面积公式求出OH,再证明△OP1P2是等腰直角三角形,OP最小时,△OP1P2的面积最小.【解答】解:连接OP,过点O作OH⊥NM交NM的延长线于H.∵S△OMN=12•MN•OH=12,MN=6,∴OH=4,∵点P关于OA对称的点为P1,点P关于OB对称点为P2,∴∠AOP=∠AOP1,∠POB=∠P2OB,OP=OP1=OP2∵∠AOB=45°,∴∠P1OP2=2(∠POA+∠POB)=90°,∴△OP1P2是等腰直角三角形,∴OP=OP1最小时,△OP1P2的面积最小,根据垂线段最短可知,OP的最小值为4,∴△OP1P2的面积的最小值=12×4×4=8,故选:B.【点评】本题考查轴对称,三角形的面积,垂线段最短等知识,解题的关键是证明△OP1P2是等腰直角三角形,属于中考常考题型.5.如图,矩形ABCD中,AB=8,AD=4,E为边AD上一个动点,连接BE,取BE的中点G,点G绕点E 逆时针旋转90°得到点F,连接CF,则△CEF面积的最小值是()A .16B .15C .12D .11【答案】B 【分析】过点F 作AD 的垂线交AD 的延长线于点H ,则△FEH ∽△EBA ,设AE=x ,可得出△CEF 面积与x 的函数关系式,再根据二次函数图象的性质求得最小值.【解答】解:过点F 作AD 的垂线交AD 的延长线于点H ,∵∠A=∠H=90°,∠FEB=90°,∴∠FEH=90°-∠BEA=∠EBA , ∴△FEH ∽△EBA ,∴ ,HF HE EF AE AB BE== G 为BE 的中点,1,2FE GE BE ∴==∴ 1,2HF HE EF AE AB BE === 设AE=x , ∵AB 8,4,AD ==∴HF 1,4,2x EH == ,DH AE x ∴==CEF DHFC CED EHF S S S S ∆∆∆∴=+-11111(8)8(4)422222x x x x =++⨯--⨯• 2141644x x x x =+--- 2116,4x x =-+∴当12124x -=-=⨯ 时,△CEF 面积的最小值1421615.4=⨯-+= 故选:B .【点评】本题通过构造K 形图,考查了相似三角形的判定与性质.建立△CEF 面积与AE 长度的函数关系式是解题的关键.二、填空题6.如图,在△ABC 中,AB =AC ,∠BAC =120°,点D 为AB 边上一点(不与点B 重合),连接CD ,将线段CD 绕点D 逆时针旋转90°,点C 的对应点为E ,连接BE .若AB =6,则△BDE 面积的最大值为_________.【答案】818【分析】作CM ⊥AB 于M ,EN ⊥AB 于N ,根据AAS 证得EDN ≌DCM ,得出EN =DM ,然后解直角三角形求得AM =3,得到BM =9,设BD =x ,则EN =DM =9﹣x ,根据三角形面积公式得到S △BDE =12BD EN ⋅=12x (9﹣x )=﹣12(x ﹣4.5)2+818,根据二次函数的性质即可求得. 【解答】解:作CM ⊥AB 于M ,EN ⊥AB 于N ,∴∠EDN+∠DEN=90°,∵∠EDC=90°,∴∠EDN+∠CDM=90°,∴∠DEN=∠CDM,在EDN和DCM中DEN CDMEND DMC90 ED DC ︒∠=∠⎧⎪∠=∠=⎨⎪=⎩∴EDN≌DCM(AAS),∴EN=DM,∵∠BAC=120°,∴∠MAC=60°,∴∠ACM=30°,∴AM=12AC=12⨯6=3,∴BM=AB+AM=6+3=9,设BD=x,则EN=DM=9﹣x,∴S△BDE=12BD EN⋅=12x(9﹣x)=﹣12(x﹣4.5)2+818,∴当BD=4.5时,S△BDE有最大值为81 8,故答案为:81 8.【点评】此题主要考查旋转综合题、全等三角形的判定及性质、直角三角形的性质和求最值,解题的关键是熟知全等三角形的判定与性质和利用二次函数求最值.7.如图,⊙O 的直径为5,在⊙O 上位于直径AB 的异侧有定点C 和动点P ,已知BC :CA =4:3,点P 在半圆弧AB 上运动(不与A ,B 重合),过C 作CP 的垂线CD 交PB 的延长线于D 点.则△PCD 的面积最大为______________.【答案】503【分析】由圆周角定理可知A P ∠=∠,再由90ACB PCD ∠=∠=︒可证明~ACB PDC ,最后根据相似三角形对应边成比例,及已知条件BC :CA =4:3,结合三角形面积公式解题即可.【解答】AB 为直径,90ACB ∴∠=︒PC CD ⊥,90PCD ∴∠=︒又CAB CPD ∠=∠~ACB PDC ∴AC BC CP CD∴= BC :CA =4:3,43CD PC ∴= 当点P 在弧AB 上运动时, 12PCD S PC CD =⋅△ 2142233PCD S PC PC PC ∴=⨯⋅= 当PC 最大时,PCD S 取得最大值而当PC 为直径时最大,22505=33PCD S ∴=⨯.【点评】本题考查圆周角定理、三角形面积、相似三角形的判定与性质等知识,是重要考点,难度较易,掌握相关知识是解题关键.8.已知AB为半圆的直径,AB=2,DA⊥AB,CB⊥AB,AD=1,BC=3,点P为半圆上的动点,则AD,AB,BC,CP,PD围成的图形的面积的最大值是_____.【答案】2【分析】五边形ABCDP的面积=四边形ABCD的面积﹣△CPD的面积只要求出△CDP面积的最小值,作EF//CD,且与⊙O相切于点P,连接OP延长OP交AD于H,易知此时点P到CD的距离最小,此时△CDP 的面积最小.【解答】解:∵五边形ABCDP的面积=四边形ABCD的面积﹣△CPD的面积,∴只要求出△CDP面积的最小值,作EF//CD,且与⊙O相切于点P,连接OP延长OP交AD于H,易知此时点P到CD的距离最小,此时△CDP的面积最小,易知AD=2,∵四边形ABCD的面积=12(1+3)×2=4=12×1×1+12•AD•OH+12•1•3,∴OH2,∴PH2﹣11,∴△CAD的面积最小值为22,∴五边形ABCDP面积的最大值是4﹣(22)=2.故答案为2+2.【点评】本题主要考查了求解多边形的面积知识点,结合圆的切线的性质进行求解是解题的重要步骤.9.如图,在矩形ABCD中,∠ACB=30°,BC=23,点E是边BC上一动点(点E不与B,C重合),连接AE,AE的中垂线FG分别交AE于点F,交AC于点G,连接DG,GE.设AG=a,则点G到BC边的距离为_____(用含a的代数式表示),ADG的面积的最小值为_____.【答案】42a-23【分析】先根据直角三角形含30度角的性质和勾股定理得AB=2,AC=4,从而得CG的长,作辅助线,构建矩形ABHM和高线GM,如图2,通过画图发现:当GE⊥BC时,AG最小,即a最小,可计算a的值,从而得结论.【解答】∵四边形ABCD是矩形,∴∠B=90°,∵∠ACB=30°,3,∴AB=2,AC=4,∵AG=a,∴CG=4a-,如图1,过G作MH⊥BC于H,交AD于M,Rt△CGH中,∠ACB=30°,∴GH=12CG=42a-,则点G到BC边的距离为42a-,∵HM⊥BC,AD∥BC,∴HM⊥AD,∴∠AMG=90°,∵∠B=∠BHM=90°,∴四边形ABHM是矩形,∴HM=AB=2,∴GM=2﹣GH=422a--=2a,∴S△ADG113232222a aAD MG=⋅=⨯⨯=,当a最小时,△ADG的面积最小,如图2,当GE⊥BC时,AG最小,即a最小,∵FG是AE的垂直平分线,∴AG=EG,∴42aa -=,∴43a =, ∴△ADG 的面积的最小值为34233⨯=, 故答案为:42a -,233. 【点评】本题主要考查了垂直平分线的性质、矩形的判定和性质、含30度角的直角三角形的性质以及勾股定理,确定△ADG 的面积最小时点G 的位置是解答此题的关键.10.如图,直线AB 交坐标轴于A(-2,0),B(0,-4),点P 在抛物线1(2)(4)2y x x =--上,则△ABP 面积的最小值为__________.【答案】152【分析】根据直线AB 交坐标轴于A(-2,0),B(0,-4),计算得直线AB 解析式;平移直线AB 到直线CD ,直线CD 当抛物线相交并只有一个交点P 时,△ABP 面积为最小值,通过一元二次方程和抛物线的性质求得点P 坐标;再利用勾股定理逆定理,证明ABP △为直角三角形,从而计算得到△ABP 面积的最小值.【解答】设直线AB 为y kx b =+∵直线AB 交坐标轴于A(-2,0),B(0,-4)∴024k b b =-+⎧⎨-=⎩∴24k b =-⎧⎨=-⎩ ∴直线AB 为24y x =--如图,平移直线AB 到直线CD ,直线CD 为2y x p =-+当2y x p =-+与抛物线1(2)(4)2y x x =--相交并只有一个交点P 时,△ABP 面积为最小值∴()()21242y x py x x =-+⎧⎪⎨=--⎪⎩∴22820x x p -+-=∴()44820p ∆=--= ∴72p =∴2210x x -+=∴1x =将1x =代入1(2)(4)2y x x =--,得32y = ∴31,2P ⎛⎫⎪⎝⎭∴()2223451224AP ⎛⎫=++= ⎪⎝⎭2231251424BP ⎛⎫=++= ⎪⎝⎭2222420AB∴222AB AP BP +=∴ABP △为直角三角形,90BAP ∠= ∴113515=25222ABP AB A S P ⨯=⨯=△即△ABP 面积的最小值为152 故答案为:152. 【点评】本题考查了二次函数、一次函数、平移、一元二次方程、勾股定理逆定理的知识;解题的关键是熟练掌握二次函数、一次函数、平移、一元二次方程、勾股定理逆定理的性质,从而完成求解.三、解答题11.如图,已知抛物线23y ax bx =++与x 轴交于A 、B 两点,过点A 的直线l 与抛物线交于点C ,其中A 点的坐标是(1,0),C 点坐标是(4,3).(1)求抛物线的解析式;(2)抛物线的对称轴上是否存在点D ,使△BCD 的周长最小?若存在,求出点D 的坐标,若不存在,请说明理由;(3)点P 是抛物线上AC 下方的一个动点,是否存在点p ,使△PAC 的面积最大?若存在,求出点P 的坐标,若不存在,请说明理由.【答案】(1)抛物线y =x 2-4x +3;(2)D(2,1);(3)点P 的坐标为5(2,3)4- 【分析】(1)(1) 将A 、C 坐标代入即可;(2)由于BC 长度不变, 要周长最小, 就是让DB DC 最小, 而A 、B 关于对称轴对称, 所以AC 就是DB DC 的最小值, 此时D 点就是AC 与抛物线对称轴的交点;【解答】解:(1)抛物线23y ax bx =++经过点(1,0)A ,点(4,3)C ,∴3016433ab a b ,解得14a b ==-⎧⎨⎩, 所以,抛物线的解析式为243y x x =-+;(2)243(1)(3)y x x x x ,(3,0)∴B ,抛物线的对称轴为2x =; BC 长度不变,BD DC 最小时,BCD ∆的周长最小, A 、B 是关于抛物线对称轴对称的,∴当D 点为对称轴与AC 的交点时,BD DC +最小, 即BCD ∆的周长最小,如图,∴21x y x ,解得:21x y =⎧⎨=⎩,(2,1)D ∴,∴抛物线对称轴上存在点(2,1)D ,使BCD ∆的周长最小;(3)存在,如图,设过点P 与直线AC 平行线的直线为y x m =+,联立243yx m y x x, 消掉y 得,2530x x m , 2(5)41(3)0m , 解得:134m =-, 即134m =-时,点P 到AC 的距离最大,ACP ∆的面积最大, 此时52x =,5133244y , ∴点P 的坐标为5(2,3)4-, 设过点P 的直线与x 轴交点为F ,则13(4F ,0), 139144AF , 直线AC 的解析式为1y x =-,45CAB ∴∠=︒,∴点F 到AC 的距离为9292sin 454AF , 又223(41)32AC , ACE ∴∆的最大面积122732288=⨯=. 【点评】本题考查了二次函数综合题型,主要考查了待定系数法求二次函数解析式,待定系数法求一次函数解析式,利用轴对称确定最短路线问题,联立两函数解析式求交点坐标,利用平行线确定点到直线的最大距离问题,熟悉相关性质是解题的关键.12.已知,如图,矩形ABCD中,AD=6,DC=7,菱形EFGH的三个顶点E,G,H分别在矩形ABCD的边AB,CD,AD上,AH=2,连接CF.(1)当四边形EFGH为正方形时,求DG的长;(2)当DG=6时,求△FCG的面积;(3)求△FCG的面积的最小值.【答案】(1)2‘(2)1;(3)(37.【分析】(1)当四边形EFGH为正方形时,则易证AHE≌△DGH,则DG=AH=2;(2)过F作FM⊥DC,交DC延长线于M,连接GE,由于AB∥CD,可得∠AEG=∠MGE,同理有∠HEG=∠FGE,利用等式性质有∠AEH=∠MGF,再结合∠A=∠M=90°,HE=FG,可证△AHE≌△MFG,从而有FM=HA=2(即无论菱形EFGH如何变化,点F到直线CD的距离始终为定值2),进而可求三角形面积;(3)先设DG=x,由第(2)小题得,S△FCG=7-x,在△AHE中,AE≤AB=7,利用勾股定理可得HE2≤53,在Rt△DHG中,再利用勾股定理可得x2+16≤53,进而可求37,从而可得当37GCF的面积最小.【解答】解:(1)∵四边形EFGH为正方形,∴HG=HE,∠EAH=∠D=90°,∵∠DHG+∠AHE=90°,∠DHG+∠DGH=90°,∴∠DGH=∠AHE,∴△AHE≌△DGH(AAS),∴DG=AH=2;(2)过F作FM⊥DC,交DC延长线于M,连接GE,∵AB ∥CD ,∴∠AEG=∠MGE ,∵HE ∥GF ,∴∠HEG=∠FGE ,∴∠AEH=∠MGF ,在△AHE 和△MFG 中,∠A=∠M=90°,HE=FG ,∴△AHE ≌△MFG (AAS ),∴FM=HA=2,即无论菱形EFGH 如何变化,点F 到直线CD 的距离始终为定值2,因此S △FCG =12×FM×GC=12×2×(7-6)=1; (3)设DG=x ,则由(2)得,S △FCG =7-x ,在△AHE 中,AE≤AB=7,∴HE 2≤53,∴x 2+16≤53,∴37∴S △FCG 的最小值为37,此时37,∴当37FCG 的面积最小为(37.【点评】本题属于四边形综合题,考查了矩形、菱形的性质、全等三角形的判定和性质、勾股定理.解题的关键是学会添加常用辅助线,构造全等三角形解决问题.13.如图,抛物线2y ax bx c =++与x 轴交于点(1,0)A -,点(3,0)B ,与y 轴交于点C ,且过点(2,3)D -.点P 、Q 是抛物线2y ax bx c =++上的动点.(1)求抛物线的解析式;(2)当点P 在直线OD 下方时,求POD ∆面积的最大值.(3)直线OQ 与线段BC 相交于点E ,当OBE ∆与ABC ∆相似时,求点Q 的坐标.【答案】(1)抛物线的表达式为:223y x x =--;(2)POD S ∆有最大值,当14m =时,其最大值为4916;(3) 3,3)Q -或()3,23或11311322⎛⎫-+- ⎪ ⎪⎝⎭或1133313--+⎝⎭. 【分析】(1)函数的表达式为:y=a (x+1)(x-3),将点D 坐标代入上式,即可求解;(2)设点()2,23P m m m --,求出32OG m =+,根据()12POD D P S OG x x ∆=⨯-1(32)(2)2m m =+-2132m m =-++,利用二次函数的性质即可求解; (3)分∠ACB=∠BOQ 、∠BAC=∠BOQ ,两种情况分别求解,通过角的关系,确定直线OQ 倾斜角,进而求解.【解答】解:(1)函数的表达式为:(1)(3)y a x x =+-,将点D 坐标代入上式并解得:1a =,故抛物线的表达式为:223y x x =--…①;(2)设直线PD 与y 轴交于点G ,设点()2,23P m m m --,将点P 、D 的坐标代入一次函数表达式:y sx t =+并解得,直线PD 的表达式为:32y mx m =--,则32OG m =+,()12POD D P S OG x x ∆=⨯-1(32)(2)2m m =+-2132m m =-++, ∵10-<,故POD S ∆有最大值,当14m =时,其最大值为4916; (3)∵3OB OC ==,∴45OCB OBC ︒∠=∠=,∵ABC OBE ∠=∠,故OBE ∆与ABC ∆相似时,分为两种情况:①当ACB BOQ ∠=∠时,4AB =,32BC =,10AC =,过点A 作AH ⊥BC 与点H ,1122ABC S AH BC AB OC ∆=⨯⨯=⨯,解得:22AH =, ∴CH 2则tan 2ACB ∠=,则直线OQ 的表达式为: 2 y x =-…②, 联立①②并解得:3x =±, 故点(3,23)Q -或()3,23-;②BAC BOQ ∠=∠时,3tan 3tan 1OC BAC BOQ OA ∠====∠, 则直线OQ 的表达式为: 3 y x =-…③,联立①③并解得:113x -±=, 故点1133313,22Q ⎛⎫-+- ⎪ ⎪⎝⎭或1133313,⎛⎫--+ ⎪ ⎪⎝⎭; 综上,点(3,23)Q -或()3,23-或113113,⎛⎫-+- ⎪ ⎪⎝⎭或1133313,⎛⎫--+ ⎪ ⎪⎝⎭. 【点评】本题考查的是二次函数综合运用,涉及到解直角三角形、三角形相似、面积的计算等,其中(3),要注意分类求解,避免遗漏.14.已知抛物线y =a (x ﹣1)2过点(3,4),D 为抛物线的顶点.(1)求抛物线的解析式;(2)若点B 、C 均在抛物线上,其中点B (0,1),且∠BDC =90°,求点C 的坐标:(3)如图,直线y =kx +1﹣k 与抛物线交于P 、Q 两点,∠PDQ =90°,求△PDQ 面积的最小值.【答案】(1)y =(x ﹣1)2;(2)点C 的坐标为(2,1);(3)1【分析】(1)将点(3,4)代入解析式求得a的值即可;(2)设点C的坐标为(x0,y0),其中y0=(x0﹣1)2,作CF⊥x轴,证△BDO∽△DCF得BO DF DO CF=,即1=0x1y-=()1x1-,据此求得x0的值即可得;(3)过点D作x轴的垂线交直线PQ于点G,则DG=4,根据S△PDQ=12DG•MN列出关于k的等式求解可得.【解答】解:(1)将点(3,4)代入解析式,得:4a=4,解得:a=1,所以抛物线解析式为y=(x﹣1)2;(2)由(1)知点D坐标为(1,0),设点C的坐标为(x0,y0),(x0>1、y0>0),则y0=(x0﹣1)2,如图1,过点C作CF⊥x轴,∴∠BOD=∠DFC=90°,∠DCF+∠CDF=90°,∵∠BDC=90°,∴∠BDO+∠CDF=90°,∴∠BDO=∠DCF,∴△BDO∽△DCF,∴BO DFDO CF=,∴1=0x1y-=()1x1-,解得:x0=2,此时y0=1,∴点C 的坐标为(2,1).(3)设点P 的坐标为(x 1,y 1),点Q 为(x 2,y 2),(其中x 1<1<x 2,y 1>0,y 2>0),如图2,分别过点P 、Q 作x 轴的垂线,垂足分别为M 、N ,由y=(x-1)2 ,y=kx+1-k ,得x 2﹣(2+k )x+k =0.∴x 1+x 2=2+k ,x 1•x 2=k .∴MN =|x 1﹣x 2|=()21212x x 4x x +-=()22k 4k +-=|2﹣k|.则过点D 作x 轴的垂线交直线PQ 于点G ,则点G 的坐标为(1,1),所以DG =1,∴S △PDQ =12DG•MN =12×1×|x 1﹣x 2|=()212121x x 4x x 2+-=12|2﹣k|, ∴当k =0时,S △PDQ 取得最小值1.【点评】本题主要考查二次函数的综合问题,解题的关键是熟练掌握待定系数法求函数解析式、相似三角形的判定与性质及一元二次方程根与系数的关系等知识点.15.如图,已知二次函数213222y x x =-++的图象交x 轴于A (-1,0),B (4,0),交y 轴于点C ,点P 是直线BC 上方抛物线上一动点(不与B ,C 重合),过点P 作PE ⊥BC ,PF ∥y 轴交BC 与F ,则△PEF 面积的最大值是___________.【答案】45【分析】先证明△PEF ∽△BOC,得出PE EF PF BO OC BC ==,再根据122y x =-+,得出关于x 的二次函数方程,根据顶点坐标公式,求得则△PEF 面积最大值. 【解答】解:设213,222P x x x ⎛⎫-++ ⎪⎝⎭(0<x<4), 抛物线213222y x x =-++与y 轴交于C 点,故C(0,2),∵PF ∥y 轴,PE ⊥BC ,∴∠PFE=∠BCO,又∵∠PEF=∠BOC=90°,∴△PEF ∽△BOC, ∴PE EF PFBO OC BC == ,把B(4,0),C(0,2)代入直线BC 的解析式为122y x =-+, 点1,22F x x ⎛⎫-+ ⎪⎝⎭, ∴221312(2)22222P F x PF y y x x x x =-=-++--+=-+,∴PE=BO·PF BC =4×22221225524x x-+==+ , EF=OC·PF BC =2×2222211122(2)2225524x x x x x x -+-+-==+ , ∴221(2)1225PEF x x S PE EF -=⋅= =2221(2)(2)42520x x x ⎡⎤-⎢⎥⎡⎤--+⎣⎦⎣⎦=,当2x =时,PEF S △取值最大,∴PEF S △的最大值为244205=,故答案为45.【点评】本题考查了三角形的面积及相似三角形的判定与性质.熟练掌握相似三角形的判定与性质及用含x 的代数式表示出三角形的面积是解题的关键.16.如图,已知点P是∠AOB内一点,过点P的直线MN分别交射线OA,OB于点M,N,将直线MN绕点P旋转,△MON的形状与面积都随之变化.(1)请在图1中用尺规作出△MON,使得△MON是以OM为斜边的直角三角形;(2)如图2,在OP的延长线上截取PC=OP,过点C作CM∥OB交射线OA于点M,连接MP并延长交OB于点N.求证:OP平分△MON的面积;(3)小亮发现:在直线MN旋转过程中,(2)中所作的△MON的面积最小.请利用图2帮助小亮说明理由.【答案】(1)见解析;(2)见解析;(3)当点P是MN的中点时S△MON最小.理由见解析.【分析】(1)根据尺规作图,过P点作PN⊥OB于N,交OA于点M;(2)证明三角形全等得P为MN的中点,便可得到结论;(3)过点P作另一条直线EF交OA、OB于点E、F,设PF<PE,与MC交于于G,证明△PGM≌△PFN,得△PGM与△PFN的面积相等,进而得S四边形MOFG=S△MON.便可得S△MON<S△EOF,问题得以解决.【解答】(1)①在OB下方取一点K,②以P为圆心,PK长为半径画弧,与OB交于C、D两点,③分别以C、D为圆心,大于12CD长为半径画弧,两弧交于E点,④作直线PE,分别与OA、OB交于点M、N,故△OMN就是所求作的三角形;(2)∵CM ∥OB ,∴∠C =∠PON ,在△PCM 和△PON 中,C PONPC PO CPH OPN∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△PCM ≌△PON (ASA ),∴PM =PN ,∴OP 平分△MON 的面积;(3)过点P 作另一条直线EF 交OA 、OB 于点E 、F ,设PF <PE ,与MC 交于于G ,∵CM ∥OB ,∴∠GMP =∠FNP ,在△PGM 和△PFM 中,PMG PNF PM PNMPG NPF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△PGM ≌△PFN (ASA ),∴S △PGM =S △PFN∴S 四边形MOFG =S △MON .∵S 四边形MOFG <S △EOF ,∴S △MON <S △EOF ,∴当点P 是MN 的中点时S △MON 最小.【点评】本题主要考查了图形的旋转性质,全等三角形的性质与判定,三角形的中线性质,关键证明三角形全等.17.如图,已知A ,B 是线段MN 上的两点,4MN =,1MA =,1MB >,以A 为中心顺时针旋转点M ,以B 为中心逆时针旋转点N ,使M ,N 两点重合成一点C ,构成ABC ,设AB x =.(1)求x 的取值范围;(2)求ABC 面积的最大值.【答案】(1)12x <<;(2)22. 【分析】(1)由旋转可得到AC=MA=x ,BC=BN=3-x ,利用三角形三边关系可求得x 的取值范围;(2)过点C 作CD ⊥AB 于D ,设CD=h ,利用勾股定理表示出AD 、BD ,再根据BD=AB-AD 列方程求出h 2,然后求出△ABC 的面积的平方,再根据二次函数的最值问题解答.【解答】解:(1)∵4MN =,1MA =,AB x =,∴413BN x x =--=-.由旋转的性质,得1MA AC ==,3BN BC x ==-,由三角形的三边关系,得31,31,x x x x --<⎧⎨-+>⎩①② 解不等式①得1x >,解不等式②得2x <,∴x 的取值范围是12x <<.(2)如图,过点C 作CD AB ⊥于点D ,设CD h =,由勾股定理,得2221AD AC CD h -=-=,2222(3)BD BC CD x h =-=--, ∵BD AB AD =-, ∴222(3)1x h x h --=--,两边平方并整理,得2134-=-x h x ,两边平方整理,得()222832=x x h x -+-.∵ABC 的面积为1122AB CD xh ⋅=, ∴()2222113183222422S xh x x x ⎛⎫⎛⎫==-⨯-+=--+ ⎪ ⎪⎝⎭⎝⎭, ∴当32x =时,ABC 面积最大值的平方为12, ∴ABC 面积的最大值为22. 【点评】本题考查了旋转的性质,三角形的三边关系,勾股定理,二次函数的最值问题,(1)难点在于考虑利用三角形的三边关系列出不等式组,(2)难点在于求解利用勾股定理列出的无理方程.18.如图1,在Rt △ABC 中,∠A =90°,AB =AC ,点D ,E 分别在边AB ,AC 上,AD =AE ,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点.(1)观察猜想:图1中,线段PM 与PN 的数量关系是 ,位置关系是 ;(2)探究证明:把△ADE 绕点A 逆时针方向旋转到图2的位置,连接MN ,BD ,CE ,判断△PMN 的形状,并说明理由;(3)拓展延伸:把△ADE 绕点A 在平面内自由旋转,若AD =4,AB =10,请直接写出△PMN 面积的最大值.【答案】(1)PM =PN ,PM ⊥PN ;(2)△PMN 是等腰直角三角形.理由见解析;(3)S △PMN 最大=492. 【分析】(1)由已知易得BD CE =,利用三角形的中位线得出12PM CE =,12PN BD =,即可得出数量关系,再利用三角形的中位线得出//PM CE 得出DPM DCA ∠=∠,最后用互余即可得出位置关系; (2)先判断出ABD ACE ∆≅∆,得出BD CE =,同(1)的方法得出12PM BD =,12PN BD =,即可得出PM PN =,同(1)的方法由MPN DCE DCB DBC ACB ABC ∠=∠+∠+∠=∠+∠,即可得出结论; (3)方法1:先判断出MN 最大时,PMN ∆的面积最大,进而求出AN ,AM ,即可得出MN 最大AM AN =+,最后用面积公式即可得出结论.方法2:先判断出BD 最大时,PMN ∆的面积最大,而BD 最大是14AB AD +=,即可得出结论.【解答】解:(1)点P ,N 是BC ,CD 的中点, //PN BD ∴,12PN BD =, 点P ,M 是CD ,DE 的中点, //PM CE ∴,12PM CE =, AB AC =,AD AE =,BD CE ∴=,PM PN ∴=,//PN BD ,DPN ADC ∴∠=∠,//PM CE ,DPM DCA ∴∠=∠,90BAC ∠=︒,90ADC ACD ∴∠+∠=︒,90MPN DPM DPN DCA ADC ∴∠=∠+∠=∠+∠=︒,PM PN ∴⊥,故答案为:PM PN =,PM PN ⊥;(2)PMN ∆是等腰直角三角形.由旋转知,BAD CAE ∠=∠,AB AC =,AD AE =,()ABD ACE SAS ∴∆≅∆,ABD ACE ∴∠=∠,BD CE =, 利用三角形的中位线得,12PN BD =,12PM CE =,PM PN ∴=,PMN ∴∆是等腰三角形,同(1)的方法得,//PM CE ,DPM DCE ∴∠=∠,同(1)的方法得,//PN BD ,PNC DBC ∴∠=∠,DPN DCB PNC DCB DBC ∠=∠+∠=∠+∠,MPN DPM DPN DCE DCB DBC ∴∠=∠+∠=∠+∠+∠BCE DBC ACB ACE DBC =∠+∠=∠+∠+∠ACB ABD DBC ACB ABC =∠+∠+∠=∠+∠,90BAC ∠=︒,90ACB ABC ∴∠+∠=︒,90MPN ∴∠=︒,PMN ∴∆是等腰直角三角形;(3)方法1:如图2,同(2)的方法得,PMN ∆是等腰直角三角形,MN ∴最大时,PMN ∆的面积最大,//DE BC ∴且DE 在顶点A 上面,MN ∴最大AM AN =+,连接AM ,AN ,在ADE ∆中,4AD AE ==,90DAE ∠=︒,22AM ∴=在Rt ABC ∆中,10AB AC ==,52AN =2522MN ∴==最大,222111149(72)22242PMN S PM MN ∆∴==⨯=⨯=最大. 方法2:由(2)知,PMN ∆是等腰直角三角形,12PM PN BD ==, PM ∴最大时,PMN ∆面积最大,∴点D 在BA 的延长线上,14BD AB AD ∴=+=,7PM ∴=,2211497222PMN S PM ∆∴==⨯=最大. 【点评】此题属于几何变换综合题,主要考查了三角形的中位线定理,等腰直角三角形的判定和性质,全等三角形的判断和性质,直角三角形的性质的综合运用;解(1)的关键是判断出12PM CE =,12PN BD =,解(2)的关键是判断出ABD ACE ∆≅∆,解(3)的关键是判断出MN 最大时,PMN ∆的面积最大. 19.问题提出(1)如图①,在Rt △ABC 中,∠ABC =90°,AB =12,BC =16,则AC = ;问题探究(2)如图②,在Rt△ABC中,∠ABC=90°,AC=10,点D是AC边上一点,且满足DA=DB,则CD=;问题解决(3)如图③,在Rt△ABC中,过点B作射线BP,将∠C折叠,折痕为EF,其中E为BC中点,点F在AC边上,点C的对应点落在BP上的点D处,连接ED、FD,若BC=8,求△BCD面积的最大值,及面积最大时∠BCD的度数.【答案】(1)20;(2)5;(3)S△BCD=16;∠BCD=45°【分析】(1)由勾股定理可求解;(2)由等腰三角形的性质可得∠A=∠DBA,由余角的性质可得∠DBC=∠C,可得DB=DC=AD=12 AC=5;(3)由中点的性质和折叠的性质可得DE=EC=4,则当DE⊥BC时,S△BCD有最大值,由三角形面积公式和等腰直角三角形的性质可求解.【解答】解:(1)∵∠ABC=90°,AB=12,BC=16,∴2214425620AC AB BC=++=,故答案为:20;(2)∵DA=DB,∴∠A=∠DBA,∵∠ABC=90°∴∠A+∠C=90°,∠ABD+∠DBC=90°,∴∠DBC=∠C,∴DB=DC,∴DB=DC=AD=12AC=5,故答案为:5;(3)∵E为BC中点,BC=8,∵将∠C折叠,折痕为EF,∴DE=EC=4,当DE⊥BC时,S△BCD有最大值,S△BCD=12×BC×DE=12×8×4=16,此时∵DE⊥BC,DE=EC,∴∠BCD=45°.故答案为:S△BCD=16;∠BCD=45°.【点评】本题主要考查了勾股定理、直角三角形斜边中线问题以及三角形中的折叠问题;题目较为综合,其中熟练掌握定义定理是解题的关键.20.如图,已知边长为6的菱形ABCD中,∠ABC=60°,点E,F分别为AB,AD边上的动点,满足BE AF=,连接EF交AC于点G,CE、CF分别交BD于点M,N,给出下列结论:①△CEF是等边三角形;②∠DFC =∠EGC;③若BE=3,则BM=MN=DN;④222EF BE DF=+;⑤△ECF面积的最小值为273.其中所有正确结论的序号是______【答案】①②③⑤【分析】由“SAS”可证△BEC≌△AFC,可得CF=CE,∠BCE=∠ACF,可证△EFC是等边三角形,由三角形内角和定理可证∠DFC=∠EGC;由等边三角形的性质和菱形的性质可求MN=DN=BM=23勾股定理即可求解EF2=BE2+DF2不成立;由等边三角形的性质可得△ECF 3EC2,则当EC⊥AB时,△ECF的最小值为34.【解答】解:∵四边形ABCD是菱形,∴AB=BC=CD=AD=6,∴AB=BC=CD=AD=AC,∴△ABC,△ACD是等边三角形,∴∠ABC=∠BAC=∠ACB=∠DAC=60°,∵AC=BC,∠ABC=∠DAC,AF=BE,∴△BEC≌△AFC(SAS)∴CF=CE,∠BCE=∠ACF,∴∠ECF=∠BCA=60°,∴△EFC是等边三角形,故①正确;∵∠ECF=∠ACD=60°,∴∠ECG=∠FCD,∵∠FEC=∠ADC=60°,∴∠DFC=∠EGC,故②正确;若BE=3,菱形ABCD的边长为6,∴点E为AB中点,点F为AD中点,∵四边形ABCD是菱形,∴AC⊥BD,AO=CO,BO=DO,∠ABO=12∠ABC=30°,∴AO=12AB=3,BO3=33∴BD=3∵△ABC是等边三角形,BE=AE=3,∴CE⊥AB,且∠ABO=30°,∴BE3=3,BM=2EM,∴BM=3同理可得DN=23∴MN=BD−BM−DN=23∴BM=MN=DN,故③正确;∵△BEC ≌△AFC ,∴AF =BE ,同理△ACE ≌△DCF ,∴AE =DF ,∵∠BAD≠90°,∴EF 2=AE 2+AF 2不成立,∴EF 2=BE 2+DF 2不成立,故④错误,∵△ECF 是等边三角形,∴△ECF 面积的34EC 2, ∴当EC ⊥AB 时,△ECF 面积有最小值,此时,EC =33,△ECF 面积的最小值为2734,故⑤正确; 故答案为:①②③⑤.【点评】本题是四边形综合题,考查菱形的性质,全等三角形的判定和性质,等边三角形的判定和性质,勾股定理等知识,熟练掌握性质定理是解题的关键.21.如图,抛物线2y ax bx c =++与坐标轴交于点()()()0, 31,03,0A B E --、、,点P 为抛物线上动点,设点P 的横坐标为t .(1)若点C 与点A 关于抛物线的对称轴对称,求C 点的坐标及抛物线的解析式;(2)若点P 在第四象限,连接PA PE 、及AE ,当t 为何值时,PAE ∆的面积最大?最大面积是多少?(3)是否存在点P ,使PAE ∆为以AE 为直角边的直角三角形,若存在,直接写出点P 的坐标;若不存在,请说明理由.【答案】(1)223;y x x =--(2)当32t =时,S 有最大值278;(3)()()2,5,1,4-- 【分析】(1)根据抛物线上的对称点B 和E ,求出对称轴从而可求出C 点坐标.然后设出抛物线的交点式,再把点A 代入求出a 值即可求出抛物线的解析式;(2)过点P 作y 轴的平行线交AE 于点H ,分别根据抛物线和直线AE 的解析式表示出点P 和点H 的坐标,从而求出线段PH 的长,最后用含t 的式子表示∆APE 的面积,利用二次函数的性质求解;(3)根据两直线垂直时,它们的斜率之积为-1,可求得与直线AE 垂直的直线方程,最后联立方程组可求点P 的坐标.【解答】解:(1)抛物线2y ax bx c =++经过点()()1,03,0,B E -、 ∴抛物线的对称轴为1,x =点()0,3A -,点()2,3C -抛物线表达式为()()()23123,.y a x x a x x =-+=-- 33a ∴-=-,解得1,a =∴抛物线的表达式为223;y x x =--()2如图,过点P 作y 轴的平行线交AE 于点H由点,A E 的坐标得直线AE 的表达式为3,y x =-设点()2,23P t t t --,则(),3H t t - ()()22213333273233222228PAES PH OE t t t t t t ∆⎛⎫∴=•=--++=-+=--+ ⎪⎝⎭ 当32t =时,S 有最大值278()3直线AE 表达式中的k 值为1,则与之垂直的直线表达式中的k 值为1-① 当90PEA ︒∠=时,直线PE 的表达式为1,y x b =-+将点E 的坐标代人并解得13b =,直线PE 的表达式为3,y x =-+联立得2233y x x y x ⎧=--⎨=-+⎩ 解得2x =-或3(不合题意,舍去)故点P 的坐标为()2,5-② 当90PAE ︒∠=时,直线PA 的表达式为2,y x b =-+将点A 的坐标代人并解得23b =,直线PE 的表达式为3,y x =--联立得2233y x x y x ⎧=--⎨=--⎩解得1x =或0(不合题意,舍去)故点()1,4P -综上,点P 的坐标为()2,5-或(1,-4)【点评】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质;会利用待定系数法求二次函数解析式;会解一元二次方程;理解坐标与图形性质,记住两直线垂直时它们的斜率之积为-1;会利用分类讨论的思想解决数学问题.22.如图,在平面直角坐标系xOy 中,抛物线y =ax 2﹣2ax ﹣3a (a <0)与x 轴交于A 、B 两点(点A 在点B 的左侧),经过点A 的直线l :y =kx+b 与y 轴负半轴交于点C ,与抛物线的另一个交点为D ,且CD =4AC .(1)直接写出点A 的坐标,并求直线l 的函数表达式(其中k 、b 用含a 的式子表示);(2)点E是直线l上方的抛物线上的动点,若△ACE的面积的最大值为54,求a的值;(3)设P是抛物线的对称轴上的一点,点Q在抛物线上,当以点A、D、P、Q为顶点的四边形为矩形时,请直接写出点P的坐标.【答案】(1)(﹣1,0),y=ax+a;(2)﹣25;(3)(1,﹣2677)或(1,﹣4)【分析】(1)当y=ax2﹣2ax﹣3a=a(x+1)(x﹣3)=0,解得x1=-1,x2=3,可得A(﹣1,0),B(3,0),由于直线l:y=kx+b过A(﹣1,0)可得k=b,即得直线l:y=kx+k,联立抛物线与直线I的解析式为方程组,可得ax2﹣(2a+k)x﹣3a﹣k=0,由于CD=4AC,可得点D的横坐标为4,利用根与系数关系可得﹣3﹣ka=﹣1×4,求出k=a,即得直线l的函数表达式为y=ax+a;(2)如图1,过E作EF∥y轴交直线l于F,设E(x,ax2﹣2ax﹣3a),可得F(x,ax+a),从而得出EF =ax2﹣2ax﹣3a﹣ax﹣a=ax2﹣3ax﹣4a,由S△ACE=S△AFE﹣S△CEF,利用三角形面积公式,可得S△ACE的关系式,利用二次函数的性质即可求出结论.(3)分两种情况讨论,①如图2,若AD是矩形ADPQ的一条边,②如图3,若AD是矩形APDQ的对角线,据此分别解答即可.【解答】解:(1)当y=ax2﹣2ax﹣3a=a(x+1)(x﹣3),得A(﹣1,0),B(3,0),∵直线l:y=kx+b过A(﹣1,0),∴0=﹣k+b,即k=b,∴直线l:y=kx+k,∵抛物线与直线l交于点A,D,∴ax2﹣2ax﹣3a=kx+k,即ax2﹣(2a+k)x﹣3a﹣k=0,∵CD=4AC,∴点D的横坐标为4,∴﹣3﹣ka=﹣1×4,∴k=a,∴直线l的函数表达式为y=ax+a(2)解:如图1,过E作EF∥y轴交直线l于F,。
【专题突破】二次函数面积系列—最值、定值、等值
【专题突破】二次函数面积系列—最值、定值、等值展开全文本文介绍三类二次函数大题中常见的面积问题:最值问题、定值问题、等值问题,常用处理方法除了上一篇介绍的面积系列之铅垂法之外,还有等积变换也是常用的思路~01最值问题问题描述如图,抛物线y=-x²+2x+3与x轴交于A、B两点(点A在点B 左侧),与y轴交于点C,连接BC,抛物线在线段BC上方部分取一点P,连接PB、PC,使得△PBC面积最大,求面积最大值及此时P点坐标.【分析】除了上文介绍的铅垂法外,将再介绍一种思路:构造平行切线:以BC为底边,过点P向BC作垂线PH交BC于H点,求△PBC面积最大,在底边BC确定不变的前提下,PH最大即可.过点P作PQ∥BC,当PQ与抛物线相切时,PQ与BC距离最大,即PH最大.如何求解P点坐标?(1)求BC解析式:y=-x+3;(2)根据PQ∥BC,可设PQ解析式:y=-x+m;(3)根据相切,联立方程:-x²+2x+3=-x+m,根的判别式为0,可求m的值(4)根据P点坐标,即可求得△PBC面积的最大值.但其实即便算出了P点坐标,求△PBC面积也还是要费点事~不过却为另一类最值问题提供了一种思路:最值衍生如图,抛物线y=-x²+2x+3与x轴交于A、B两点(点A在点B 左侧),与y轴交于点C,连接BC,抛物线在线段BC上方部分取一点P,连接PB、PC.(1)垂线段最值:过点P作PH⊥CB交CB于H点,求PH最大值及此时P点坐标.思路1:所谓PH最大,即△PBC面积最大,可用铅垂法求得△PBC 面积最大值,再除以BC即可得PH最大值.思路2:过P点作PQ⊥x 轴交BC于Q点,则△PHQ∽△BOC,PH:BO=PQ:BC,(k为直线BC的斜率)(2)相关三角形最值:过点P作PH⊥BC交BC于H点,作PQ⊥x轴交BC于Q点,求△PHQ周长最大值及面积最大值.思路:把握住△PHQ∽△BOC,不管是求周长最大还是面积最大,都可转化为PQ最大值.2019聊城中考(删减)如图,在平面直角坐标系中,抛物线y=ax²+bx+c与x轴交于点A(-2,0),点B(4,0),与y轴交于点C(0,8),连接BC,又已知位于y轴右侧且垂直于x轴的动直线l,沿x轴正方向从O运动到B(不含O点和B点),且分别交抛物线、线段BC以及x轴于点P,D,E.(1)求抛物线的表达式;(2)作PF⊥BC,垂足为F,当直线l运动时,求Rt△PFD面积的最大值.【分析】(1)y=-x²+2x+8;(2)根据B、C两点坐标得直线BC解析式:y=-2x+8,设点P 坐标为(m,-m²+2m+8),则点D坐标为(m,-2m+8),故线段PD=-m²+2m+8-(-2m+8)=-m²+4m当m=2时,PD取到最大值4,2019高新区一模(删减)如图,在平面直角坐标系中,抛物线y=ax²-2ax-3a(a>0)与x 轴交于A、B两点(点A在点B左侧),经过点A的直线l与y轴交于点C,与抛物线的另一个交点为D,且CD=4AC.(1)直接写出点A的坐标,并用含a的式子表示直线l的函数表达式(其中k、b用含a的式子表示).(2)点E为直线l下方抛物线上一点,当△ADE的面积的最大值为25/4时,求抛物线的函数表达式;【分析】(1)点A(-1,0),点D(4,5a),可得直线l的解析式为:y=ax+a.(2)用铅垂法根据最大面积反求参数a.设E点坐标为(m,am²-2am-3a),作EF⊥x轴交AD于F点,则F点坐标为(m,am+a),EF=am+a-(am²-2am-3a)=-am²+3am+4a∴当m=3/2时,EF最大值为25a/4.△ADE面积最大值为1/2×5×25a/4=25/4,解得:a=2/5.∴抛物线解析式为:02定值问题问题描述如图,抛物线y=-x²+2x+3与x轴交于A、B两点(点A在点B 左侧),与y轴交于点C,连接BC,抛物线在线段BC上方部分取一点P,连接PB、PC,若△PBC面积为3,求点P坐标.思路1:铅垂法列方程解根据B、C两点坐标得直线BC解析式:y=-x+3,设点P坐标为(m,-m²+2m+3),过点P作PQ⊥x轴交BC于点Q,则点Q坐标为(m,-m+3),分类讨论去绝对值解方程即可得m的值.思路2:构造等积变形同底等高三角形面积相等.取BC作水平宽可知水平宽为3,根据△PBC面积为3,可知铅垂高为2,在y轴上取点Q使得CQ=2,过点Q作BC的平行线,交点即为满足条件的P点.当点Q坐标为(0,5)时,PQ解析式为:y=-x+5,联立方程:-x²+2x+3=-x+5,解之即可.当点Q坐标为(0,1)时,PQ解析式为:y=-x+1,联立方程:-x²+2x+3=-x+1,解之即可.2019临沂中考(删减)在平面直角坐标系中,直线y=x+2与x轴交于点A,与y轴交于点B,抛物线y=ax²+bx+c(a<0)经过点A、B.(1)求a、b满足的关系式及c的值.(2)如图,当a=-1时,在抛物线上是否存在点P,使△PAB的面积为1?若存在,请求出符合条件的所有点P的坐标;若不存在,请说明理由.【分析】(1)点A(-2,0),点B(0,2),代入解析式可得:c=2,4a-2b+2=0(2)考虑A、B水平距离为2,△PAB的面积为1,故对应的铅垂高为1.当a=-1时,可得b=-1,抛物线解析式为y=-x²-x+2.取点C(0,3)作AB的平行线,其解析式为:y=x+3,联立方程-x²-x+2=x+3,解得x=-1,故点P1坐标为(-1,2)取点D(0,1)作AB的平行线,其解析式为:y=x+1,联立方程-x²-x+2=x+1,解得:对应两个P点坐标分别为:03等值问题问题描述如图,抛物线y=-x²+2x+3与x轴交于A、B两点(点A在点B 左侧),与y轴交于点C,连接BC,抛物线上存在一点P使得△PBC 的面积等于△BOC的面积,求点P坐标.思路1:铅垂法计算出△BOC面积,将“等积问题”转化为“定积问题”,用铅垂法可解.思路2:构造等积变形过点O作BC的平行线,与抛物线交点即为所求P点,另外作点O关于点C的对称点M,过点M作BC平行线与抛物线的交点亦为所求P点.先求直线解析式,再联立方程即可求得P点坐标.2019凉山州中考如图,抛物线y=ax²+bx+c的图像过点A(-1,0)、B(3,0)、C (0,3).(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在一点P,使得△PAC的周长最小,若存在,请求出点P的坐标及△PAC 的周长;若不存在,请说明理由;(3)在(2)的条件下,在x轴上方的抛物线上是否存在点M(不与C点重合),使得△PAM面积与△PAC面积相等?若存在,请求出点M的坐标;若不存在,请说明理由.【分析】(1)抛物线解析式为:y=-x²+2x+3;(2)将军饮马问题,作点C关于对称轴的对称点C’(2,3),连接AC’,与对称轴交点即为所求P点,可得P点坐标为(1,2),△PAC的周长亦可求.(3)过点C作AP平行线与抛物线交点即为M点,联立方程得解;记AP与y轴交点为Q点,作点C关于Q点的对称点点D,过点D作AP的平行线.与抛物线在x轴上方部分的交点即为所求M点,联立方程得解.写在最后:最值问题用铅垂,定值等值构等积.。
二次函数动点问题(共9张PPT)
•〔3〕连接CP,在第一象限的抛物线上是否存在一点R,使△RPM与△RMB的 面积相等?假设存在,求出点R的坐标;假设不存在,说明理由.
3、二次函数中四边形问题:
①抛物线上的点能否构成平行四边形; ②抛物线上的点能否构成矩形、菱形或正方形。
解二次函数动点问题 解题方法及解题步骤
•解题方法:
•一般的,在二次函数动点问题中应用的解题方法: 待定系数法、数形结合、分类讨论、联系与转化、图像 的平移
变化等思想方法,并且要与平面图形的性质有机结 合,从而使得复 杂的、综合的二次函数动点问题化整为零,逐一击破。
①习抛题物 从线局〔上部3的到〕点整能体求否的构联〔成系平更2行清〕四晰中边,形列面;出相积应的S关〔系平式;方单位〕与t时间〔秒〕的函数关系式及面积S取 〔1〕求最正方大形A值BC时D的P边点长.的坐标.
〔2〕在BC上方的抛物线上是否存在一点K,使四边形ABKC的面积最大?假设存在,求出K点的坐标及最大面积;
x
图① 〔2〕设点P是直线l上的一个动点,当△PAC是以AC为斜边的Rt△时,求点P的坐标;
例1抛物线y=ax2+bx+c经过A〔-1,0〕、B〔3,0〕、C〔0,3〕三点,直线l是抛物线的对称轴.
②习题各个量、未知量的联系,对习题进展解剖,使
〔0,3〕三点,对称轴与抛物线相交于点P、与直线BC相交于点M.
二次函数动点问题
解二次函数动点问题 应用知识点
•二次函数动点问题所包含的知识点及考点:
1、二次函数中最短问题:
①是否存在一点到某两点的距离和为最短;
②是否存在一点使某三角形周长最短;
三角形有关的二次函数动点问题.doc
三角形有关的二次函数动点问题与三角形有关的二次函数动点问题,讲解分析1:如图,在平面直角坐标系中,点P从原点O出发,沿x 轴向右以毎秒1个单位长的速度运动t秒(t>0),抛物线y =x2+bx+c经过点O和点P,已知矩形ABCD的三个顶点为A (1,0),B (1,-5),D (4,0).(1)求c,b (用含t的代数式表示):(2)当4<t<5时,设抛物线分别与线段AB,CD交于点M,N.①在点P的运动过程中,你认为∠AMP的大小是否会变化?若变化,说明理由;若不变,求出∠AMP的值;②求△MPN的面积S与t的函数关系式,并求t为何值时,S=21/8;(3)在矩形ABCD的内部(不含边界),把横.纵坐标都是整数的点称为“好点”.若抛物线将这些“好点”分成数量相等的两部分,请直接写出t的取值范围.考点分析:二次函数综合题。
题干分析:(1)由抛物线y=x2+bx+c经过点O和点P,将点O 与P的坐标代入方程即可求得c,b;(2)①当x=1时,y=1-t,求得M的坐标,则可求得∠AMP的度数,②由S=S四边形AMNP-S△PAM=S△DPN+S梯形NDAM-S△PAM,即可求得关于t的二次函数,列方程即可求得t的值;(3)根据图形,即可直接求得答案.解题反思:此题考查了二次函数与点的关系,以及三角形面积的求解方法等知识.此题综合性很强,难度适中,解题的关键是注意数形结合与方程思想的应用.与三角形有关的二次函数动点问题,讲解分析2:如图,在直角坐标系中,梯形ABCD的底边AB在x轴上,底边CD的端点D在y轴上.直线CB的表达式为y=-4x/3+16/3,点A、D的坐标分别为(-4,0),(0,4).动点P自A点出发,在AB上匀速运行.动点Q自点B出发,在折线BCD上匀速运行,速度均为每秒1个单位.当其中一个动点到达终点时,它们同时停止运动.设点P运动t(秒)时,△OPQ的面积为s(不能构成△OPQ的动点除外).(1)求出点B、C的坐标;(2)求s随t变化的函数关系式;(3)当t为何值时s有最大值?并求出最大值.考点分析:二次函数综合题.题干分析:(1)把y=4代入y=-4x/3+16/3求得x的值,则可得点C的坐标,把y=0代入y=-4x/3+16/3求得x的值,即可得点B的坐标;(2)作CM⊥AB于M,则可求得CM与BM的值,求得∠ABC的正弦值,然后分别从0<t<4时,当4<t≤5时与当5<t≤6时去分析求解即可求得答案;(3)在(2)的情况下s的最大值,然后比较即可求得答案.解题反思:此题考查了点与函数的关系,三角形面积的求解方法以及利用二次函数的知识求函数的最大值的问题.此题综合性很强,难度较大,解题时要注意分类讨论思想,方程思想与数形结合思想的应用.近年来,最值问题频繁出现在中考数学压轴题中,而最值问题一直是数学的重难点,它要求学生具有很强的问题分析能力与综合运用数学知识、数学思想方法解决问题的能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数,是中考的一个重点,也是一个难点。
特别是压轴大题,代数几何综合题型,更是考试常见。
但是,很多同学觉得这类题型实在太难,望而生畏。
比如二次函数图像中,抛物线先上是否存点动点P,使得三角形面积最大,然后求出动点P此时的坐标。
这就是最经典最常见的二次函数图像面积最值问题。
今天,通过一道中考真题,用四种不同的方法来一起探讨这一类题型。
希望同学们认真体会,理解透彻,举一反三。
解法一,割补法。
就是把通过图形割和补的方式,把三角形的面积求法表达出来。
这个方法,最简单最常用。
解法一,方法1,设动点P的坐标,△PBC的面积等于△PBE面积加梯形的面积,再减去三角形BOC的面积。
把三角形PBC的面积表达出来,得到一个二次函数的顶点式。
即可求出面积最大值。
解法一,方法2。
连接PO,三角形PBC的面积等于三角形BOP面积加三角形COP的面积,再减去三角形BOC的面积。
和方法1一样,最后得到一个二次函数的顶点式,即可求出三角形面积的最大值。
解法二、铅垂定理法。
上面这个图片,就是铅垂定理的基本知识点。
铅垂定理的求法公式就是,三角形的面积等于水平宽度与铅垂高度乘积的一半。
任何一个三角形,都可以用这个方法来求面积。
在直角坐标系中,只要求出一个三角形水平宽度,和铅垂高度,那么这个三角形的面积就出来了。
这个题目,作PE⊥x轴交BC于F,则水平宽度就是OB的长度,铅垂高度就是PF的长度。
后面的就是直接套用铅垂定理的公式,经过化简,得出二次函数的顶点式,即可求出三角形面积最大值。
请看详细解题过程,铅垂定理真的很重要。
很多题型中,铅垂定理求面积更简单。
解法三,切线法。
切线法,就是过点P做BC的平行线,当这个平行线与二次函数的图像只有一个交点时,则BC边上的高就是最大值。
底一定,高最大,当然面积最大。
请看详细解题过程。
有问题,欢迎评论区留言。
解法四、三角函数法。
这个方法看起来好像很难,其实也很简单。
详细请看解题过程。
同学们也可以通过这个方法,来练习和巩固一下三角函数知识和相关题型。
总之,从以上四种解法的基本思路,都是过点P作辅助线,设P的坐标。
然后把相关的线段用含未知数的代数式表达出来,根据面积求法公式,得到一个二次函数的顶点式,即可得到面积的最大值,和P点的坐标。