信号与系统 差分方程齐次解重根例

信号与系统  差分方程齐次解重根例

设系统分别用下面的差分方程描述

因为x(n)以N 为周期,所以: x(n 中kN —m) =x(n -m) 第三套 1.设系统分别用下面的差分方程描述,x(n)与y(n)分别表示系统输入和输出, 判断系统是否是线性时不变的。 (1) y(n)=2x( n)+3 n y(n)= Z x(m) m 鱼 解: (1 ) 令:输入为x(n- n o ),输出为y '(n) =2x(n-山)+3,因为 y(n- n o ) =2x( n- n o )+3= y '(n) 故该系统是时不变的。又因为 T[ax 1 (n) + bx 2( n)] = 2ax 1 (n) + 2bx 2( n) + 3 T[ax i (n)] =2ax i (n)+3,T[bx 2(n)] =2bx 2(n) + 3 T[ax 1(n) + bx 2(n)] h aTIxJn)] +bT[x 2(n)] 故该系统是非线性系统。 n 令:输入为x(n- n o ),输出为y(n)=2: x(m-r t ),因为 m=0 n 』0 I y(n - n 。)= S x(m)北 y (n) m zzO 故系统是时变系统。又因为 n T[ax 1 (n) + bx 2(n)]=送(ax 1 (m) + bx 2(m)^ aT[x 1(n)] +bT[x 2(n)] m =0 2. 故系统是线性系统。 如果时域离散线性时不变系统的单位脉冲响应为 为周期的周期序列, 证明: h(n),输入x(n)是以N 试证明其输出 y(n)亦是以N 为周期的周期序列。 y( n)=h( n)*x( n)= □C y( n+kN)= Z m z=-oc h(m)x(n+kN - m) , k 为整数

差分方程的解法

1、常系数线性差分方程的解 方程( 8)其中为常数,称方程(8)为常系数线性方程。 又称方程(9) 为方程(8)对应的齐次方程。 如果(9)有形如的解,带入方程中可得: (10) 称方程(10)为方程(8)、(9)的特征方程。 显然,如果能求出(10)的根,则可以得到(9)的解。 基本结果如下: (1)若(10)有k个不同的实根,则(9)有通解: , (2)若(10)有m重根,则通解中有构成项: (3)若(10)有一对单复根,令:,,则(9)的通解中有构成项: (4)若有m 重复根:,,则(9)的通项中有成项:

综上所述,由于方程(10)恰有k 个根,从而构成方程 (9)的通解中必有k个独立的任意常数。通解可记为: 如果能得到方程(8)的一个特解:,则(8)必有通解: + (11) (1)的特解可通过待定系数法来确定。 例如:如果为n 的多项式,则当b不是特征根时,可设成形如形式的特解,其中为m次多项式;如果b是r重根时,可设特解:,将其代入(8)中确定出系数即可。 2、差分方程的z变换解法 对差分方程两边关于取Z变换,利用的Z 变换F(z)来表示出的Z变换,然后通过解代数方程求出F(z),并把F(z)在z=0的解析圆环域中展开成洛朗级数,其系数就是所要求的 例1设差分方程,求 解:解法1:特征方程为,有根: 故:为方程的解。 由条件得: 解法2:设F(z)=Z(),方程两边取变换可得:

由条件得 由F(z)在中解析,有 所以, 3、二阶线性差分方程组 设,,形成向量方程组 (12)则 (13)(13)即为(12)的解。 为了具体求出解(13),需要求出,这可以用高等代数的方法计算。常用的方法有: (1)如果A为正规矩阵,则A必可相似于对角矩阵,对角线上的元素就是A的特征值,相似变换矩阵由A的特征向量构成:。 (2)将A 分解成为列向量,则有 从而,

二阶线性齐次差分方程

z 二阶线性齐次差分方程012=++++n n n cx bx ax 的特征根法求解: 令形式解 ,代入方程得特征方程: , 根: n n x λ=02=++c b a λλ(1) βα,为实根, 对应有解: 和 ; n n x α=)1(n n x β=)2((2) αα,为重根, 对应有解: 和n n x α=) 1(1) 2(lim ?→=??=n n n n n x αα βαβαβ ,或者 n n n x α=)2((3) , ?βαλi e r i ±?=±=()()??λ?λn i n e e e x r n i r n n n n sin cos ln ln ln ±====±?, 对应有解: 和. ?n e x r n n cos ln )1(=?n e x r n n sin ln )2(=(4) 关于解的结构理论与线性微分方程类似,由此得一般解: )2(2)1(1n n n x c x c x +=1. (98) 求差分方程的一般解。 (n y y n n 51021=++()72 51255?+?=n C y n n ) 解:齐次方程的通解为,设非齐次方程的特解为:()n n C y 5?=b an y n +=~,代入求。 b a ,2. 斐波拉契数( ???==+=++11012x x x x x n n n ??? ???????????????????????+=++1125125151n n n x ) 3. 银行实行贷款购房业务,A 贷元,月利r ,n 个月本利还清,在这个月内按复利计息,每月连本带息还n x 元。 (1) 求的关系; (2) 记个月的平均利息(r n A f x ,,=)n n A x n v ?=,求r v n ∞→lim . 设第i 个月欠元,则 i A (),101???=?+=?A A x r A A i i 齐次方程的通解为 ();1n n r C A +=非齐次方程的特解为r x A n =~; 非齐次方程的通解为:();1r x r C A n n ++= 代入初始条件得非齐次方程的特解为()();111r r x r A A n n n ?+?+= 0=n A 得x 值。。。。。

离散系统差分方程计算

1.设离散控制系统差分方程为x采样周期T。试求:(1) 系统的脉冲传递函数。(2)系统的频率特性表达式。 解:差分方程两边取Z变换,得 脉冲传递函数 频率特性 2.假设离散系统差分方程为。其中; ,,,。试求:(1)分析系统的稳定性。(2),,。 解:(1)对差分方程两边取Z变换,得 特征方程: 解得:; 由于,即系统稳定。 (2)n=0时, n=1时, n=2时, 3.某离散控制系统的差分方程为,其中: ,,,,,,。试求:(1),。(2)分析稳定性。 解:(1)对差分方程两边Z变换,得 特征方程: 解得:; 由于,所以系统稳定。

(2)n=0时, n=1时。 4.离散控制系统的差分方程为:,其中 ,,时,时。试求:(1),,。(2)脉冲传递函数。 解:(1)差分方程两边取Z变换,得 特征方程: 解得:; 由于,所以系统稳定。 (2)n=0时, n=1时, n=2时, 5.已知:离散控制系统的差分方程为。试求:脉冲传 递函数。系统频率特性 解:对差分方程Z变换,得 频率特性 6.某离散系统的差分方程为=,其中 ,。试求(1)脉冲传递函数,并分析稳定。(2) ,,。 解:对差分方程两边Z变换,得 ()

特征方程: 解得:; 由于,所以系统稳定。 (2)n=0时, n=1时, n=2时,y 7.已知离散系统的差分方程为,试求:(1)脉冲传递 函数。(2)分析系统稳定性 解:(1)对差分方程两边Z变换,得 (2)特征方程:=0 解得:; 由于,所以系统临界稳定。 8.离散系统差分方程为,其中 ,;。试求:,,。()分析稳定性。 解:(1)n=0时, n=1时, n=2时, (2)对差分方程两边Z变换,得 特征方程: 解得:; 由于,所以系统稳定。 9.某离散系统差分方程为,其中:, 时,;时,。试求:,,。(2)分析

差分方程的解法分析及MATLAB实现(程序)

差分方程的解法分析及MATLAB 实现(程序) 摘自:张登奇,彭仕玉.差分方程的解法分析及其MATLAB 实现[J]. 湖南理工学院学报.2014(03) 引言 线性常系数差分方程是描述线性时不变离散时间系统的数学模型,求解差分方程是分析离散时间系统的重要内容.在《信号与系统》课程中介绍的求解方法主要有迭代法、时域经典法、双零法和变换域 法[1]. 1 迭代法 例1 已知离散系统的差分方程为)1(3 1)()2(81)1(43)(-+=-+--n x n x n y n y n y ,激励信号为)()4 3()(n u n x n =,初始状态为21)2(4)1(=-=-y y ,.求系统响应. 根据激励信号和初始状态,手工依次迭代可算出24 59)1(,25)0(==y y . 利用MATLAB 中的filter 函数实现迭代过程的m 程序如下: clc;clear;format compact; a=[1,-3/4,1/8],b=[1,1/3,0], %输入差分方程系数向量,不足补0对齐 n=0:10;xn=(3/4).^n, %输入激励信号 zx=[0,0],zy=[4,12], %输入初始状态 zi=filtic(b,a,zy,zx),%计算等效初始条件 [yn,zf]=filter(b,a,xn,zi),%迭代计算输出和后段等效初始条件 2 时域经典法 用时域经典法求解差分方程:先求齐次解;再将激励信号代入方程右端化简得自由项,根据自由项形 式求特解;然后根据边界条件求完全解[3].用时域经典法求解例1的基本步骤如下. (1)求齐次解.特征方程为081432=+-αα,可算出4 1 , 2121==αα.高阶特征根可用MATLAB 的roots 函数计算.齐次解为. 0 , )4 1()21()(21≥+=n C C n y n n h (2)求方程的特解.将)()4 3()(n u n x n =代入差分方程右端得自由项为 ?????≥?==-?+-1,)4 3(9130 ,1)1()43(31)()43(1n n n u n u n n n 当1≥n 时,特解可设为n p D n y )4 3()(=,代入差分方程求得213=D . (3)利用边界条件求完全解.当n =0时迭代求出25)0(=y ,当n ≥1时,完全解的形式为 ,)4 3(213 )41()21()(21n n n C C n y ?++=选择求完全解系数的边界条件可参考文[4]选)1(),0(-y y .根据边界条件求得35,31721=-=C C .注意完全解的表达式只适于特解成立的n 取值范围,其他点要用 )(n δ及其延迟表示,如果其值符合表达式则可合并处理.差分方程的完全解为

时间序列分析讲义 第01章 差分方程

第一章 差分方程 差分方程是连续时间情形下微分方程的特例。差分方程及其求解是时间序列方法的基础,也是分析时间序列动态属性的基本方法。经济时间序列或者金融时间序列方法主要处理具有随机项的差分方程的求解问题,因此,确定性差分方程理论是我们首先需要了解的重要内容。 §1.1 一阶差分方程 假设利用变量t y 表示随着时间变量t 变化的某种事件的属性或者结构,则t y 便是在时间t 可以观测到的数据。假设t y 受到前期取值1-t y 和其他外生变量t w 的影响,并满足下述方程: t t t w y y ++=-110φφ (1.1) 在上述方程当中,由于t y 仅线性地依赖前一个时间间隔自身的取值1-t y ,因此称具有这种结构的方程为一阶线性差分方程。如果变量t w 是确定性变量,则此方程是确定性差分方程;如果变量t w 是随机变量,则此方程是随机差分方程。在下面的分析中,我们假设t w 是确定性变量。 例1.1 货币需求函数 假设实际货币余额、实际收入、银行储蓄利率和商业票据利率的对数变量分别表示为t m 、t I 、bt r 和ct r ,则可以估计出美国货币需求函数为: ct bt t t t r r I m m 019.0045.019.072.027.01--++=- 上述方程便是关于t m 的一阶线性差分方程。可以通过此方程的求解和结构分析,判断其他外生变量变化对货币需求的动态影响。 1.1.1 差分方程求解:递归替代法 差分方程求解就是将方程变量表示为外生变量及其初值的函数形式,可以通过以前的数据计算出方程变量的当前值。 由于方程结构对于每一个时间点都是成立的,因此可以将(1.1)表示为多个方程: 0=t :01100w y y ++=-φφ 1=t :10101w y y ++=φφ t t =:t t t w y y ++=-110φφ 依次进行叠代可以得到: 1011211010110101)()1()(w w y w w y y ++++=++++=--φφφφφφφφ 0111122113121102)1(w w w y y φφφφφφφ++++++=- i t i i t t i i t w y y ∑∑=-=++=0 111 1 0φφφφ (1.2) 上述表达式(1.2)便是差分方程(1.1)的解,可以通过代入方程进行验证。上述通过叠代将 t y 表示为前期变量和初始值的形式,从中可以看出t y 对这些变量取值的依赖性和动态变化 过程。 1.1. 2. 差分方程的动态分析:动态乘子(dynamic multiplier) 在差分方程的解当中,可以分析外生变量,例如0w 的变化对t 阶段以后的t y 的影响。假设初始值1-y 和t w w ,,1 不受到影响,则有:

用matlab实现线性常系数差分方程的求解

数字信号处理课程设计 题目:试实现线性常系数差分方程的求解 学院: 专业: 班级: 学号: 组员: 指导教师:

题目:用Matlab 实现线性常系数差分方程求解 一. 设计要求 1. 掌握线性常系数差分方程的求解 2. 熟练掌握Matlab 基本操作和各类函数调用 3. 结合Matlab 实现线性常系数差分方程的求解 二.设计原理 1.差分与差分方程 与连续时间信号的微分及积分运算相对应,离散时间信号有差分及序列求和运算。设有序列f(k),则称…,f(k+2),f(k+1),…,f(k -1),f(k -2),…为f(k)的移位序列。序列的差分可以分为前向差分和后向差分。一阶前向差分定义为 ()(1)()f k f k f k ?=+- (3.1—1) 一阶后向差分定义为 ()()(1)f k f k f k ?=-- (3.1—2) 式中Δ和Δ称为差分算子。由式(3.1—1)和式(3.1—2)可见,前向差分与后向差分的关系为 ()(1)f k f k ?=?- (3.1—3) 二者仅移位不同,没有原则上的差别,因而它们的性质也相同。此处主要采用后向差分,并简称其为差分。 由查分的定义,若有序列1()f k 、2()f k 和常数1a ,2a 则 1122112211221112221122[()()][()()][(1)(1)][()(1)][()(1)]()() a f k a f k a f k a f k a f k a f k a f k f k a f k f k a f k a f k ?+=+--+-=--+--=?+? (3.1—4) 这表明差分运算具有线性性质。 二阶差分可定义为 2()[()][()(1)]()(1) ()2(1)(2) f k f k f k f k f k f k f k f k f k ?=??=?--=?-?-=--+- (3.1—5) 类似的,可定义三阶、四阶、…、n 阶差分。一般地,n 阶差分

差分方程求解

例题:已知差分方程51 (2)(1)()(+1)+0.5()66 x k x k x k r k r k +-++=,其中r (k )=1,k ≥0,x (0)=1, x (1)=2。 (1) 试由迭代法求其全解的前5项; (2) 分别由古典法求其零输入解、零状态解,以及全解; (3) 用Z 变换法求解差分方程。 解:注:解题过程中出现的下标“zi ”和“zs ”分别表示零输入条件和零状态条件。 1. 迭代法 题目中给出的条件仅仅是零输入初始条件,进行迭代求解时的初始条件应该是全解初始条件。 (1) 零输入初始条件 本题已给出零输入时的两个初始条件x zi (0)=1,x zi (1)=2。 (2) 零状态初始条件 取k =-2时,则51 (0)(1)(2)(1)0.5(2)66x x x r r --+-=-+-,得x zs (0)=0; 取k =-1 时,则51 (1)(0)(1)(0)0.5(1)66 x x x r r -+-=+-,求得x zs (1)=1。 (3) 全解初始条件 x (0)= x zi (0)+ x zs (0)=1; x (1)= x zi (1)+ x zs (1)=3。 (4) 根据求出的全解x (0)和x (1),利用迭代法求解 取k =0时,则51(2)(1)(0)(1)0.5(0)66x x x r r -+=+,求得23(2)6x =; 取k =1时,则51(3)(2)(1)(2)0.5(1)66x x x r r -+=+,求得151 (3)36x =; 取k =2时,则51(4)(3)(2)(3)0.5(2)66x x x r r -+=+,求得941 (4)216 x =。 2. 古典法 (1) 零输入解 令输入为零,则得齐次方程 51 (2)(1)()066 x k x k x k +-++= (a) 根据差分方程定义的算子()()n d x k x k n =+,可得它的特征方程251 066 d d -+= 求得特征根为: 112d = ,21 3 d =

什么叫差分方程

什么叫差分方程?给我举几个例子呗 §1 基本理论 1. 差分 2. 任意数列{xn },定义差分算子Δ如下: Δxn=xn+1-xn 对新数列再应用差分算子,有 Δ2xn=Δ(Δkxn). 性质 性质1 Δk(xn+yn)=Δkxn+Δkyn 性质2 Δk(cxn)=cΔkxn 性质3 Δkxn=∑(-1)jCjkXn+k-j 性质4 数列的通项为n的无限次可导函数,对任意k>=1,存在η,有Δkxn=f(k)(η) 差分方程 定义8。1 方程关于数列的k阶差分方程: xn-a1xn-1-a2xn-2-……aBxn-k=b(n=k,k+1,……) 其中a1,a2,------ak 为常数,ak≠0. 若b=0,则该方程是齐次方程 关于λ 的代数方程 λk-a1λk-1-------ak-1λ-ak=0 为对应的特征方程,根为特征值。 1.实验内容与练习 2.1 插分 例1 Xn={n3},求各阶差分数列: xn △xn △2xn △3xn △4xn 1 7 1 2 6 0 8 19 18 6 0 27 37 24 6 0 64 61 30 6 125 91 36 216 127 343 可见,{n3},三阶差分数列为常数数列,四阶为0。 练习1 对{1},{n},{n2},{n4},{n5}, 分别求各阶差分数列。 练习2 {C0n-1}{C1n-1}{C2n-1},{C4n-1},分别求各阶差分数列. {Xn}的通项为n的三次函数, Xn=a3n3+a2n2+a1n+a0 证明它为常数数列。

证明由Xn=a3n3+a2n2+a1n+a0可直接计算。 定理8。1 若数列的通项是关于n 的k次多项式,则k 阶差分数列为非零数列,k+1阶差分数列为0。 练习3 证明定理8。1 。 定理8。2 若{Xn}的k 阶插分为非零常数列,则{Xn}是n的k次多项式, 练习4 根据插分的性质证明定理8。2 例2。求∑i3 例3 例4 解设Sn=∑i3 表 Sn △Sn △2Sn △3Sn △4Sn △5Sn 1 8 19 18 6 0 9 27 37 24 6 0 36 64 61 30 6 0 100 125 91 36 6 0 225 216 127 42 441 343 169 784 512 1296 设Sn=a4n4+a3n3+a2n2+a1n+a0, s1=1,s2=9,s3=36,s4=100,s5=225,得 a0=0, a1=0, a2=1/4, a3=1/2, a4=1/4. 所以, Sn=(1/4)n4+(1/2)n3+(1/4)n2. 练习{Xn}的通项Xn为n的k次多项式,证明∑xi为n的k+1次多项式;求 ∑i4. 由练习2 {Crn-1}可得。 2.2差分方程 对于一个差分方程,如果能找出这样的数列通项,将它带入差分方程后,该方程成为恒等式,这个通项叫做差分方程的解。 例3 对差分方程xn-5xn-1+6xn-2=0,可直接验证xn=c13n+c22n是该方程的解。 例3中的解中含有任意常数,且任意常数的个数与差分方程的阶数相同。这样的解叫做差分方程的通解。 若k阶差分方程给定了数列前k项的取值,则可以确定通解的任意常数,得到差分 的特解。 例4对差分方程xn-5xn-1+6xn-2=0,若已知x1=1,x2=5,则可以得到该差分方程的特解为 xn=3n-2n.

一阶常系数线性差分方程

一阶常系数线性差分方程 一阶常系数线性差分方程的一般形式为 y t+1+ay t=f(t) (11-2-1) 和 y t+1+ay t=0,(11-2-2) 其中f(t)为t的已知函数,a≠0为常数. 我们称方程(11-2-1)为一阶常系数非齐次线性差分方程,(11-2-2)称为其对应的齐次差分方程. 一、齐次差分方程的通解 将方程(11-2-2)改写为: y t+1=-ay t, t=0,1,2,…. 假定在初始时刻(即t=0)时,函数y t取任意值A,那么由上式逐次迭代,算得 y1=-ay0=-aA, y2=-ay1=(-a)2A, ……………… 由数学归纳法易知,方程(11-2-2)的通解为 y t =A(-a)t, t=0,1,2,…. 如果给定初始条件t=0时y t=y0,则A=y0,此时特解为: y t =y0(-a)t.(11-2-3) 二、非齐次方程的通解与特解 求非齐次方程(11-2-1)的通解的常用方法有迭代法、常数变易法,求非齐次方程(11-2-1)的特解的常用方法为待定系数法. 1.迭代法求通解 将方程(11-2-1)改写为 y t+1=(-a)y t+f(t), t=0,1,2,…. 逐步迭代,则有 y1=(-a)y0+f(0), y2=(-a)2y0+(-a)f(0)+f(1), y3=(-a)3y0+(-a)2f(0)+(-a)f(1)+f(2), ……………… 由数学归纳法,可得 y t=(-a)t y0+(-a)t-1f(0)+(-a)t-2f(1)+…+f(t-1)=(-a)t y0+ t y, (t=0,1,2,…),(11-2-4) 其中 t y=(-a)t-1f(0)+(-a)t-2f(1)+…+f(t-1)=∑- =- 1 ) ( t i i a·f(t-i-1) (11-2-5) 为方程(11-2-1)的特解.而y A(t)=(-a)t y0为(11-2-1)对应的齐次方程(11-2-2)的通解.这里y0=A 为任意常数.因此,(11-2-4)式为非齐次方程(11-2-1)的通解. 与一阶非齐次线性微分方程相类似,方程(11-2-1)的通解(11-24-)也可以由齐次方程(11-2-2)的通解(11-2-3)经由常数变易法求得,这里不予赘述.

给定下述系统的差分方程

第四套 1. 给定下述系统的差分方程,试判定系统是否是因果、稳定系统,并说明理 由。 (1) 1 1()()N k y n x n k N -== -∑ (2) ()()(1)y n x n x n =++ (3) () ()x n y n e = 解: (1)只要N ≥1,该系统就是因果系统,因为输出只与n 时刻的和n 时刻以前的输入有关。如果|()|x n M ≤,则|()|y n M ≤,因此系统是稳定系统。 (2)该系统是非因果系统,因为n 时刻的输出还和n 时刻以后((n+1)时间)的输入有关。如果|()|x n M ≤,则|()||()||(1)|2y n x n x n M ≤++≤,因此系统是稳定的。 (3)系统是因果系统,因为系统的输出不取决于x(n)的未来值。如果 |()|x n M ≤,则() |()| |()|||x n x n M y n e e e =≤≤,因此系统是稳定的。 2. 工程实际中,经常采用数字滤波器对模拟信号进行滤波处理,处理系统框 图如图所示。图中T 为采样周期,假设T 满足采样定理(无频率混叠失真)。把从()a x t 到y(t)的整个系统等效成一个模拟滤波器。 (a)如果数字滤波器h(n)的截止频率为8 c w ra d π = , 1T =10 kHz ,求整个等 效系统的截止频率c Ω。 (b)对于1T =20 kHz ,重复(a)。 解: (a) 对采样数字滤波器,w T =Ω,所以

8 c c w T π =Ω= 8c c w T T π Ω= = 最后一级理想低通滤波器的截止频率为T π rad/s ,因此整个系统截止频 率由8c T π Ω= rad/s 确定。 110000625 21616 c c f T πΩ= = == Hz (b) 当1/T=20 Hz 时,与(a)同样道理得: 1200001250 1616 c f T = == Hz 3. 求以下序列x(n)的频谱()jw X e (1)1()()|1jw jw a jw z e X e X z e e --=== - (2) ()an e u n - 解: (1)0 0()[()][()]n X z Z x n Z n n z δ-==-= ()()|jw jn w jw z e X e X z e -=== (2)1 1()[()]1an a X z Z e u n e z ---==- 1()()|1jw jw a jw z e X e X z e e --=== - 4. 设h(n)为一个LSI 系统的单位采样响应,h(n)= 21 ()(2)3 n u n +-,求其频 率响应。 解:其频率响应为: 2 2 1 ()()() 3n jw jnw jnw n H e h n e e +∞ ∞ --=-∞ = = ∑ ∑ 改变这个和的下限以使其开始于n=0,得: 4 (2)4 20 1 1 1 ()() ()() 33 3n n jw j n w jw jw n n H e e e e +∞ ∞ -+--====∑∑ 利用几何级数,得

差分方程的解法

第三节 差分方程常用解法与性质分析 1、常系数线性差分方程的解 方程)(...110n b x a x a x a n k k n k n =+++-++ ( 8) 其中k a a a ,...,,10为常数,称方程(8)为常系数线性方程。 又称方程0...110=+++-++n k k n k n x a x a x a (9) 为方程(8)对应的齐次方程。 如果(9)有形如 n n x λ=的解,带入方程中可得: 0 ...1110=++++--k k k k a a a a λλλ (10) 称方程(10)为方程(8)、(9)的特征方程。 显然,如果能求出(10)的根,则可以得到(9)的解。 基本结果如下: (1) 若(10)有k 个不同的实根,则(9)有通解: n k k n n n c c c x λλλ+++=...2211, (2) 若(10)有m 重根λ,则通解中有构成项: n m m n c n c c λ)...(121----+++

(3)若(10)有一对单复根 βαλi ±=,令:?ρλi e ±=, αβ?βαρarctan ,22=+=,则(9)的通解中有构成项: n c n c n n ?ρ?ρsin cos 21--+ (4) 若有m 重复根:βαλi ±=,φρλi e ±=,则(9)的通项中有成 项: n n c n c c n n c n c c n m m m m n m m ?ρ?ρsin )...(cos )...(1221121---++---+++++++ 综上所述,由于方程(10)恰有k 个根,从而构成方程 (9)的通解中必有k 个独立的任意常数。通解可记为:-n x 如果能得到方程(8)的一个特解:*n x ,则(8)必有通解: =n x -n x +* n x (11) (1) 的特解可通过待定系数法来确定。 例如:如果)(),()(n p n p b n b m m n =为n 的多项式,则当b 不是特征 根时,可设成形如)(n q b m n 形式的特解,其中)(n q m 为m 次多项式;如 果b 是r 重根时,可设特解:r n n b )(n q m ,将其代入(8)中确定出系 数即可。

线性差分方程

线性差分方程 在数学大家庭中,线性差分方程是重要的一员。如离散状态下的数学建模一般会产生差分方程,将微分方程离散化仍然会产生差分方程。线性差分方程与线性方程组及线性常微分方程有许多相似的性质,下面让我们讨论其解性质。 考虑如下一般的线性差分方程 (1) ()()()110k m k k m k m m a m u a m u a m u b +-+-+++= 0,1,2,m = 称为k 阶线性差分方程,其中(),j m a m b 为给定的关于m 的函数,并且()()00k a m a m ≠。当0m b =时方程 (2) ()()()1100k m k k m k m a m u a m u a m u +-+-+++= 0,1,2,m = 称为齐次差分方程。如果整变量j 的函数j u 使(1)和(2)成为等式,则称j u 为相应方程的解。容易看出,如果021,,k u u u - (称为初始值)已给定,则由(1)或(2)可以逐次地定出(),1,j u j k k =+ 。 与线性方程组及线性常微分方程类似,对上述差分方程有 命题1 如果() () () 12,,,k m m m u u u 是齐次差分方程(2)的解,则它们的任意组合 (3) () () () 1212k m m m k m v c u c u c u =+++ 也是(2)的解,其中()1,2,,j c j k = 为常数。 命题2 设() () () 12,,,k m m m u u u 是k 阶齐次差分方程(2)的解,且行列式 (4) () ()() ()()()()()()12111122 22 120k k k k k k u u u u u u u u u ≠ 则齐次差分方程(2)的任何解均可表成(3)的形式,此时称(3)为(2)的通解。 如果() () () 12,,,k m m m u u u 满足条件(4),则称() () () 12,,,k m m m u u u 线性无关,故命题2可叙述

一阶常系数线性差分方程

第二节一阶常系数线性差分方程 一阶常系数线性差分方程的一般形式为 y t+i+ay t f(t) (11 2 1) 和 y t+i+ay t 0, (11 2 2) 其中f(t)为t的已知函数,a丰0为常数. 我们称方程(11 2 1)为一阶常系数非齐次线性差分方程,(11 2 2)称为其对应的齐次差分方程. 一、齐次差分方程的通解 将方程(11 2 2)改写为: y t+1 ay t, t 0,1,2,…. 假定在初始时刻(即t 0)时,函数y t取任意值A,那么由上式逐次迭代,算得 y1 ay o aA, y2 ay1 ( a)2A, 由数学归纳法易知,方程(11 2 2)的通解为 y t A( a)t, t 0,1,2,…. 如果给定初始条件t 0时y t y o,则A y o,此时特解为: y t y0( a)t. (112 3) 二、非齐次方程的通解与特解 求非齐次方程(11 2 1)的通解的常用方法有迭代法、常数变易法,求非齐次方程(11 2 1) 的特解的常用方法为待定系数法. 1.迭代法求通解 将方程(11 2 1)改写为 y t+1 ( a)y t+f(t), t 0,1,2,…. 逐步迭代,则有 y1 ( a)y o+f(0), y2 ( a)2y0+( a)f(0)+f(1), y3 ( a)3y0+( a)2f(0)+( a)f(1)+f(2), 由数学归纳法,可得 y t ( a)t y0+( a)t1f(0)+( a)t 2f(1)+ …+f(t 1) ( a)t y0+ y t, (t 0,1,2,…),(11 2 4) 其中 t 1 y t( a)t 1f(0)+( a)t2f(1)+...+f(t 1) ( a)i? f(t i 1) (11 2 5) i 0 为方程(11 2 1)的特解.而y A(t) ( a)t y0为(11 2 1)对应的齐次方程(11 2 2)的通解.这里y A 为任意常数.因此,(11 2 4)式为非齐次方程(11 2 1)的通解. 与一阶非齐次线性微分方程相类似,方程(112 1)的通解(11 24 )也可以由齐次方程(11 2 2)的通解(11 2 3)经由常数变易法求得,这里不予赘述.

差分方程的解法

1、常系数线性差分方程的解 方程 a 0x n k a 1x n k 1 ... a k x n b(n) 其中 a 0 , a 1,..., a k 为常数,称方程( 8)为常系数线性方程。 又称方程 a 0x n k a 1x n k 1 ... a k x n 为方程( 8)对应的齐次方程。 第三节 差分方程常用解法与性质分析 9) n 如果( 9)有形如 x n 的解, 带入方程中可得: k k 1 a 0 a 1 ... a k 1 a k 0 10) 称方程( 10)为方程( 8)、 9)的特征方程。

n n n c 1 1 c 2 2 ... c k k , 若(10) 有 m 重根 ,则通解中有构成项: (c 1 m 1 n c 2 n ... c m n ) 显然, 如果能求出( 10)的根,则可以得到( 9)的解。 基本结果如下: 1) 若(10) 有 k 个不同的实根,则( 9)有通解:

(3)若(10)有一对单复根 综上所述,由于方程(10)恰有k 个根,从而构成方程 (9)的通解中必有k 个独立的任意常数。通解可记为:X n 如果能得到方程(8)的一个特解:X n ,则(8)必有通解: * X n X n + 焉 (11) (1)的特解可通过待定系数法来确定。 例如:如果b (n )bk m (n ), pMn )为门的多项式,则当b 不是特征 根 时,可设成形如 bq m (n ) 形式的特解,其中 q m (n ) 为m 次多项式;如 果b 是 r 重根时,可设特解:b n n r q m (n ) ,将其代入(8)中确定出系 数即可。 arcta n — ,则(9) 的通解中有构成项: C l n . cos n C 2 sin (4)若有 m 重复根: i e ,则 (9)的通项中有成 项: cos n (C m 1 C m 2 n m 1 、 n ? c 2m n ) sin n

设系统分别用下面的差分方程描述

第三套 1. 设系统分别用下面的差分方程描述,x(n)与y(n)分别表示系统输入和输出,判断系统是否是线性时不变的。 (1) y(n)=2x(n)+3 (2) y(n)= 0()n m x m =∑ 解: (1) 令:输入为x(n-0n ),输出为'0()2()3y n x n n =-+,因为 '00()2()3()y n n x n n y n -=-+= 故该系统是时不变的。又因为 1212[()()]2()2()3T ax n bx n ax n bx n +=++ 11[()]2()3T ax n ax n =+,22[()]2()3T bx n bx n =+ 1212[()()][()][()]T ax n bx n aT x n bT x n +≠+ 故该系统是非线性系统。 (2) 令:输入为x(n-0n ),输出为' ()()n m y n x m n ==-∑,因为 0' 00 ()()()n n m y n n x m y n -=-= ≠∑ 故系统是时变系统。又因为 1212120 [()()](()())[()][()]n m T ax n bx n ax m bx m aT x n bT x n =+=+=+∑ 故系统是线性系统。 2. 如果时域离散线性时不变系统的单位脉冲响应为h(n),输入x(n)是以N 为周期的周期序列,试证明其输出y(n)亦是以N 为周期的周期序列。 证明: y(n)=h(n)*x(n)= ()()m h m x n m ∞ =-∞ -∑ y(n+kN)= ()()m h m x n kN m ∞ =-∞ +-∑ , k 为整数 因为x(n)以N 为周期,所以: ()()x n kN m x n m +-=-

差分方程的解法

差分方程常用解法 1、 常系数线性差分方程的解 方程)(...110n b x a x a x a n k k n k n =+++-++ (1) 其中k a a a ,...,,10为常数,称方程(1)为常系数线性方程。 又称方程0...110=+++-++n k k n k n x a x a x a (2) 为方程(1)对应的齐次方程。 如果(2)有形如n n x λ=的解,代入方程中可得: 0...1110=++++--k k k k a a a a λλλ (3) 称方程(3)为方程(1)、(2)的特征方程。 显然,如果能求出方程(3)的根,则可以得到方程(2)的解。 基本结果如下: (1) 若(3)有k 个不同的实根,则(2)有通解: n k k n n n c c c x λλλ+++=...2211, (2) 若(3)有m 重根λ(即m 个根均为λ),则通解中有构成项: n m m n c n c c λ)...(121----+++

(3)若(3)有一对单复根 βαλi ±=,令:?ρλi e ±=, αβ ?βαρarctan ,22=+=,则(2)的通解中有构成项: n c n c n n ?ρ?ρsin cos 21- -+ (4) 若有m 重复根:βαλi ±=,φρλi e ±=,则(2)的通项中有构 成项: n n c n c c n n c n c c n m m m m n m m ?ρ?ρsin )...(cos )...(1221121---++---+++++++ 综上所述,由于方程(3)恰有k 个根,从而构成方程(2)的通解中必有k 个独立的任意常数。通解可记为:-n x 如果能得到方程(1)的一个特解:*n x ,则(1)必有通解: =n x -n x +* n x (4) 方程(4) 的特解可通过待定系数法来确定。 例如:如果)(),()(n p n p b n b m m n =为n 的m 次多项式,则当b 不是特征根时,可设成形如)(n q b m n 形式的特解,其中)(n q m 为n 的m 次多 项式;如果b 是r 重特征根时,可设特解:r n n b )(n q m ,将其代入(1) 中确定出系数即可。

离散系统的差分方程

实验报告 实验课程:数字信号处理 实验内容:实验2离散系统的差分方程、冲激 响应和卷积分析 院(系):计算机学院 专业:通信工程 班级:111班 2013年6 月3 日

一、实验目的:加深对离散系统的差分方程、冲激响应和卷积分析方法的理解。 二、实验原理: 离散系统 其输入、输出关系可用以下差分方程描述: ∑=∑=-= -M k k N k k k n x p k n y d 00][][ 输入信号分解为冲激信号,∑-= ∞-∞=m m n m x n x ][][][δ。 记系统单位冲激响应 ][][n h n →δ, 则系统响应为如下的卷积计算式: ∑∞-∞=-= *=m m n h m x n h n x n y ][][][][][ 当N k d k ,...2,1,0==时,h[n]是有限长度的(n :[0,M]),称系统为 FIR 系统;反之,称系统为IIR 系统。 在MATLAB 中,可以用函数y=Filter(p,d,x) 求解差分方程,也可以用函数 y=Conv(x,h)计算卷积。 三、实验内容及步骤: 1、实验内容: 分别在x (n )=δ(n)和x (n )=cos(2π*0.47*n)的输入下,编制程序分别用上述两种 方法求解下列两个系统的响应,并得出系统零极点分布图,绘出其图形。 ]1[][]2[125.0]1[75.0][--=-+-+n x n x n y n y n y ⑴ ]}4[]3[]2[]1[{25.0][-+-+-+-=n x n x n x n x n y ⑵ 2、实验代码及结果 ]1[][]2[125.0]1[75.0][--=-+-+n x n x n y n y n y ⑴

(整理)差分方程

第三章 差分方程及其应用 在经济与管理及其它实际问题中,许多数据都是以等间隔时间周期统计的。例如,银行中的定期存款是按所设定的时间等间隔计息,外贸出口额按月统计,国民收入按年统计,产品的产量按月统计等等。这些量是变量,通常称这类变量为离散型变量。描述离散型变量之间的关系的数学模型成为离散型模型。对取值是离散化的经济变量,差分方程是研究他们之间变化规律的有效方法。 本章介绍差分方程的基本概念、解的基本定理及其解法,与微分方程的基本概念、解的基本定理及其解法非常类似,可对照微分方程的知识学习本章内容。 §1 基本概念 线性差分方程解的基本定理 一、 基本概念 1、函数的差分 对离散型变量,差分是一个重要概念。下面给出差分的定义。 设自变量t 取离散的等间隔整数值:, ,,,Λ210±±=t t y 是t 的函数,记作)(t f y t =。显然,t y 的取值是一个序列。当自变量由t 改变到1+t 时,相应的函值之差称为函数)(t f y t =在t 的一阶差分,记作t y ?,即 )()1(1t f t f y y y t t t -+=-=+?。 由于函数)(t f y t =的函数值是一个序列,按一阶差分的定义,差分就是序列的相邻值之差。当函数)(t f y t =的一阶差分为正值时,表明序列是增加的,而且其值越大,表明序列增加得越快;当一阶差分为负值时,表明序列是减少的。 例如:设某公司经营一种商品,第t 月初的库存量是)(t R ,第t 月调进和销出这种商品的数量分别是)(t P 和)(t Q ,则下月月初,即第1+t 月月初的库存量)1(+t R 应是 )()()()1(t Q t P t R t R -+=+, 若将上式写作 )()()()1(t Q t P t R t R -=-+,

差分方程的解法1

第三节差分方程常用解法与性质分析 高中数学新课标选修内容“一阶线性差分方程”的解法分析 江西省高中数学课程标准研究组舒昌勇(341200)在高中数学新课标选修系列4的“数列与差分”专题中,一阶常系数线性差分方程x n+1=kx n+b (1) 是讨论的重点,其一般形式为 x n+1=kx n+f(n) (2) 其中k为已知的非零常数,f(n)为n的已知函数.当f(n)≠0时,方程(2)称为非齐次的,f(n)=0时,方程 x n+1=kx n(3) 称为齐次的,并称(3)为(2)相应的齐次方程.方程(1)是方程(2)当f(n)为常数的情况,是方程(2)能用待定系数法求特解时所具有的几种特殊形式里最简单的一种.我们来讨论方程(1)和(3)通解的求法. 1 求一阶齐次差分方程x n+1=kx n的通解 用迭代法,给定初始值为x0,则一阶齐次差分方程x n+1=kx n的通解为 x1 = kx0,x2=kx1=k2x0,x3=kx2=k3x0,…, 一般地,有 x n= kx0-1= k(k n-1x0)= k n x0,n = 1,2,…, 由于x0表示初始值,可任意给定,所以可视其为任意常数,不妨用c来表示.又根据差分方程通解的定义:如果差分方程的解中含有与方程的阶数相同个数的相互独立的任意常数,则为其通解,故一阶线性齐次方程x n+1=kx n的通解可表为 x n=k n c(c为任意常数). 对于每一个任意给定的初始值x0,都能得到方程相应于该初始值的一个特解.而求特解只要将给定的初始值x0代入通解求出待定常数c即可. 2 求一阶非齐次差分方程x n+1=kx n+b的通解 2.1探索一阶非齐次差分方程x n+1=kx n+b通解的结构 设数列﹛y n﹜,﹛z n﹜为方程(3)的任意两个解,则 y n+1=k y n +b (4) z n+1= k z n +b (5) (4)-(5) 得y n +1-z n +1=k(y n- z n ) 这意味着一阶非齐次线性差分方程任意两个解的差为相应齐次差分方程的解.从而,若a n为非齐次方程(3)的任意一个解,b n为非齐次方程(3)的一个特解,则a n-b n就为相应齐次方程的一个解.为了探索一阶非齐次差分方程通解的结构,我们对它的任意一个解a n 作适当变形: a n=a n+ b n- b n= b n +( a n - b n) 这表明,一阶非齐次差分方程的任意一个解可表示为它的一个特解与相应齐次方程一个解的和的形式.从而非齐次方程的通解等于其一个特解加上相应齐次方程的通解. 2.2 求一阶非齐次差分方程(3)的通解 ①用迭代法,设给定的初始值为x0,依次将n=0,1,2,…代入(3),有 x1=kx0+b x2=kx1+b=k(kx0+b)+b =k2x0+b(1+k)

相关文档
最新文档