七年级数学平移1

合集下载

海南中学七年级数学下册第一单元《相交线与平行线》测试题(答案解析)

海南中学七年级数学下册第一单元《相交线与平行线》测试题(答案解析)

一、选择题1.如图,将直角边长为a (a >1)的等腰直角三角形ABC 沿BC 向右平移1个单位长度,得到三角形DEF ,则图中阴影部分面积为( )A .a -12B .a -1C .a +1D .a 2-12.如图,将周长为7的△ABC 沿BC 方向向右平移2个单位得到△DEF ,则四边形ABFD 的周长为( )A .8B .9C .10D .113.下列图中的“笑脸”,由如图平移得到的是( )A .B .C .D . 4.下列命题中,是真命题的是( )A .对顶角相等B .两直线被第三条直线所截,截得的内错角相等C .等腰直角三角形都全等D .如果a b >,那么22a b >5.如图,直线,a b 被直线c 所截,下列条件中不能判定a//b 的是( )A .25∠=∠B .45∠=∠C .35180∠+∠=︒D .12180∠+∠=︒ 6.在同一平面内,有3条直线a ,b ,c ,其中直线a 与直线b 相交,直线a 与直线c 平行,那么b 与c 的位置关系是( )A .平行B .相交C .平行或相交D .不能确定 7.如图,将ABC 沿BC 的方向平移1cm 得到DEF ,若ABC 的周长为6cm ,则四边形ABFD 的周长为( )A .6cmB .8cmC .10cmD .12cm8.如图是郝老师的某次行车路线,总共拐了三次弯,最后行车路线与开始的路线是平行的,已知第一次转过的角度120︒,第三次转过的角度135︒,则第二次拐弯的角度是( )A .75︒B .120︒C .135︒D .无法确定 9.如图,已知AB CD ∕∕,AF 交CD 于点E ,且,40BE AF BED ⊥∠=︒,则A ∠的度数是( )A .40︒B .50︒C .80︒D .90︒10.在如图所示的四个汽车标识图案中,能用平移变换来分析其形成过程的是( ) A . B . C . D . 11.下列各命题中,原命题成立,而它逆命题不成立的是( )A .平行四边形的两组对边分别平行B .矩形的对角线相等C .四边相等的四边形是菱形D .直角三角形中,斜边的平方等于两直角边的平方和12.如图,直线AB ,CD 被直线EF 所截,与AB ,CD 分别交于点E ,F ,下列描述: ①∠1和∠2互为同位角 ②∠3和∠4互为内错角③∠1=∠4 ④∠4+∠5=180°其中,正确的是( )A.①③B.②④C.②③D.③④二、填空题13.如图,已知点O是直线AB上一点,过点O作射线OC,使∠AOC=110°.现将射线OA 绕点O以每秒10°的速度顺时针旋转一周.设运动时间为t秒.当射线OA、射线OB、射线OC中有两条互相垂直时,此时t的值为__________.14.阅读下面材料:在数学课上,老师提出如下问题:如图,需要在A、B两地和公路l之间修地下管道.请你设计一种最节省材料的修路方案:小丽设计的方案如下:如图,(1)连接AB;(2)过点A画线段AC⊥直线l于点C,所以线段BA和线段AC即为所求.老师说:“小丽的画法正确”请回答:小丽的画图依据是___.15.如图,斜边长12cm,∠A=30°的直角三角尺ABC绕点C顺时针方向旋转90°至A B C的位置,再沿CB向左平移使点B'落在原三角尺ABC的斜边AB上,则三角尺向''左平移的距离为_____.(结果保留根号)16.如图,//,//,62AC ED AB FD A ∠=︒,则EDF ∠度数为___________.17.如图,,OA OC OB OD ⊥⊥,4位同学观察图形后分别说了自己的观点.甲:AOB ∠COD =∠;乙:180BOC AOD ∠+∠=︒;丙:90AOB COD ∠+∠=︒;丁:图中小于平角的角有6个;其中正确的结论有__________个.18.如图,直线a ∥b ∥c ,直角∠BAC 的顶点A 在直线b 上,两边分别与直线a ,c 相交于点B ,C ,则∠1+∠2的度数是___________.19.地铁某换乘站设有编号为A ,B ,C ,D ,E 的五个安全出口.若同时开放其中的两个安全出口, 疏散1000名乘客所需的时间如下: 安全出口编号A ,B B ,C C ,D D ,E A ,E 疏散乘客时间()s120 220 160 140 200 20.如图,添加一个你认为合适的条件______使//AD BC .三、解答题21.如图,AD 平分∠BAC ,点E ,F 分别在边BC ,AB 上,且∠BFE =∠DAC ,延长EF ,CA 交于点G ,求证:∠G =∠AFG .22.如图,点P 是AOB ∠的边OB 上的一点.(1)过点P 画OB 的垂线,交OA 于点E ;(2)过点P 画OA 的垂线,垂足为H ;(3)过点P 画OA 的平行线PC ;(4)若每个小正方形的边长是1,则点P 到OA 的距离是___________;(5)线段,,PE PH OE 的大小关系是_____________________(用“<”连接). 23.如图,AD BC ⊥于点D ,EG BC ⊥于点G ,若1E ∠=∠,试说明:23∠∠=.下面是推理过程,请将推理过程补充完整.∵AD BC ⊥于点D ,EG BC ⊥于点G (已知),∴90ADC EGC ∠=∠=︒∴//AD EG ( )∴12∠=∠( )∵1E ∠=∠(已知),∴E ∠=_______(等量代换)又∵//AD EG (已证),∴______3=∠( )∴23∠∠=(等量代换).24.如图,直线AB 、CD 相交于点O ,OE 平分BOD ∠,72AOC ∠=︒,OF CD ⊥.(1)与BOF ∠互余的角是______;(2)求EOF ∠的度数.25.把一块含60°角的直角三角尺()0090,60EFG EFG EGF ∠=∠=放在两条平行线,AB CD 之间.(1)如图1,若三角形的60°角的顶点G 放在CD 上,且221∠=∠,求1∠的度数; (2)如图2,若把三角尺的两个锐角的顶点,E G 分别放在AB 和CD 上,请你探索并说明AEF ∠与FGC ∠间的数量关系;(3)如图3,若把三角尺的直角顶点F 放在CD 上,30°角的顶点E 落在AB 上,请直接写出AEG ∠与CFG ∠的数量关系.26.如图所示,12180∠+∠=︒,A C ∠=∠,请说明//AD BC ,先填空,再把说理过程补充完整.解:2180CDB ∠+∠=︒,又12180∠+∠=︒,1CDB ∴∠=∠(______),//AB CD ∴(______),3C ∴∠=∠(______).请补充余下说理过程:【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】直接根据平移的性质得到DE=AB=a ,EF=BC=a ,EC=a-1,结合三角形面积公式即可求解.【详解】解:根据平移的性质得,DE=AB=a ,EF=BC=a ,EC=a-1,∴阴影部分的面积为:111(1)(1)222a a a a a ⨯--⨯-=- 故选:A .【点睛】本题考查了平移的性质,比较简单,注意熟练掌握平移性质的内容. 2.D解析:D【分析】根据平移的基本性质,得出四边形ABFD 的周长=AD+AB+BF+DF=2+AB+BC+2+AC 即可得出答案.【详解】解:根据题意,将周长为7的△ABC 沿BC 方向向右平移2个单位得到△DEF , ∴AD=2,BF=BC+CF=BC+2,DF=AC ;又∵AB+BC+AC=7,∴四边形ABFD 的周长=AD+AB+BF+DF=2+AB+BC+2+AC=11.故选:D .【点睛】本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.得到CF=AD ,DF=AC 是解题的关键.3.D解析:D【分析】根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.【详解】解:A 、B 、C 都是由旋转得到的,D 是由平移得到的.故选:D .【点睛】本题考查平移的基本性质是:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.4.A解析:A【分析】分别利用对顶角的性质、平行线的性质及不等式的性质分别判断后即可确定正确的选项.【详解】解:A.对顶角相等,正确,是真命题;B.两直线被第三条直线所截,内错角相等,错误,是假命题;C.等腰直角三角形不一定都全等,是假命题;D.如果0>a >b ,那么a 2<b 2,是假命题.【点睛】本题考查了命题与定理的知识,解题的关键是了解对顶角的性质、平行线的性质及不等式的性质,难度不大.5.D解析:D【分析】根据平行线的判定定理逐项判断即可.【详解】解:A. 由2∠和5∠是同位角,则25∠=∠ ,可得a//b ,故该选项不符合题意;B. 由4∠和5∠是内错角,则45∠=∠,可得a//b ,故该选项不符合题意;C. 由∠3和∠1相等,35180∠+∠=︒,可得a//b ,故该选项不符合题意;D. 由∠1和∠2是邻补角,则12180∠+∠=︒不能判定a//b ,故该选项满足题意.故答案为D.【点睛】本题主要考查了平行线的判定,掌握同位角相等,两直线平行;同旁内角互补,两直线平行是解答本题的关键.6.B解析:B【分析】根据a∥c,a与b相交,可知c与b相交,如果c与b不相交,则c与b平行,故b与a 平行,与题目中的b与a相交矛盾,从而可以解答本题.【详解】解:假设b∥c,∵a∥c,∴a∥b,而已知a与b相交于点O,故假设b∥c不成立,故b与c相交,故选:B.【点睛】本题考查平行线的性质,解答本题的关键是明确题意,利用平行线的性质解答.7.B解析:B【分析】先根据平移的性质得出AD=1,BF=BC+CF=BC+1,DF=AC,再根据四边形ABFD的周长=AD+AB+BF+DF即可得出结论.【详解】∵将周长为6的△ABC沿边BC向右平移1个单位得到△DEF,∴AD=1,BF=BC+CF=BC+1,DF=AC,又∵AB+BC+AC=6,∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=8.故选:B.【点睛】本题考查了平移的性质,熟知把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同是解答此题的关键.8.A解析:A【解析】分析:根据两直线平行,内错角相等,得到∠BFD的度数,进而得出∠CFD的度数,再由三角形外角的性质即可得到结论.详解:如图,延长ED交BC于F.∵DE ∥AB ,∴∠DFB =∠ABF =120°,∴∠CFD =60°.∵∠CDE =∠C +∠CFD ,∴∠C =∠CDE -∠CFD =135°-60°=75°.故选A .点睛:本题考查了平行线的性质及三角形外角的性质.解题的关键是理解题意,灵活应用平行线的性质解决问题,属于中考常考题型.9.B解析:B【分析】直接利用垂线的定义结合平行线的性质得出答案.【详解】解:∵,40BE AF BED ⊥∠=︒,∴50FED ∠=︒,∵AB CD ∕∕,∴50A FED ∠=∠=︒.故选B .【点睛】此题主要考查了平行线的性质以及垂线的定义,正确得出FED ∠的度数是解题关键. 10.D解析:D【分析】根据平移作图是一个基本图案按照一定的方向平移一定的距离,连续作图设计出的图案进行分析即可.【详解】解:A 、不能用平移变换来分析其形成过程,故此选项错误;B 、不能用平移变换来分析其形成过程,故此选项错误;C 、不能用平移变换来分析其形成过程,故此选项正确;D 、能用平移变换来分析其形成过程,故此选项错误;故选:D .【点睛】本题考查利用平移设计图案,解题关键是掌握图形的平移只改变图形的位置,而不改变图形的形状、大小和方向.11.B解析:B【分析】分别判断该命题的原命题和逆命题后即可确定正确的选项.【详解】解:A、平行四边形的两组对边分别平行,成立,逆命题为两组对边分别平行的四边形是平行四边形,正确,不符合题意;B、矩形的对角线相等,成立,逆命题为对角线相等的四边形是矩形,不成立,符合题意;C、四边相等的四边形是菱形,成立,逆命题为菱形的四条边相等,成立,不符合题意;D、直角三角形中,斜边的平方等于两直角边的平方和,成立,逆命题为两边的平方和等于第三边的平方的三角形为直角三角形,成立,不符合题意;故选:B.【点睛】本题主要考查的是命题和定理的知识,正确的写出它的逆命题是解题的关键.12.C解析:C【分析】根据同位角,内错角,同旁内角的定义判断即可.【详解】①∠1和∠2互为邻补角,故错误;②∠3和∠4互为内错角,故正确;③∠1=∠4,故正确;④∵AB不平行于CD,∴∠4+∠5≠180°故错误,故选:C.【点睛】本题考查了同位角,内错角,同旁内角的定义,熟记定义是解题的关键.二、填空题13.920或27【分析】分4种情况确定垂直关系可得OA的旋转角度从而可求出t的值【详解】解:①当射线OA绕点O顺时针旋转20°时如图1则∠COA=110°-20°=90°故OA⊥OC此时t=20°÷10解析:9、20或27【分析】分4种情况确定垂直关系,可得OA的旋转角度,从而可求出t的值.【详解】解:①当射线OA绕点O顺时针旋转20°时,如图1,则∠COA=110°-20°=90°,故OA⊥OC,此时,t=20°÷10°=2;②当射线OA绕点O顺时针旋转90°时,如图2,则∠AOB=180°-90°=90°,故OA⊥OB,此时,t=90°÷10°=9;③当射线OA绕点O顺时针旋转200°时,如图3,则∠COA=200°-110°=90°,故OA⊥OC,此时,t=200°÷10°=20;④当射线OA绕点O顺时针旋转270°时,如图4,则∠BOA=270°-180°=90°,故OA⊥OB,此时,t=270°÷10°=27,故答案为:2,9,20或27.【点睛】本题主要考查了角的有关计算,注意在分类讨论时要做到不重不漏.14.两点之间线段最短;直线外一点到这条直线上所有点连结的线段中垂线段最短(或垂线段最短)【分析】根据线段的概念和垂线的性质即可求解【详解】由垂线段最短可知点A 到直线l 的最短距离为AC 由两点之间线段最短可 解析:两点之间线段最短;直线外一点到这条直线上所有点连结的线段中,垂线段最短(或垂线段最短)【分析】根据线段的概念和垂线的性质即可求解.【详解】由垂线段最短可知,点A 到直线l 的最短距离为AC ,由两点之间线段最短可知,点B 到点A 的最短距离为AB .故答案为:两点之间线段最短;直线外一点到这条直线上所有点连结的线段中,垂线段最短(或垂线段最短);【点睛】本题考察线段的概念和垂线的性质,熟练掌握其概念和性质是解题的关键.15.cm 【分析】作B′D//BC 与AB 交于点D 故三角板向左平移的距离为B′D 的长利用直角三角形的性质求出BC=B′C=6cmAC=cm 进而根据相似三角形对应线段成比例的性质即可求解【详解】如图作B′D/解析:(6-cm【分析】作B′D//BC 与AB 交于点D ,故三角板向左平移的距离为B′D 的长,利用直角三角形的性质求出BC=B′C=6cm ,AC=,进而根据相似三角形对应线段成比例的性质即可求解.【详解】如图,作B′D//BC 与AB 交于点D ,故三角板向左平移的距离为B′D 的长.∵AB=12cm ,∠A=30°,∴BC=B′C=6cm ,AC=cm ,∵B′D//BC ,∴AC D BC B AB ='',即66(6BC C B A AB D ⨯=='-'=cm ,故三角板向左平移的距离为(6-cm .【点睛】本题考查直角三角形的性质、相似三角形的性质,旋转和平移的性质,解题的关键是作辅助线构造相似三角形.16.62°【分析】首先根据两直线平行同位角相等求出∠DEB 的度数再根据两直线平行内错角相等求出∠EDF 的度数【详解】解:∵AC//DE ∠A=62°∴∠DEB=∠A=62°(两直线平行同位角相等)∵DF/解析:62°【分析】首先根据两直线平行,同位角相等求出∠DEB 的度数,再根据两直线平行,内错角相等求出∠EDF 的度数.【详解】解:∵AC//DE ,∠A=62°,∴∠DEB=∠A=62°(两直线平行,同位角相等),∵DF//AB ,∴∠EDF=∠DEB=62°(两直线平行,内错角相等).故答案为:62°.【点睛】本题考查了平行线的性质,解决本题的关键是熟记平行线的性质.平行线的性质:①两直线平行同位角相等,②两直线平行内错角相等,③两直线平行同旁内角互补. 17.3【分析】先根据垂直的定义可得再逐个判断即可得【详解】则甲的结论正确;则乙的结论正确;假设又由题中已知条件不能得到则丙的结论错误;图中小于平角的角为共有6个则丁的结论正确;综上正确的结论有3个故答案 解析:3【分析】先根据垂直的定义可得90AOC BOD ∠=∠=︒,再逐个判断即可得.【详解】,OA OC OB OD ⊥⊥,9090AOB BOC AOC COD BOC BOD ∠+∠=∠=︒⎧∴⎨∠+∠=∠=︒⎩, AOB COD ∴∠=∠,则甲的结论正确;180AOB BOC COD BOC AOC BOD ∠+∠+∠+∠=∠+∠=︒,180AOD BOC ∴∠+∠=︒,则乙的结论正确;假设90AOB COD ∠+∠=︒,90AOB BOC ∠+∠=︒,BOC COD ∴∠=∠,又90COD BOC ∠+∠=︒,45BOC COD ∴∠=∠=︒,由题中已知条件不能得到,则丙的结论错误; 图中小于平角的角为,,,,,AOB AOC AOD BOC BOD COD ∠∠∠∠∠∠,共有6个, 则丁的结论正确;综上,正确的结论有3个,故答案为:3.【点睛】本题考查了垂直的定义、角的和差等知识点,熟练掌握角的运算是解题关键. 18.270°【分析】根据题目条件可知∠1+∠3=∠2+∠4=180°再结合∠BAC 是直角即可得出结果【详解】解:如图所示∵a ∥b ∴∠1+∠3=180°则∠3=180°-∠1∵b ∥c ∴∠2+∠4=180°解析:270°【分析】根据题目条件可知∠1+∠3=∠2+∠4=180°,再结合∠BAC 是直角即可得出结果.【详解】解:如图所示,∵a ∥b ,∴∠1+∠3=180°,则∠3=180°-∠1,∵b ∥c∴∠2+∠4=180°,则∠4=180°-∠2,∵∠BAC 是直角,∴∠3+∠4=180°-∠1+180°-∠2,∴90°=360°-(∠1+∠2),∴∠1+∠2=270°.故答案为:270°【点睛】本题主要考查的是平行线的性质,掌握平行线的性质是解题的关键.19.D 【分析】利用同时开放其中的两个安全出口疏散1000名乘客所需的时间分析对比能求出结果【详解】同时开放AE 两个安全出口疏散1000名乘客所需的时间为200s 同时开放DE 两个安全出口疏散1000名乘客【分析】利用同时开放其中的两个安全出口,疏散1000名乘客所需的时间分析对比,能求出结果.【详解】同时开放A、E两个安全出口,疏散1000名乘客所需的时间为200s,同时开放D、E两个安全出口,疏散1000名乘客所需的时间为140s,得到D疏散乘客比A快;同时开放A、E两个安全出口,疏散1000名乘客所需的时间为200s,同时开放A、B两个安全出口,疏散1000名乘客所需的时间为120s,得到A疏散乘客比E快;同时开放A、B两个安全出口,疏散1000名乘客所需的时间为120s,同时开放B、C两个安全出口,疏散1000名乘客所需的时间为220s,得到A疏散乘客比C快;同时开放B、C两个安全出口,疏散1000名乘客所需的时间为220s,同时开放C、D两个安全出口,疏散1000名乘客所需的时间为160s,得到D疏散乘客比B快.综上,疏散乘客最快的一个安全出口的编号是D.故答案为:D.【点睛】本题考查推理能力,进行简单的合情推理为解题关键.20.∠ADF=∠C或∠A=∠ABE或∠A+∠ABC=180°或∠C+∠ADC=180°(答案不唯一写一个正确的即可)【分析】根据平行线的判定方法即可求解【详解】第一种情况同位角相等两直线平行即∠ADF=解析:∠ADF=∠C或∠A=∠ABE或∠A+∠ABC=180°或∠C+∠ADC=180°(答案不唯一,写一个正确的即可)【分析】根据平行线的判定方法即可求解.【详解】AD BC;第一种情况,同位角相等,两直线平行,即∠ADF=∠C时,//AD BC;第二种情况,内错角相等,两直线平行,即∠A=∠ABE时,//第三种情况,同旁内角互补,两直线平行,即∠A+∠ABC=180°或∠C+∠ADC=180°时,AD BC;//故答案为∠ADF=∠C或∠A=∠ABE或∠A+∠ABC=180°或∠C+∠ADC=180°.【点睛】本题考查了平行线的判定方法,同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.三、解答题【分析】先利用角平分线的定义得到∠BAD=∠DAC,结合已知条件∠BFE=∠DAC,可得∠BFE=∠BAD,根据平行线的判定可证EG∥AD,再由平行线的性质得∠G=∠DAC,∠AFG=∠BAD,则利用等量代换即可证得结论.【详解】证明:∵AD平分∠BAC,∴∠BAD=∠DAC,∵∠BFE=∠DAC,∴∠BFE=∠BAD,∴EG∥AD,∴∠G=∠DAC,∠AFG=∠BAD,∴∠G=∠AFG.【点睛】本题考查了平行线的判定与性质,掌握平行线的判定的方法及利用性质证明角相等是解答此题的关键.<< 22.(1)见解析;(2)见解析;(3)见解析;(4)1;(5)PH PE OE【分析】(1)(2)根据题意画垂线;(3)根据题意画平行线;(4)根据点到直线距离的定义计算;(5)根据直角三角形的直角边小于斜边可以证得.【详解】∠的边OB上的一点.如图,点P是AOB(1)过点P画OB的垂线,交OA于点E;(2)过点P画OA的垂线,垂足为H;(3)过点P画OA的平行线PC;(4)由题意PH即点P到OA的距离,且PH=1,∴答案为1;(5)∵在RT△PHE中,PH是直角边,PE是斜边,∴PH<PE,同理在RT△POE中,PE是直角边,OE是斜边,∴PE<OE,∴线段PE,PH,OE的大小关系是PH PE OE<<.故答案为PH<PE<OE.【点睛】本题考查垂线和平行线的画法、垂线的应用及直角三角形的性质,熟练掌握“垂线段最短”的定理是解题关键.23.见解析【分析】根据垂直的定义得到∠ADC=∠EGC=90°,根据平行线的判定得到AD∥EG,由平行线的性质得到∠1=∠2,等量代换得到∠E=∠2,由平行线的性质得到∠E=∠3,等量代换即可得到结论.【详解】∵AD⊥BC于点D,EG⊥BC于点G(已知),∴∠ADC=∠EGC=90°(垂直的定义),∴AD∥EG(同位角相等,两直线平行),∴∠1=∠2(两直线平行,内错角相等),∵∠E=∠1(已知)∴∠E=∠2(等量代换)∵AD∥EG,∴∠E=∠3(两直线平行,同位角相等).∴∠2=∠3(等量代换).【点睛】考查了平行线的性质、垂直的定义,解题关键是熟练掌握平行线的性质.24.(1)∠BOD、∠AOC;(2)54°【分析】(1)根据垂直的定义得到∠FOD=90°,于是得到∠BOF+∠BOD=90°,根据对顶角的性质得到∠BOD=∠AOC,等量代换得到∠BOF+∠AOC=90°,即可得到结论.(2)根据已知条件得到∠BOF=90°﹣72°=18°,再由OE平分∠BOD,得出∠BOE=1∠BOD=36°,因此∠EOF=36°+18°=54°.2【详解】解:(1)∵OF⊥CD,∴∠FOD=90°,∴∠BOF+∠BOD=90°,∵∠BOD=∠AOC,∴∠BOF+∠AOC=90°,∴图中互余的角有∠BOF与∠BOD,∠BOF与∠AOC.故答案为:∠BOD、∠AOC;(2)∵直线AB和CD相交于点O,∴∠BOD =∠AOC =72°,∵OF ⊥CD ,∴∠BOF =90°﹣72°=18°,∵OE 平分∠BOD ,∴∠BOE =12∠BOD =36°, ∴∠EOF =36°+18°=54°.【点睛】本题考查了对顶角、垂线以及角平分线的定义;弄清各个角之间的关系是解题的关键. 25.(1)40°;(2)∠AEF+∠FGC=90°;(3)AEG ∠+CFG ∠=300°【分析】(1)根据平行线的性质得:1=∠EGD ,结合∠2=2∠1和平角的定义,即可求解; (2)过点F 作FP ∥AB ,根据平行线的性质和直角的意义,即可求解;(3)根据平行线的性质得∠AEF+∠CFE=180°,结合条件,即可求解.【详解】(1)∵AB ∥CD ,∴∠1=∠EGD ,∵∠2+∠FGE+∠EGD=180°,∠2=2∠1,∴2∠1+60°+∠1=180°,解得∠1=40°;(2)如图,过点F 作FP ∥AB ,∵CD ∥AB ,∴FP ∥AB ∥CD ,∴∠AEF=∠EFP ,∠FGC=∠GFP .∴∠AEF+∠FGC=∠EFP+∠GFP=∠EFG ,∵∠EFG=90°,∴∠AEF+∠FGC=90°;(3) AEG ∠+CFG ∠=300°,理由如下:∵AB ∥CD ,∴∠AEF+∠CFE=180°,即AEG ∠−30°+CFG ∠−90°=180°,整理得:AEG ∠+CFG ∠=300°.【点睛】本题主要考查平行线的性质,添加辅助线,构造相等的角,是解题的关键26.填空和余下说理过程见解析.【分析】∠=∠,再根据平行线的判定与性质可得先根据平角的定义、同角的补角相等可得1CDB∠=∠,然后根据等量代换可得33C∠=∠,最后根据平行线的判定即可得.A【详解】2180∠+∠=︒,CDB∠+∠=︒,又121801CDB∴∠=∠(同角的补角相等),∴(同位角相等,两直线平行),//AB CDC∴∠=∠(两直线平行,内错角相等),3∠=∠(已知),A C∴∠=∠(等量代换),A3AD BC∴(同位角相等,两直线平行).//【点睛】本题考查了平角的定义、平行线的判定与性质等知识点,熟练掌握平行线的判定与性质是解题关键.。

君山区第七中学七年级数学下册第10章相交线平行线与平移10.2平行线的判定第1课时平行线及同位角内错

君山区第七中学七年级数学下册第10章相交线平行线与平移10.2平行线的判定第1课时平行线及同位角内错

11
2019 年七年级数学上学期综合检测卷四
一、单选题(18 分)
1.(3 分)在-3,0,4, 这四个数中,最大的数是(

A.-3
B.0
C.4
D.
2.(3 分)下列方程变形正确的是(

A.由 y=0,得 y=4
B.由 3x=-5,得 x=-
C.由 3-x=-2,得 x=3+2
D.由 4+x=6,得 x=6+4
[教学说明]教师给出例题 , 学生独立自主完成.教师可选几个同学上台展示自己的答 案 , 交流各自的心得 , 积累解决问题的经验和方式.
(四)运用新知 , 深化理解 1.判断题 :
(1)不相交的两条直线叫做平行线.(
)
(2)如果一条直线与两条平行线中的一条直线平行 , 那么它与另一条直线也互相平
行.( )
[解](1)∠α与∠3 是直线 EF 和 GH 被直线 AB 所截得的同位角 , 或∠6 与∠α是直线 AB 和 CD 被直线 GH 所截得的同位角.
〔2〕∠1 与∠α是直线 EF 和 GH 被直线 AB 所截得的内错角 , 或∠5 与∠α是直线 AB 和 CD 被直线 GH 所截得的内错角.
〔3〕∠2 与∠α是直线 EF 和 GH 被直线 AB 所截得的同旁内角 , 或∠4 与∠α是直线 AB 和 CD 被直线 GH 所截的同旁内角.
37 1
2
(3)(-7)-(+5)+(-4)-(-10);(4) 4 - 2 +(- 6 )-(- 3 )-1
13 答案:(1)-0.5;(2)0;(3)-6;(4)- 4 .
五、评价 1.学生的自我评价(围绕三维目标):对自己的自学、交流的收获和不足进行自我评价. 2.教师对学生的评价: (1)表现性评价:对本节课同学们自主学习和合作交流的积极表现和不足之处进行总结. (2)纸笔评价:课堂评价检测. 3.教师的自我评价(教学反思): 本课时主要通过学生习题的训练,巩固有理数加法、减法及加减混合运算的法则与技能, 教师要认真归纳学生在进行有理数加法、减法运算时常犯的错误,以便在本节课教学时针 对性指导.训练以学生自主解答为主,教师根据学生所做的解法,及时指出最具代表性的方 法给学生指明解题方向.

苏科版七年级下册 第一章 数学活动 利用平移设计图案(共25张PPT)

苏科版七年级下册 第一章 数学活动  利用平移设计图案(共25张PPT)

1.再次回忆本节课的学习过程,你能结合学习任务叙述本节课的学习 过程吗?
欣赏平移图案,发现美→分析平移图案,理解美→利用平移规律,创造美。
2.这节课的课题是“利用平移设计图案”,你能说说设计的基本方法吗 ? 第一步设计基本图案,第二步确定平移方式,第三步进行平移作图。
3.今天我们研究的是利用平移设计图案,你还能想到研究利用什么设 计图案?
2.下图是一幅“水兵合唱队”图案.这幅图案是如何利用平移的 方法制作的?
从平移的视角可以怎样设计这个基本图案?
第一步:在3×3的方格中,经过割补平移,得到一个基本图形;
第二步:在基本图形上绘图着色,形成一个水兵的基本图案;
基本方法: 1.设计基本图案; 2.确定平移方式; 3.进行平移作图。
你也能用这样的方法得到新的图 案,并给图案命名吗?动手试试吧!
正方形
长方形
平行四边形
相框
沙漏狐狸基本图形平移 Nhomakorabea以形成丰富的图形。
1.你能发现图中的规律吗?请按你发现的规律继续画下去.
(1)规律 基本图案A A ,依次向右平移3格、6格、9格…… (2)基本图案A还可以怎样形成?
基本图案A还可以由更基本的图案B B ,依次向左 下平移方格对角线长、向下平移2格得到。
用一双发现美的眼睛去观察和收集生活中的图案,用一个欣赏美的 大脑去分析和理解生活中的图案,用一双创造美的巧手去设计美丽的 图案!
发现美、欣赏美、理解美、创造美,在数学的学习中提升我们的审 美能力!
(3)将基本图案先向右平移成一排,再整排向下平移成整幅图 案。
在方格纸中设计基本图案,我们反复经历了相同的 步骤,你能概括出来吗?
(1)割补平移得到基本图形; (2)绘图着色得到基本图案。

用坐标表示平移(第一课时)课件人教版数学七年级下册

用坐标表示平移(第一课时)课件人教版数学七年级下册

可求出点 E,F,G,H 的坐 标分别是(5,-3),(5,-4), (6,-4),(7,-3).
如果直接平移正方形 ABCD, 使点 A 移到点 E,它和我们 前面得到的正方形位置相同.
y
6 5 A D4 B C3 2 1
-6 -5 -4 -3 -2 -1O -1 -2
-3 -4 -5
1 2 3 4 5 6x
+3
OB=4
2.如图,点 A、B 的坐标分别为 (1,2)、(4,0),将 △AOB
沿 x 轴向右平移,得到 △CDE,已知 DB=1,则点 C 的坐
标为( D ) A. (2,2) B. (4,3)
平移长度OD=3
y AC
C. (3,2) D. (4,2)
O DB E x
3.若将点 A(m+2,3) 先向下平移 1 个单位,再向左平移 2 个单位,得到点 B(2,n-1),则( A )
导入新知
如图,你能画出把鱼往左平移 6 格后所得的图形吗? y
建立如图所示的平面直角
坐标系,平移这个图形,
图形上的点的坐标发生了
什么变化呢?
O
x
合作探究 新知一 平面直角坐标系中点的平移
y
根据右图回答问题:
6
5
1.将点A(-2,-3)向右平移5个单
4
3
位长度,得到点A1( _3__ , _-_3_ );
(1)AB是怎样平移的? (2)求点B′的坐标.
解:(1)∵A(1,0)平移后对应点 A′的坐标为(1,-3),∴A 点的平移方 法是:向下平移 3 个单位,∴线段 AB 向下平移 3 个单位得到 A′B′ (2)∵B 点的平移方法与 A 点的平移方法是相同的,∴B(1,3)平移后 B ′的坐标是(1,0)

【必考题】七年级数学下期中第一次模拟试题(附答案) (2)

【必考题】七年级数学下期中第一次模拟试题(附答案) (2)

【必考题】七年级数学下期中第一次模拟试题(附答案) (2)一、选择题1.在平面直角坐标系中,将点P 先向左平移5个单位,再向上平移3个单位得到点()2,1,Q -则点P 的坐标是( )A .(32)-,B .()3,4C .()7,4-D .(72)--,2.如图,已知∠1=∠2,其中能判定AB ∥CD 的是( )A .B .C .D .3.下列说法一定正确的是( )A .若直线a b ∥,a c P ,则b c ∥B .一条直线的平行线有且只有一条C .若两条线段不相交,则它们互相平行D .两条不相交的直线叫做平行线4.小明在超市帮妈妈买回一袋纸杯,他把纸杯整齐地叠放在一起,如图请你根据图中的信息,若小明把100个纸杯整齐叠放在一起时,它的高度约是( )A .106cmB .110cmC .114cmD .116cm5.已知∠A 、∠B 互余,∠A 比∠B 大30°,设∠A 、∠B 的度数分别为x°、y°,下列方程组中符合题意的是( )A .18030x y x y +=⎧⎨=-⎩B .180+30x y x y +=⎧⎨=⎩C .9030x y x y +=⎧⎨=-⎩D .90+30x y x y +=⎧⎨=⎩6.10x x y -+=,则xy 的值为( )A .0B .1C .-1D .27.汽车的“燃油效率”是指汽车每消耗1升汽油最多可行驶的公里数,如图描述了A 、B 两辆汽车在不同速度下的燃油效率情况.根据图中信息,下面4个推断中,合理的是( )①消耗1升汽油,A 车最多可行驶5千米;②B 车以40千米/小时的速度行驶1小时,最多消耗4升汽油;③对于A 车而言,行驶速度越快越省油;④某城市机动车最高限速80千米/小时,相同条件下,在该市驾驶B 车比驾驶A 车更省油.A .①④B .②③C .②④D .①③④8.将一个矩形纸片按如图所示折叠,若∠1=40°,则∠2的度数是( )A .40°B .50°C .60°D .70°9.在平面直角坐标系中,将点(0,1)A 做如下的连续平移,第1次向右平移得到点1(1,1)A , 第2次向下平移得到点()21,1A -,第3次向右平移得到点()341A -,第4次向下平移得到点()44,5?·····A -按此规律平移下去,则15A 的点坐标是( )A .()64,55-B .()65,53-C .()66,56-D .()67,58-10.一个图形的各点的纵坐标乘以2,横坐标不变,这个图形发生的变化是( ) A .横向拉伸为原来的2倍B .纵向拉伸为原来的2倍C .横向压缩为原来的12D .纵向压缩为原来的12 11.在直角坐标系中,若点P(2x -6,x -5)在第四象限,则x 的取值范围是( ) A .3<x <5 B .-5<x <3 C .-3<x <5D .-5<x <-3 12.我们定义a c ⎛ ⎝ b ad bc d ⎫=-⎪⎭,例如:24⎛ ⎝ 3253425⎫=⨯-⨯=-⎪⎭,若x 满足423⎛-≤ ⎝ 22x ⎫<⎪⎭,则x 的整数解有( ) A .0个 B .1个 C .2个 D .3个二、填空题13.3 1.732,30 5.477≈≈0.3≈______.14.如图,直线AB 、CD 相交于点O ,OE 平分∠BOC ,OF ⊥CD ,若∠BOE =2∠BOD ,则∠AOF 的度数为______.15.直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k2x<k1x+b的解集为______.16.m的3倍与n的差小于10,用不等式表示为______________.17.如果不等式组()53122x xx m⎧+>+⎪⎨⎪≥⎩,恰好有3个整数解,则m的取值范围是__________.189________.19.已知方程组236x yx y+=⎧⎨-=⎩的解满足方程x+2y=k,则k的值是__________.20.有甲、乙、丙三种商品,如果购甲3件、乙2件,丙1件共需315元钱,购甲2件、乙3件、丙4件共需285元钱,那么购甲、乙、丙三种商品各一件共需_________________元钱.三、解答题21.某种商品的标价为400元/件,经过两次降价后的价格为324元/件,并且两次降价的百分率相同.(1)求该种商品每次降价的百分率;(2)若该种商品进价为300元/件,商店考虑继续按之前的降价率再次降价,请你算一算第三次降价后出售的商品是否会亏本.22.如图,AD//BC,∠A=∠C.求证:AB//DC.23.某校组织学生书法比赛,对参赛作品按A、B、C、D四个等级进行了评定.现随机抽取部分学生书法作品的评定结果进行分析,并绘制扇形统计图和条形统计图如下:根据上述信息完成下列问题:(1)在这次抽样调查中,共抽查了多少名学生?(2)请在图②中把条形统计图补充完整;(3)求出扇形统计图中“D级”部分所对应的扇形圆心角的大小;(4)已知该校这次活动共收到参赛作品750份,请你估计参赛作品达到B级以上(即A 级和B级)有多少份?24.解方程组:23 238 x yx y-=⎧⎨-=⎩25.已知关于x、y的二元一次方程组3x my52x ny6-=⎧⎨+=⎩的解是12xy=⎧⎨=⎩,求关于a、b的二元一次方程组3()()52()()6a b m a ba b n a b+--=⎧⎨++-=⎩的解.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】根据向左平移横坐标减,向上平移纵坐标加即可求解,注意始点和终点的区别.【详解】解:由题意可知点P 的坐标为()25,13-+-,即P ()3,2-;故选:A .【点睛】本题考查了平移,熟记平移中点的变化规律:横坐标右移加,坐移减;纵坐标上移加,下移减是解题的关键. 2.D解析:D【解析】【分析】由∠1=∠2结合“内错角(同位角)相等,两直线平行”得出两平行的直线,由此即可得出结论.【详解】A 、∵∠1=∠2,∴AD ∥BC (内错角相等,两直线平行);B 、∵∠1=∠2,∠1、∠2不是同位角和内错角,∴不能得出两直线平行;C 、∠1=∠2,∠1、∠2不是同位角和内错角,∴不能得出两直线平行;D 、∵∠1=∠2,∴AB ∥CD (同位角相等,两直线平行).故选D .【点睛】本题考查了平行线的判定,解题的关键是根据相等的角得出平行的直线.本题属于基础题,难度不大,解决该题型题目时,根据相等(或互补)的角,找出平行的直线是关键.3.A解析:A【解析】【分析】根据平行线的定义、性质、判定方法判断,排除错误答案.【详解】A 、在同一平面内,平行于同一直线的两条直线平行.故正确;B 、过直线外一点,有且只有一条直线与已知直线平行.故错误;C 、根据平行线的定义知是错误的.D 、平行线的定义:在同一平面内,两条不相交的直线叫做平行线.故错误;故选:A .【点睛】此题考查平行线的定义、性质及平行公理,熟练掌握公理和概念是解题的关键.4.A解析:A【解析】【分析】通过观察图形,可知题中有两个等量关系:单独一个纸杯的高度加上3个纸杯叠放在一起高出单独一个纸杯的高度等于9,单独一个纸杯的高度加上8个纸杯叠放在一起高出单独一个纸杯的高度等于14.根据这两个等量关系,可列出方程组,再求解.【详解】解:设每两个纸杯叠放在一起比单独的一个纸杯增高xcm,单独一个纸杯的高度为ycm,则29714x yx y+=⎧⎨+=⎩,解得17xy=⎧⎨=⎩则99x+y=99×1+7=106即把100个纸杯整齐的叠放在一起时的高度约是106cm.故选:A.【点睛】本题以实物图形为题目主干,图形形象直观,直接反映了物体的数量关系,这是近年来比较流行的一种命题形式,主要考查信息的收集、处理能力.本题易错点是误把9cm当作3个纸杯的高度,把14cm当作8个纸杯的高度.5.D解析:D【解析】试题解析:∠A比∠B大30°,则有x=y+30,∠A,∠B互余,则有x+y=90.故选D.6.C解析:C【解析】=,∴x﹣1=0,x+y=0,解得:x=1,y=﹣1,所以xy=﹣1.故选C.7.C解析:C【解析】【分析】折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化.【详解】解:①由图象可知,当A车速度超过40km时,燃油效率大于5km/L,所以当速度超过40km时,消耗1升汽油,A车行驶距离大于5千米,故此项错误;②B车以40千米/小时的速度行驶1小时,路程为40km,40km÷10km/L=4L,最多消耗4升汽油,此项正确;③对于A车而言,行驶速度在0﹣80km/h时,越快越省油,故此项错误;④某城市机动车最高限速80千米/小时,相同条件下,在该市驾驶B车比驾驶A车燃油效率更高,所以更省油,故此项正确.故②④合理,故选:C.【点睛】本题考查了折线统计图,熟练读懂折线统计图是解题思的关键.8.D解析:D【解析】【分析】根据折叠的知识和直线平行判定即可解答.【详解】解:如图可知折叠后的图案∠ABC=∠EBC,又因为矩形对边平行,根据直线平行内错角相等可得∠2=∠DBC,又因为∠2+∠ABC=180°,所以∠EBC+∠2=180°,即∠DBC+∠2=2∠2=180°-∠1=140°.可求出∠2=70°.【点睛】掌握折叠图形的过程中有些角度是对称相等的是解答本题的关键.9.A解析:A【解析】【分析】根据题中条件可得到奇数次时,平移的方向和单位长度;偶数次时,平移的方向和单位长度的规律,按照该规律即可得解.【详解】解:由题意得第1次向右平移1个单位长度,第2次向下平移2个单位长度,第3次向右平移3个单位长度,第4次向下平移4个单位长度,……根据规律得第n 次移动的规律是:当n 为奇数时,向右平移n 个单位长度,当n 为偶数时,向下平移n 个单位长度,∴15A 的横坐标为0+1+3+5+7+9+11+13+15=64纵坐标为1-(2+4+6+8+10+12+14)=-55∴15A ()64,55-故选A .【点睛】本题考查了坐标与图形变化——平移. 解题的关键是分析出题目的规律,找出题目中点的坐标的规律.10.B解析:B【解析】【分析】根据横坐标不变,纵坐标变为原来的2倍得到整个图形将沿y 轴变长,即可得出结论.【详解】如果将一个图形上各点的横坐标不变,纵坐标乘以2,则这个图形发生的变化是:纵向拉伸为原来的2倍.故选:B .【点睛】本题考查了坐标与图形性质:利用点的坐标计算相应的线段的长和判断线段与坐标轴的关系.11.A解析:A【解析】【分析】点在第四象限的条件是:横坐标是正数,纵坐标是负数.【详解】解:∵点P (2x-6,x-5)在第四象限,∴260{50x x ->-<,解得:3<x <5.故选:A .【点睛】主要考查了平面直角坐标系中第四象限的点的坐标的符号特点.解析:B【解析】【分析】先根据题目的定义新运算,得到关于x 的不等式组,再得到不等式组的解集即可.【详解】解:结合题意可知423⎛-≤ ⎝ 22x ⎫<⎪⎭可化为42324232x x -⨯≥-⎧⎨-⨯⎩<, 解不等式可得1x <2≤,故x 的整数解只有1;故选:B .【点睛】本题考查的是一元一次不等式组的求解,根据题意得到不等式组并正确求解即可.二、填空题13.5477【解析】【分析】根据算术平方根的小数点移动规律可直接得出【详解】解:故答案为:05477【点睛】本题考查了算术平方根的应用注意:当被开方数的小数点每向左或向右移动两位平方根的小数点就向左或向解析:5477【解析】【分析】根据算术平方根的小数点移动规律可直接得出.【详解】解: 5.477≈Q ,0.5477≈≈故答案为:0.5477.【点睛】本题考查了算术平方根的应用,注意:当被开方数的小数点每向左或向右移动两位,平方根的小数点就向左或向右移动一位.14.54°【解析】【分析】设∠BOD=x∠BOE=2x;根据题意列出方程2x+2x+x=180°得出x=36°求出∠AOC=∠BOD=36°即可求出∠AOF=90°-36°=54°【详解】解:设∠BOD解析:54°【解析】【分析】设∠BOD=x ,∠BOE=2x ;根据题意列出方程2x+2x+x=180°,得出x=36°,求出∠AOC=∠BOD=36°,即可求出∠AOF=90°-36°=54°.解:设∠BOD=x,∠BOE=2x,∵OE平分∠BOC,∴∠COE=∠EOB=2x,则2x+2x+x=180°,解得:x=36°,∴∠BOD=36°,∴∠AOC=∠BOD=36°,∵OF⊥CD,∴∠AOF=90°-∠AOC=90°-36°=54°;故答案为:54°.【点睛】本题考查了垂线、对顶角、邻补角的知识;弄清各个角之间的数量关系是解题的关键.15.【解析】【分析】由图象可以知道当x=-1时两个函数的函数值是相等的再根据函数的增减性可以判断出不等式k2x<k1x+b解集【详解】两条直线的交点坐标为(-12)且当x>-1时直线l2在直线l1的下方解析:1x>-【解析】【分析】由图象可以知道,当x=-1时,两个函数的函数值是相等的,再根据函数的增减性可以判断出不等式k2x<k1x+b解集.【详解】两条直线的交点坐标为(-1,2),且当x>-1时,直线l2在直线l1的下方,故不等式k2x <k1x+b的解集为x>-1.故答案为:x>-1.【点睛】此题考查一次函数与一元一次不等式,解题关键在于掌握两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.16.3m-n<10【解析】【分析】根据题意利用不等符号进行连接即可得出答案【详解】解:由题意可得:3m-n<10故答案为:3m-n<10【点睛】本题考查不等式的书写解析:3m-n<10.【解析】【分析】根据题意利用不等符号进行连接即可得出答案.【详解】解:由题意可得:3m-n<10故答案为:3m-n<10.本题考查不等式的书写.17.【解析】【分析】先求出不等式组的解集再根据不等式组有且只有三个整数解求出整数解得出即可【详解】解不等式组得:∵有三个整数解∴x=-101∴m 的取值范围是故答案为:【点睛】考查一元一次不等式组的整数解解析:21m -<≤-【解析】【分析】先求出不等式组的解集,再根据不等式组有且只有三个整数解求出整数解,得出21m -<≤-即可.【详解】解不等式组得:2,m x ≤<∵有三个整数解,∴x=-1,0,1,∴m 的取值范围是21m -<≤-.故答案为:21m -<≤-.【点睛】考查一元一次不等式组的整数解,解出不等式的解集是解题的关键.18.【解析】【分析】根据算术平方根的性质求出=3再求出3的算术平方根即可【详解】解:∵=33的算术平方根是∴的算术平方根是故答案为:【点睛】本题考查算术平方根的概念和求法正数的算术平方根是正数0的算术平【解析】【分析】,再求出3的算术平方根即可.【详解】,3,.【点睛】本题考查算术平方根的概念和求法,正数的算术平方根是正数,0的算术平方根是0,负数没有平方根.19.-3【解析】分析:解出已知方程组中xy 的值代入方程x+2y=k 即可详解:解方程组得代入方程x+2y=k 得k=-3故本题答案为:-3点睛:本题的实质是考查三元一次方程组的解法需要对三元一次方程组的定义解析:-3分析:解出已知方程组中x ,y 的值代入方程x+2y=k 即可.详解:解方程组236x y x y +=⎧⎨-=⎩, 得33x y ⎧⎨-⎩==, 代入方程x+2y=k ,得k=-3.故本题答案为:-3.点睛:本题的实质是考查三元一次方程组的解法.需要对三元一次方程组的定义有一个深刻的理解.方程组有三个未知数,每个方程的未知项的次数都是1,并且一共有三个方程,像这样的方程组,叫三元一次方程组.通过解方程组,了解把“三元”转化为“二元”、把“二元”转化为“一元”的消元的思想方法,从而进一步理解把“未知”转化为“已知”和把复杂问题转化为简单问题的思想方法.解三元一次方程组的关键是消元.解题之前先观察方程组中的方程的系数特点,认准易消的未知数,消去未知数,组成无该未知数的二元一次方程组.20.【解析】【分析】设购一件甲商品需要x 元一件乙商品需要y 元一件丙商品需要z 元建立方程组整体求解即可【详解】解:设购一件甲商品需要x 元一件乙商品需要y 元一件丙商品需要z 元由题意得把这两个方程相加得5x+ 解析:【解析】【分析】设购一件甲商品需要x 元,一件乙商品需要y 元,一件丙商品需要z 元,建立方程组,整体求解即可.【详解】解:设购一件甲商品需要x 元,一件乙商品需要y 元,一件丙商品需要z 元,由题意得 32315234285x y z x y z ++=⎧⎨++=⎩把这两个方程相加,得5x+5y+5z=600即5(x+y+z)=600∴x+y+z=120∴购甲、乙、丙三种商品各一件共需120元.故答案为120.【点睛】本题考查了三元一次方程组的建模及其特殊解法.根据系数特点,将两式相加,整体求解.三、解答题21.(1)降价10%(2)会亏本【分析】(1)设该种商品降价的百分率为x ,根据该商品的原价及经过两次降价后的价格,即可得出关于x 的一元二次方程,求解即可得到答案;(2)根据第二次降价后为324元,并且按照之前的降价率再次降价,可以计算出第三次降价后的价格,把第三次降价后的价格与进价比较,即可得到答案.【详解】(1)设每次降价的百分率为x则()24001%324x ⨯-=,解得:110x =,2190x =(舍去)∴降价10%(2)∵第二次降价后为324元,若商店考虑继续按之前的降价率再次降价,则第三次降价后为:()324110%291.6⨯-=元,∴291.6300<故会亏本【点睛】本题考查了一元二次方程的应用,解题的关键是找准等量关系,正确列出一元二次方程,在解题时要注意降价率是否发生变化.22.证明见解析.【解析】【分析】根据AD ∥BC 得到∠C=∠CDE ,再根据∠A=∠C ,利用等量替换得到∠A=∠CDE 即可判定;【详解】证明:∵AD ∥BC(已知),∴∠C=∠CDE(两直线平行,内错角相等),∵∠A=∠C(已知),∴∠A=∠CDE(等量代换),∴AB ∥CD(同位角相等,两直线平行);【点睛】本题主要考查了平行四边形的性质和判定,掌握直线平行内错角相等的性质和同位角相等两直线平行的判定法则是解题的关键.23.(1)这次抽取的学生数为120人;(2)补图见解析;(3)“D 级”部分所对应的扇形圆心角为36°;(4)有450份.【解析】分析:(1)根据A 级人数为24人,以及在扇形图中所占比例为20%,24÷20%即可得出抽查了多少名学生;(2)根据C级在扇形图中所占比例为30%,得出C级人数为:120×30%=36人,即可得出D级人数,补全条形图即可;(3)求得“D级”部分所占的百分数,再乘360°即可求出答案;(4)根据A级和B级作品在样本中所占比例为:(24+48)÷120×100%=60%,即可得出该校这次活动共收到参赛作品750份,参赛作品达到B级以上的份数.详解:(1)∵A级人数为24人,在扇形图中所占比例为20%,∴这次抽取的学生数为:24÷20%=120人;(2)根据C级在扇形图中所占比例为30%,得出C级人数为:120×30%=36人,∴D级人数为:120﹣36﹣24﹣48=12人,如图所示:(3)360°×12120=36°答:“D级”部分所对应的扇形圆心角为36°;(4)∵A级和B级作品在样本中所占比例为:(24+48)÷120×100%=60%,∴该校这次活动共收到参赛作品750份,参赛作品达到B级以上有750×60%=450份.点睛:考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.72 xy=⎧⎨=⎩【解析】【分析】方程组利用加减消元法求出解即可.【详解】解:(1)23238x yx y-=⎧⎨-=⎩①②,②×2-①×3得:x=7,把x=-1代入①得:7-2y=3,解得:y=2,则方程组的解为72 xy=⎧⎨=⎩【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.25.3212 ab⎧=⎪⎪⎨⎪=-⎪⎩【解析】【分析】对比两个方程组,可得a+b就是第一个方程组中的x,即a+b=1,同理:a﹣b=2,可得方程组解出即可.【详解】∵关于x、y的二元一次方程组3x my52x ny6-=⎧⎨+=⎩的解是12xy=⎧⎨=⎩,∴关于a.b的二元一次方程组3()()52()()6a b m a ba b n a b+--=⎧⎨++-=⎩满足12a ba b+=⎧⎨-=⎩,解得:3212ab⎧=⎪⎪⎨⎪=-⎪⎩.∴关于a.b的二元一次方程组3()()52()()6a b m a ba b n a b+--=⎧⎨++-=⎩的解是3212ab⎧=⎪⎪⎨⎪=-⎪⎩.【点睛】本题考查解二元一次方程组,通过对比得出以a、b为未知数的方程组是解题关键.。

人教版数学七年级下册5.4.1《平移的概念、平移的性》教学设计3

人教版数学七年级下册5.4.1《平移的概念、平移的性》教学设计3

人教版数学七年级下册5.4.1《平移的概念、平移的性》教学设计3一. 教材分析人教版数学七年级下册5.4.1《平移的概念、平移的性质》是学生在学习了平面几何基本概念和图形变换的基础上进行学习的。

本节内容主要让学生了解平移的概念,掌握平移的性质,并能够运用平移的性质解决一些实际问题。

教材通过丰富的图片和实例,引导学生探究平移的性质,培养学生的观察能力、操作能力和推理能力。

二. 学情分析七年级的学生已经具备了一定的几何知识,对平面几何的基本概念和图形变换有一定的了解。

但是,对于平移的概念和性质,学生可能还比较陌生。

因此,在教学过程中,教师需要通过生动形象的实例和直观的操作,让学生理解和掌握平移的性质。

三. 教学目标1.了解平移的概念,理解平移的性质。

2.能够运用平移的性质解决一些实际问题。

3.培养学生的观察能力、操作能力和推理能力。

四. 教学重难点1.平移的概念。

2.平移的性质。

五. 教学方法1.情境教学法:通过生动的实例和直观的操作,让学生理解和掌握平移的性质。

2.问题驱动法:引导学生通过观察、操作和思考,探索平移的性质。

3.合作学习法:鼓励学生分组讨论,共同解决问题。

六. 教学准备1.教学课件:制作精美的课件,展示平移的实例和操作过程。

2.教学素材:准备一些图片和实例,用于引导学生观察和操作。

3.教学工具:准备一些几何图形,如三角形、矩形等,用于让学生进行实际操作。

七. 教学过程1.导入(5分钟)利用课件展示一些生活中的平移现象,如电梯上升、滑滑梯等,引导学生关注平移现象,激发学生的学习兴趣。

2.呈现(10分钟)教师通过讲解和展示,介绍平移的概念,让学生理解平移是一种图形变换,图形在平移过程中,形状和大小不变,只是位置发生变化。

3.操练(10分钟)学生分组进行实际操作,利用教学工具,将一些几何图形进行平移,观察平移前后的变化,体会平移的性质。

4.巩固(10分钟)教师提出一些问题,引导学生思考和讨论,巩固平移的概念和性质。

中考数学复习:专题7-1 利用平移巧妙解题

专题01利用平移巧妙解题【专题综述】平移与轴对称一样,也是图形的一种基本变换,在日常生活应用也十分广泛.在解题中巧妙利用平移,可以起到化繁为简,事半功倍的效果.【方法解读】例1:如图,在长方形ABCD中,横向阴影部分是长方形,另一阴影部分是平行四边形,根据图中标明的数据,其中空白部分的面积是多少?【举一反三】如图在一块长为12m,宽为6m的长方形草地上,有一条弯曲的柏油小路(小路任何地方的水平宽度都是2m)则空白部分表示的草地面积是()A. 70B. 60C. 48D. 18二、求线段的长度例2:如图,某商场重新装修后,准备在大厅的主楼梯上铺设一种红色的地毯,已知这种地毯的批发价为每平方米40元,已知主楼梯道的宽为3米,其侧面如图2所示,则买地毯至少需要多少元?【举一反三】某学校准备在升旗台的台阶上铺设一种红色的地毯(含台阶的最上层),已知这种地毯的批发价为每平方米40元,升旗台的台阶宽为3米,其侧面如图所示.请你帮助测算一下,买地毯至少需要多少元?三、说明角的关系例3:如图,在四边形ABCD 中,AD ∥BC ,AB =CD ,AD <BC ,则∠B 与∠C 的数量关系怎样?试说明你的理由.【举一反三】如图,在梯形ABCD 中,AD ∥BC ,BD =CD ,AB <CD ,且∠ABC 为锐角,AD =4,BC =12,点E 为BC 上一动点。

试求:当CE 为何值时,四边形ABED 是等腰梯形?第21题图CDE BA四、比较线段的大小例4:如图,在△ABC 中,E 、F 分别为AB 、AC 上的点,且BE =CF ,则FE <BC 吗?为什么?【举一反三】如图所示,AD ∥BC ,∠ABC =80°,∠BCD =50°,利用平移的知识讨论BC 与AD +AB 的数量关系.五、最短路径设计例5:如图,A、B两城市之间有一条国道,国道的宽为a,现要在国道修建一座垂直于国道的立交桥,使通过A、B两城市路程最近,请你设计建桥的位置,并说明理论依据.【举一反三】如图,工厂A和工厂B被一条河隔开,它们到河的距离都是2km,两个工厂水平距离是3km,河宽1km,现在要架一座垂直于河岸的桥,使工厂A到工厂B的距离最短(河岸是平行的)①请画出架桥的位置(不写画法)②求从工厂A经过桥到工厂B的最短路程.【强化训练】1.如图,阴影部分的面积为 ( )A.a 2;B.2a 2;C.a 2;D.4a 2. 2.(1)已知图1将线段AB 向右平移1个单位长度,图2是将线段AB 折一下再向右平移1个单位长度,请在图3中画出一条有两个折点的折线向右平移1个单位长度的图形;(2)若长方形的长为a ,宽为b ,请分别写出三个图形中除去阴影部分后剩下部分的面积;(3)如图4,在宽为10 m ,长为40 m 的长方形菜地上有一条弯曲的小路,小路宽度为1 m ,求这块菜地的面积.3.如图,凯瑞酒店准备进行装修,把楼梯铺上地毯,已知楼梯的宽度是2米,楼梯的总长度为8米,总高度为6米,已知这种地毯每平方米的售价是60元.请你帮助酒店老板算下,购买地毯至少需要多少元?4.如图,张三打算在院落里种上蔬菜,已知院落为东西长32 m ,南北宽20 m 的长方形,为了行走方便,要修筑同样宽的三条道路:东西两条,南北一条,南北道路垂直于东西道路,余下的部分要分别种上西红柿、青椒、菜豆、黄瓜等蔬菜,若每条道路的宽均为1 m ,求蔬菜的总种植面积是多少?5.(阅读下面的题目及分析过程,并按要求进行证明.已知:如图,E是BC的中点,点A在DE上,且∠BAE=∠CDE.求证:AB=CD.分析:证明两条线段相等,常用的一般方法是应用全等三角形或等腰三角形的判定和性质,观察本题中要证明的两条线段,它们不在同一个三角形中,且它们分别所在的两个三角形也不全等.因此,要证AB=CD,必须添加适当的辅助线,构造全等三角形或等腰三角形.现给出如下三种添加辅助线的方法,请任意选择其中一种,对原题进行证明.6.已知抛物线y=ax2+bx+c与x轴交于A,B两点,顶点C的纵坐标为-2,现将抛物线向右平移2个单位,得到抛物线y=a1x2+b1x+c1,则下列结论正确的是____.(写出所有正确结论的序号)①b>0;②a-b +c<0;③阴影部分的面积为4;④若c=-1,则b2=4a.7.如图,已知直线a∥b,且a与b之间的距离为4,点A到直线a的距离为2,点B到直线b的距离为3,AB .试在直线a上找一点M,在直线b上找一点N,满足MN⊥a且AM+MN+NB的长度和最短,则此230时AM+NB=()A.6 B. 8 C. 10 D. 128.如图1,在▱ABEF中,AB=2,AF<AB,现将线段EF在直线EF上移动,在移动过程中,设线段EF的对应线段为CD,连接AD、BC.(1)在上述移动过程中,对于四边形的说法不正确的是BA.面积保持不变B.只有一个时刻为菱形C.只有一个时刻为矩形D.周长改变(2)在上述移动过程中,如图2,若将△ABD沿着BD折叠得到△A′BD(点A′与点C不重合),A′B交CD于点O.①试问A′C与BD平行吗?请说明理由;②若以A′、D、B、C为顶点的四边形是矩形,且对角线的夹角为60°,求AD的长.9.课外兴趣小组活动时,老师提出了如下问题:(1)如图1,△ABC中,若AB=5,AC=3,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD到E,使得DE=AD,再连接BE(或将△ACD绕点D逆时针旋转180°得到△EBD),把AB、AC、2AD 集中在△ABE中,利用三角形的三边关系可得2<AE<8,则1<AD<4.感悟:解题时,条件中若出现“中点”“中线”字样,可以考虑构造以中点为对称中心的中心对称图形或全等三角形,把分散的已知条件和所求证的结论集中到同一个三角形中.(2)问题解决:受到(1)的启发,请你证明下面命题:如图2,在△ABC中,D是BC边上的中点,DE⊥DF,DE交AB于点E,DF交AC于点F,连接EF.①求证:BE+CF>EF;②若∠A=90°,探索线段BE、CF、EF之间的等量关系,并加以证明;(3)问题拓展:如图3,在四边形ABDC中,∠B+∠C=180°,DB=DC,∠BDC=120°,以D为顶点作∠EDF为60°角,角的两边分别交AB、AC于E、F两点,连接EF,探索线段BE、CF、EF之间的数量关系,并加以证明.10.【探究证明】(1)某班数学课题学习小组对矩形内两条互相垂直的线段与矩形两邻边的数量关系进行探究,提出下列问题,请你给出证明.如图1,矩形ABCD中,EF⊥GH,EF分别交AB,CD于点E,F,GH分别交AD,BC于点G,H.求证: =;【结论应用】(2)如图2,在满足(1)的条件下,又AM⊥BN,点M,N分别在边BC,CD上,若=,则的值为;【联系拓展】(3)如图3,四边形ABCD中,∠ABC=90°,AB=AD=10,BC=CD=5,AM⊥DN,点M,N分别在边BC,AB上,求的值.。

沪科版七年级下册数学课件 第10章 相交线、平行线与平移 第1课时 平行线的概念、基本性质及三线八角


B. ∠3
23
45
C. ∠4
D. ∠5
归纳总结 变式图形:下图中的∠1 与∠2 都是内错角关系.
1
1
12
2
2
2
1
图形特征:在形如字母“Z”的图形中有内错角.
三、同旁内角的概念
活动3 观察∠4 与∠5 的位置关系
① 在直线 EF 的同旁
② 在直线 AB、CD 之间
E1 2
B
同旁内角
A
34
4
65
5
C
第10章 相交线、平行线 与平移
10.2 平行线的判定
第1课时 平行线的概念、基本事实及三线八角
回顾与思考 问题 前面我们学过两条直线的什么位置关系? 两条直线相交 (其中垂直是相交的特殊情形).
生活中两条直线除了相交以外,还有什么其他的 情形呢?下面我们一起来体会一下.
摩托车在公路上奔驰
国旗上的线条
解: 因为 a∥b,b∥c,所以 a∥c.
( 如果两条直线都与第三条直线平行,那么
这两条直线互相平行 )
因为 c∥d,所以 a∥d.
( 如果两条直线都与第三条直线平行,那么
这两条直线互相平行 )
生活中的数学:三线八角手势记忆法
同位角
内错角
同旁内角
平行线 的概念
平行线 及三线 八角
平行线 的性质
三线八角
合作与交流: (1) 经过点 C 能画出几条直线? 无数条
(2) 与直线 AB 平行的直线有几条? 无数条
·C
a
A· ·B
·D
b
(3) 经过点 C 能画出几条直线与直线 AB 平行?
1条 (4) 过点 D 画一条直线与直线 AB 平行,与 (3) 中所画

3.1生活中的平移1

§3.1生活中的平移教学目标:1、知识和技能目标:①经历观察、分析、操作、欣赏以及抽象、概括等过程,经历探索图形平移基本性质的过程以及与他人合作交流的过程,进一步发展空间观念,增强审美意识。

②通过具体实例认识平移,理解平移的基本内涵,理解平移前后两个图形对应点连线平行且相等、对应线段和对应角分别相等的性质。

2、情感与态度目标:①通过收集自己身边“平移”的实例,感受“生活处处有数学”,激发学生学习数学的兴趣。

②通过欣赏生活中平移图形与学生自己设计平移图案,使学生感受数学美,体会美的价值所在,进而追求美并创造美。

教学重点和难点:1、教学重点:探索图形平移的主要特征和基本性质。

2、教学难点:从生活中的平移现象中概括出平移的特征。

教学方法:采用自主探究式的教学方法,本着贯彻启发性、直观性、理论联系实际的教学原则,体现以教师为主导,学生为主体的教学思想,确定本节课的教学方法如下:①采用引导发现法:逐步呈现教学信息,突出教师的主导作用和学生的主体作用;突出独立性、又体现合作性。

通过学生自主学习、交流,师生互动,让学生自主获取知识。

②创设问题情境:营造和谐的教学氛围,引导学生的学习兴趣,激发求知欲望。

③讲练结合、步步设疑、逐渐深入、引导猜想、归纳总结、实验验证的探究式思维训练。

学习方法:观察——分析——探索——概括教学准备:多媒体课件的方向平移一定距离后成为△找出图中存在的平行且相等的三条线段和一组全等三角2.在下面的六幅图案中,(2)(3)(4)(5)(6)中的哪组织学生小结这节课所学小结本节课所学的内容。

的内容,并作适当的补充。

见作业本1.通过欣赏生活中平移图形与学生自己设计平移图案,使学生感受数学美,体会美的价值所在,进而追求美并创造美。

2.通过训练,强化对平移性质的理解与运用,培养学生自己解决问题的能力。

酒泉市九中七年级数学下册第10章相交线平行线与平移10.2平行线的判定第2课时平行线的判定方法1课件


第一章 有理数
1.4.2 有理数的除法 第2课时 有理数的加减乘除混合运算
1.(3分)计算6×(-2)-12÷(-4)的结果是D( ) A.10 B.0 C.-3 D.-9
2.(3分)计算(-12)÷【6+(-3)]的结果是D( ) A.2 B.6 C.4 D.-4
3.(3分)在等式(-8-K)÷(-2)=4中 , K表示的数是( D) A.1 B.-1 C.-2 D.0
8.(4分)用计算器计算 , 结果保留两位小数. (1)-2.78÷(-3)+36×(-1.8) ; 解 : 原式≈-63.87
(2)21.5+(-3.6)÷7×(-2.3). 解 : 原式≈22.68
9.(3分)小陈在一条东西走向的公路上自西向东散步 , 40分钟前 , 他在一家超市西面1 400米的地方 , 现在他走到了这家超市东面1 800米的地方 , 那么他行走的平均速度是每分钟_8_0__米.
同学们,你们要相信梦想是价值的源泉,相信成 功的信念比成功本身更重要,相信人生有挫折没 有失败,相信生命的质量来自决不妥协的信念,
考试加油!奥利给~
角的度量与计算
新课探究
我们用角的始边绕顶点旋转到终边位置的旋转量来度量 角的大小 , 旋转量用〞度”来表示.
把一个周角〔即它的旋转量〕 分为 360 等份 , 每一等份叫做 1 度 , 记做 1°.
(1)前后两部分之间存在着什么关系 ?
(2)先计算哪部分比较简便 ?并请你计算出结果.
(3)利用(1)中的关系 , 直接写出另一部分的结果.
(4)根据以上分析 , 求出原式的结果.
解:(1)前后两部分互为倒数 (2)先计算后一部分比较方便.
1 (4
+112
-178
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档