直线与椭圆怎么联立(1)

合集下载

直线与椭圆联立练习题

直线与椭圆联立练习题

直线与椭圆联立练习题直线与椭圆联立练习题直线与椭圆是数学中的两个基本概念,它们在几何学和代数学中有着广泛的应用。

本文将通过一些练习题来探讨直线与椭圆的关系,帮助读者更好地理解它们之间的联系。

练习题一:已知椭圆的方程为x^2/a^2 + y^2/b^2 = 1,直线的方程为y = mx + c。

求解直线与椭圆的交点坐标。

解答:将直线的方程代入椭圆的方程中,得到x^2/a^2 + (mx + c)^2/b^2 = 1。

将方程化简,得到(a^2 + b^2m^2)x^2 + 2bcmx + b^2c^2 - a^2b^2 = 0。

这是一个二次方程,通过求根公式可以求得x的值。

将x的值代入直线的方程,可以求得对应的y值。

这样就得到了直线与椭圆的交点坐标。

练习题二:已知直线的方程为y = mx + c,椭圆的焦点坐标为(-ae, 0)和(ae, 0),离心率为e。

求证直线与椭圆的交点到焦点的距离之和为常数。

解答:设直线与椭圆的交点坐标为(x1, y1)和(x2, y2)。

根据直线的方程,可以得到y1 = mx1 + c和y2 = mx2 + c。

根据椭圆的方程,可以得到x1^2/a^2 + y1^2/b^2= 1和x2^2/a^2 + y2^2/b^2 = 1。

将直线的方程代入椭圆的方程中,得到x1^2/a^2 + (mx1 + c)^2/b^2 = 1和x2^2/a^2 + (mx2 + c)^2/b^2 = 1。

将方程化简,得到(a^2 + b^2m^2)x1^2 + 2bcmx1 + b^2c^2 - a^2b^2 = 0和(a^2+ b^2m^2)x2^2 + 2bcmx2 + b^2c^2 - a^2b^2 = 0。

这是两个关于x1和x2的二次方程。

根据二次方程的性质,可以知道二次方程的根之和等于系数b的相反数除以系数a,即x1 + x2 = -2bc / (a^2 + b^2m^2)。

根据交点坐标的定义,可以知道交点到焦点的距离之和等于x1 + x2的绝对值,即|x1 + x2| = 2bc / (a^2 +b^2m^2)。

高二椭圆与直线相交知识点

高二椭圆与直线相交知识点

高二椭圆与直线相交知识点椭圆与直线是高二数学中的一种重要的几何关系,深入理解它们的相交性质对于解题和应用实践具有重要意义。

本文将介绍高二椭圆与直线相交的几个关键知识点。

一、椭圆与直线的方程在介绍椭圆与直线相交的知识点之前,我们先来了解椭圆和直线的方程。

椭圆的标准方程为:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$,其中$a$为椭圆的长半轴,$b$为椭圆的短半轴。

直线的一般方程为:$Ax+By+C=0$,其中$A,B,C$为实数且$A$与$B$不同时为零。

二、椭圆与直线相交的条件椭圆与直线相交的条件为:直线不经过椭圆的中心,且直线方程与椭圆方程联立可解,即联立方程有实数解。

三、椭圆与直线相交的情况分类根据椭圆与直线相交的情况,可以将其分为以下三种情况:1. 直线与椭圆相交于两个不同的点当直线与椭圆相交于两个不同的点时,此时直线既不是椭圆内切线也不是椭圆外切线,同时直线方程与椭圆方程联立可解。

2. 直线与椭圆相切于一个点当直线与椭圆相切于一个点时,此时直线既是椭圆内切线又是椭圆外切线,同时直线方程与椭圆方程联立有唯一实数解。

3. 直线与椭圆不相交当直线与椭圆不相交时,此时直线既不是椭圆内切线也不是椭圆外切线,同时直线方程与椭圆方程联立无实数解。

四、解题方法与实例在解决涉及椭圆与直线相交的问题时,可以采用以下方法:1. 代数法:将直线方程代入椭圆方程,联立方程求解解得交点坐标。

2. 几何法:利用椭圆和直线的性质进行几何推导,得出交点的几何特征。

以下为一个实例:例题:已知椭圆$\frac{x^2}{4}+\frac{y^2}{9}=1$,直线$2x-3y+4=0$,求椭圆与直线的交点坐标。

解:将直线方程代入椭圆方程,得到$\frac{(2x-3y+4)^2}{4^2}+\frac{y^2}{9}=1$。

化简方程得$4x^2-12xy+9y^2+48x-72y+48=64$,整理得$4x^2-12xy+9y^2+48x-72y-16=0$。

高中数学 同步学案 直线与椭圆的位置关系(习题课)

高中数学 同步学案 直线与椭圆的位置关系(习题课)

第二课时 直线与椭圆的位置关系(习题课)[新知初探]1.点与椭圆的位置关系点P(x 0,y 0)与椭圆x 2a 2+y2b2=1(a>b>0)的位置关系:点P 在椭圆上⇔x 20a 2+y 20b 2=1;点P 在椭圆内部⇔x 20a 2+y 20b 2<1;点P 在椭圆外部⇔x 20a 2+y 2b 2>1.2.直线与椭圆的位置关系直线y =kx +m 与椭圆x 2a 2+y2b 2=1(a>b>0)的位置关系,判断方法:联立⎩⎪⎨⎪⎧y =kx +m ,x 2a 2+y2b2=1,消y 得一元二次方程.当Δ>0时,方程有两解,直线与椭圆相交; 当Δ=0时,方程有一解,直线与椭圆相切; 当Δ<0时,方程无解,直线与椭圆相离. 3.直线与椭圆相交的弦长公式(1)定义:连接椭圆上两个点的线段称为椭圆的弦. (2)求弦长的方法①交点法:将直线的方程与椭圆的方程联立,求出两交点的坐标,然后运用两点间的距离公式来求. ②根与系数的关系法:如果直线的斜率为k,被椭圆截得弦AB 两端点坐标分别为(x 1,y 1),(x 2,y 2),则弦长公式为: |AB|=1+k 2·x 1+x 22-4x 1x 2=1+1k2·y 1+y 22-4y 1y 2.[小试身手]1.已知点(2,3)在椭圆x 2m 2+y2n 2=1上,则下列说法正确的是( )A .点(-2,3)在椭圆外B .点(3,2)在椭圆上C .点(-2,-3)在椭圆内D .点(2,-3)在椭圆上 答案:D2.直线y =x +1被椭圆x 24+y22=1所截得的弦的中点坐标是( )A.⎝ ⎛⎭⎪⎫23,53B.⎝ ⎛⎭⎪⎫43,73C.⎝ ⎛⎭⎪⎫-23,13 D.⎝ ⎛⎭⎪⎫-132,172 答案:C3.设F 1,F 2分别是椭圆x 225+y216=1的左、右焦点,P 为椭圆上一点,M 是F 1P 的中点,|OM|=3,则P 点到椭圆左焦点的距离为________.答案:4直线与椭圆的位置关系[典例] 对不同的实数值m,讨论直线y =x +m 与椭圆x 24+y 2=1的位置关系.[解] 由⎩⎪⎨⎪⎧y =x +m ,x 24+y 2=1,消去y,得x 24+(x +m)2=1, 整理得5x 2+8mx +4m 2-4=0.Δ=(8m)2-4×5(4m 2-4)=16(5-m 2). 当-5<m<5时,Δ>0,直线与椭圆相交; 当m =-5或m =5时,Δ=0,直线与椭圆相切; 当m<-5或m>5时,Δ<0,直线与椭圆相离.判断直线与椭圆的位置关系,通过解直线方程与椭圆方程组成的方程组,消去方程组中的一个变量,得到关于另一个变量的一元二次方程,则Δ>0⇔直线与椭圆相交; Δ=0⇔直线与椭圆相切;Δ<0⇔直线与椭圆相离. [活学活用]若直线y =kx +1与焦点在x 轴上的椭圆x 25+y2m =1总有公共点,求m 的取值范围.解:∵直线y =kx +1过定点A(0,1). 由题意知,点A 在椭圆x 25+y2m =1内或椭圆上,∴025+12m ≤1,∴m≥1. 又椭圆焦点在x 轴上∴m<5, 故m 的取值范围为[1,5).弦长及中点弦问题[典例] 已知点P(4,2)是直线l 被椭圆x 236+y29=1所截得的线段的中点.(1)求直线l 的方程;(2)求直线l 被椭圆截得的弦长. [解] (1)[法一 根与系数关系法] 由题意可设直线l 的方程为y -2=k(x -4), 而椭圆的方程可以化为x 2+4y 2-36=0. 将直线方程代入椭圆方程有(4k 2+1)x 2-8k(4k -2)x +4(4k -2)2-36=0. 所以x 1+x 2=8k4k -24k 2+1=8,解得k =-12. 所以直线l 的方程为y -2=-12(x -4),即x +2y -8=0. [法二 点差法]设直线l 与椭圆的交点为A(x 1,y 1),B(x 2,y 2),所以⎩⎪⎨⎪⎧x 21+4y 21-36=0,x 22+4y 22-36=0.两式相减,有(x 1+x 2)(x 1-x 2)+4(y 1+y 2)·(y 1-y 2)=0. 又x 1+x 2=8,y 1+y 2=4,所以y 1-y 2x 1-x 2=-12, 即k =-12.所以直线l 的方程为x +2y -8=0.(2)由题意可知直线l 的方程为x +2y -8=0,联立椭圆方程得x 2-8x +14=0.法一:解方程得⎩⎪⎨⎪⎧x 1=4+2,y 1=2-22, ⎩⎪⎨⎪⎧x 2=4-2,y 2=2+22,所以直线l 被椭圆截得的弦长为[4+2-4-2]2+⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫2-22-⎝ ⎛⎭⎪⎫2+222 =10.法二:因为x 1+x 2=8,x 1x 2=14. 所以直线l 被椭圆截得的弦长为1+⎝ ⎛⎭⎪⎫-12282-4×14=10.解决椭圆中点弦问题的两种方法(1)根与系数关系法:联立直线方程和椭圆方程构成方程组,消去一个未知数,利用一元二次方程根与系数的关系以及中点坐标公式解决;(2)点差法:利用交点在曲线上,坐标满足方程,将交点坐标分别代入椭圆方程,然后作差,构造出中点坐标和斜率的关系,具体如下:已知A(x 1,y 1),B(x 2,y 2)是椭圆x 2a 2+y2b 2=1(a>b>0)上的两个不同的点,M(x 0,y 0)是线段AB 的中点,则⎩⎪⎨⎪⎧x 21a 2+y 21b2=1, ①x 22a 2+y 22b 2=1, ②由①-②,得1a 2(x 21-x 22)+1b 2(y 21-y 22)=0,变形得y 1-y 2x 1-x 2=-b 2a 2·x 1+x 2y 1+y 2=-b 2a 2·x 0y 0,即k AB =-b 2x 0a 2y 0.已知椭圆C :x 2a 2+y 2b 2=1(a>b>0)的离心率为22,点(2,2)在C 上.(1)求C 的方程;(2)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A,B,线段AB 的中点为M.证明:直线OM 的斜率与直线l 的斜率的乘积为定值.解:(1)由题意有a 2-b 2a =22,4a 2+2b 2=1,解得a 2=8,b 2=4.所以C 的方程为x 28+y24=1.(2)证明:法一:设直线l :y =kx +b(k≠0,b≠0),A(x 1,y 1),B(x 2,y 2),M(x M ,y M ).将y =kx +b 代入x28+y 24=1,得(2k 2+1)x 2+4kbx +2b 2-8=0. 故x M =x 1+x 22=-2kb 2k 2+1,y M =k·x M +b =b 2k 2+1.于是直线OM 的斜率k OM =y M x M =-12k ,即k OM ·k=-12.所以直线OM 的斜率与直线l 的斜率的乘积为定值. 法二:设A(x 1,y 1),B(x 2,y 2),M(x M ,y M ),则⎩⎪⎨⎪⎧x 218+y 214=1, ①x 228+y 224=1, ②①-②得x 1+x 2x 1-x 28+y 1+y 2y 1-y 24=0,∴k AB =y 1-y 2x 1-x 2=-4x 1+x 28y 1+y 2=-12·x My M.又k O M =y M x M ,∴k AB ·k OM =-12.∴直线OM 的斜率与直线l 的斜率的乘积为定值.与椭圆有关的综合问题[典例] 在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a>b>0)的离心率e =22,且点P(2,1)在椭圆C上.(1)求椭圆C 的方程;(2)斜率为-1的直线与椭圆C 相交于A,B 两点,求△AOB 面积的最大值.[解] (1)由题意得⎩⎪⎨⎪⎧e =c a =22,4a 2+1b 2=1,a 2=b 2+c 2,∴⎩⎨⎧a =6,b =3,∴椭圆C 的方程为x 26+y23=1.(2)设直线AB 的方程为y =-x +m, 联立⎩⎪⎨⎪⎧y =-x +m ,x 26+y23=1,得3x 2-4mx +2m 2-6=0,∴⎩⎪⎨⎪⎧Δ>0,x 1+x 2=4m 3,x 1x 2=2m 2-63,∴|AB|=1+-12|x 1-x 2|=439-m 2,原点到直线的距离d =|m|2.∴S △OAB =12×43 9-m 2·|m|2=239-m2m 2≤23·9-m 2+m 22=322.当且仅当m =±322时,等号成立,∴△AOB 面积的最大值为322.求与椭圆有关的最值、范围问题的方法(1)定义法:利用定义转化为几何问题处理.(2)数形结合法:利用数与形的结合,挖掘几何特征,进而求解.(3)函数法:探求函数模型,转化为函数的最值问题,借助函数的单调性、基本不等式等求解,注意椭圆的范围.已知椭圆C 的方程为x 2a 2+y 2b 2=1(a>b>0),左、右焦点分别是F 1,F 2,若椭圆C 上的点P ⎝ ⎛⎭⎪⎫1,32到F 1,F 2的距离和等于4.(1)写出椭圆C 的方程和焦点坐标;(2)直线l 过定点M(0,2),且与椭圆C 交于不同的两点A,B,若∠AOB 为锐角(O 为坐标原点),求直线l 的斜率k 的取值范围.解:(1)由题意得2a =4,得a =2, 又点P ⎝ ⎛⎭⎪⎫1,32在椭圆x 2a 2+y 2b 2=1上,∴14+34b 2=1,解得b 2=1. ∴椭圆C 的方程为x 24+y 2=1,焦点F 1(-3,0),F 2(3,0).(2)由题意得直线l 的斜率存在且不为0,设l :y =kx +2,代入x 24+y 2=1,整理得(1+4k 2)x 2+16kx +12=0,Δ=(16k)2-4(1+4k 2)·12=16(4k 2-3)>0,得k 2>34.①设A(x 1,y 1),B(x 2,y 2),∴x 1+x 2=-16k 1+4k 2,x 1x 2=121+4k 2.∵∠AOB 为锐角,∴cos ∠AOB>0, 则OA ―→·OB ―→=x 1x 2+y 1y 2>0, 又y 1y 2=(kx 1+2)·(kx 2+2) =k 2x 1x 2+2k(x 1+x 2)+4,∴x 1x 2+y 1y 2=(1+k 2)x 1x 2+2k(x 1+x 2)+4 =(1+k 2)·121+4k 2+2k·⎝ ⎛⎭⎪⎫-16k 1+4k 2+4 =44-k21+4k 2>0, ∴k 2<4.② 由①②得34<k 2<4.解得-2<k<-32或32<k<2, ∴k 的取值范围是⎝ ⎛⎭⎪⎫-2,-32∪⎝ ⎛⎭⎪⎫32,2.层级一 学业水平达标1.直线y =kx -k +1与椭圆x 29+y24=1的位置关系为( )A .相切B .相交C .相离D .不确定解析:选B 直线y =kx -k +1可变形为y -1=k(x -1),故直线恒过定点(1,1),而该点在椭圆x 29+y24=1内部,所以直线y =kx -k +1与椭圆x 29+y24=1相交,故选B.2.过椭圆x 2a 2+y2b 2=1(a>b>0)的焦点F(c,0)的弦中最短弦长是( )A.2b 2a B.2a 2bC.2c 2aD.2c 2b解析:选A 最短弦是过焦点F(c,0)且与焦点所在直线垂直的弦.将点(c,y)的坐标代入椭圆x 2a 2+y2b 2=1,得y =±b 2a ,故最短弦长是2b2a.3.若直线kx -y +3=0与椭圆x 216+y24=1有两个公共点,则实数k 的取值范围是( )A.⎝ ⎛⎭⎪⎫-54,54 B.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫54,-54 C.⎝ ⎛⎭⎪⎫-∞,-54∪⎝ ⎛⎭⎪⎫54,+∞ D.⎝⎛⎭⎪⎫-∞,-54∪⎝ ⎛⎭⎪⎫-54,54 解析:选C 由⎩⎪⎨⎪⎧y =kx +3,x 216+y24=1得(4k 2+1)x 2+24kx +20=0,当Δ=16(16k 2-5)>0,即k>54或k<-54时,直线与椭圆有两个公共点.故选C. 4.已知椭圆C :y 29+x 2=1,过点P ⎝ ⎛⎭⎪⎫12,12的直线与椭圆C 相交于A,B 两点,且弦AB 被点P 平分,则直线AB 的方程为( )A .9x -y -4=0B .9x +y -5=0C .4x +2y -3=0D .4x -2y -1=0解析:选B 设A(x 1,y 1),B(x 2,y 2). ∵点A,B 在椭圆上,∴y 219+x 21=1,① y 229+x 22=1.② ①-②,得y 1+y 2y 1-y 29+(x 1+x 2)·(x 1-x 2)=0.③∵P ⎝ ⎛⎭⎪⎫12,12是线段AB 的中点, ∴x 1+x 2=1,y 1+y 2=1,代入③得y 1-y 2x 1-x 2=-9,即直线AB 的斜率为-9.故直线AB 的方程为y -12=-9⎝ ⎛⎭⎪⎫x -12, 整理得9x +y -5=0.5.已知椭圆C :x 22+y 2=1的右焦点为F,直线l :x =2,点A ∈l,线段AF 交椭圆C 于点B,若FA ―→=3FB ―→,则|AF ―→|=( )A. 2 B .2 C. 3D .3解析:选A 设点A(2,n),B(x 0,y 0). 由椭圆C :x 22+y 2=1知a 2=2,b 2=1,∴c 2=1,即c =1.∴右焦点F(1,0). 由FA ―→=3FB ―→得(1,n)=3(x 0-1,y 0). ∴1=3(x 0-1)且n =3y 0. ∴x 0=43,y 0=13n.将x 0,y 0代入x 22+y 2=1,得12×⎝ ⎛⎭⎪⎫432+⎝ ⎛⎭⎪⎫13n 2=1. 解得n 2=1, ∴|AF ―→|=2-12+n 2=1+1= 2.6.已知斜率为2的直线l 经过椭圆x 25+y24=1的右焦点F 1,与椭圆交于A,B 两点,则|AB|=________.解析:因为直线l 经过椭圆的右焦点F 1(1,0),且斜率为2,则直线l 的方程为y =2(x -1),即2x -y -2=0.由⎩⎪⎨⎪⎧2x -y -2=0,x 25+y24=1得3x 2-5x =0.设A(x 1,y 1),B(x 2,y 2),则x 1+x 2=53,x 1x 2=0,所以|AB|=1+k 2·x 1+x 22-4x 1x 2=1+22⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫532-4×0=553. 答案:5537.已知F 1,F 2是椭圆的两个焦点,满足MF 1―→·MF 2―→=0的点M 总在椭圆内部,则椭圆离心率的取值范围是________.解析:∵MF 1―→⊥MF 2―→,∴点M 在以F 1F 2为直径的圆上,又点M 在椭圆内部,∴c<b,∴c 2<b 2=a 2-c 2,即2c 2<a 2,∴c 2a 2<12,即c a <22.又e>0,∴0<e<22. 答案:⎝ ⎛⎭⎪⎫0,22 8.已知动点P(x,y)在椭圆x 225+y 216=1上,若A 点坐标为(3,0),|AM ―→|=1,且PM ―→·AM ―→=0,则|PM ―→|的最小值是________.解析:易知点A(3,0)是椭圆的右焦点.∵PM ―→·AM ―→=0, ∴AM ―→⊥PM ―→.∴|PM ―→|2=|AP ―→|2-|AM ―→|2=|AP ―→|2-1,∵椭圆右顶点到右焦点A 的距离最小,故|AP ―→|min =2,∴|PM ―→|min = 3. 答案: 39.设椭圆C :x 2a 2+y 2b 2=1(a>b>0)过点(0,4),离心率为35.(1)求C 的方程;(2)求过点(3,0)且斜率为45的直线被C 所截线段的中点坐标.解:(1)将(0,4)代入C 的方程得16b 2=1,∴b =4.又e =c a =35,得a 2-b 2a 2=925,即1-16a 2=925,∴a =5,∴C 的方程为x 225+y216=1.(2)过点(3,0)且斜率为45的直线方程为y =45(x -3).设直线与C 的交点为A(x 1,y 1),B(x 2,y 2),将直线方程y =45(x -3)代入C 的方程,得x 225+x -3225=1,即x 2-3x -8=0,解得x 1+x 2=3,∴AB 的中点坐标 x 0=x 1+x 22=32,y 0=y 1+y 22=25(x 1+x 2-6)=-65,即中点坐标为⎝ ⎛⎭⎪⎫32,-65.10.如图,已知椭圆x 2a 2+y2b 2=1(a>b>0),F 1,F 2分别为椭圆的左、右焦点,A 为椭圆的上顶点,直线AF 2交椭圆于另一点B.(1)若∠F 1AB =90°,求椭圆的离心率;(2)若椭圆的焦距为2,且AF 2―→=2F 2B ―→,求椭圆的方程.解:(1)若∠F 1AB =90°,则△AOF 2为等腰直角三角形.所以有|OA|=|OF 2|,即b =c. 所以a =2c,e =c a =22.(2)由题知A(0,b),F 2(1,0),设B(x,y),由AF 2―→=2F 2B ―→,解得x =32,y =-b 2.代入x 2a 2+y 2b 2=1,得94a 2+b24b 2=1,即94a 2+14=1,解得a 2=3,b 2=2,所以椭圆方程为x 23+y22=1.层级二 应试能力达标1.若直线mx +ny =4和圆O :x 2+y 2=4没有交点,则过点P(m,n)的直线与椭圆x 29+y24=1的交点个数为( )A .2B .1C .0D .0或1解析:选A 由题意,得4m 2+n 2 >2,所以m 2+n 2<4,则-2<m<2,-2<n<2,所以点P(m,n)在椭圆x 29+y24=1内,则过点P(m,n)的直线与椭圆x 29+y24=1有2个交点.故选A.2.椭圆mx 2+ny 2=1与直线y =1-x 交于M,N 两点,过原点与线段MN 中点所在直线的斜率为22,则mn的值是( )A.22B.233C.922D.2327解析:选A 由⎩⎪⎨⎪⎧mx 2+ny 2=1,y =1-x消去y 得,(m +n)x 2-2nx +n -1=0.设M(x 1,y 1),N(x 2,y 2),MN 中点为(x 0,y 0), 则x 1+x 2=2n m +n ,∴x 0=n m +n, 代入y =1-x 得y 0=mm +n. 由题意y 0x 0=22,∴m n =22,选A.3.若点(x,y)在椭圆4x 2+y 2=4上,则y x -2的最小值为( )A .1B .-1C .-233D .以上都不对解析:选C 设yx -2=k,则y =k(x -2). 由⎩⎪⎨⎪⎧4x 2+y 2=4,y =k x -2消去y,整理得(k 2+4)x 2-4k 2x 2+4(k 2-1)=0, Δ=16k 4-4×4(k 2-1)(k 2+4)=0, 解得k =±233,∴k min =-233.选C.4.已知椭圆E :x 2a 2+y2b 2=1(a>b>0)的右焦点为F(3,0),过点F 的直线交E 于A,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( )A.x 245+y236=1 B.x 236+y227=1 C.x 227+y218=1D.x 218+y29=1 解析:选D 因为直线AB 过点F(3,0)和点(1,-1), 所以直线AB 的方程为y =12(x -3),代入椭圆方程x 2a 2+y2b 2=1消去y,得⎝ ⎛⎭⎪⎫a24+b 2x 2-32a 2x +94a 2-a 2b 2=0,所以AB 的中点的横坐标为32a 22⎝ ⎛⎭⎪⎫a 24+b 2=1,即a 2=2b 2,又a 2=b 2+c 2,所以b =c =3. 所以E 的方程为x 218+y29=1.5.过点M(1,1)作斜率为-12的直线与椭圆C :x 2a 2+y2b 2=1(a>b>0)相交于A,B 两点,若M 是线段AB 的中点,则椭圆C 的离心率等于________.解析:设A(x 1,y 1),B(x 2,y 2),分别代入椭圆方程相减得x 1-x 2x 1+x 2a2+y 1-y 2y 1+y 2b2=0,根据题意有x 1+x 2=2×1=2,y 1+y 2=2×1=2,且y 1-y 2x 1-x 2=-12,所以2a 2+2b 2×⎝ ⎛⎭⎪⎫-12=0,得a 2=2b 2,所以a 2=2(a 2-c 2),整理得a 2=2c 2,所以c a =22,即e =22.答案:226.在离心率为32的椭圆x 2a 2+y 2b 2=1(a>b>0)上任取一点M,过M 作MN 垂直y 轴于点N,若MP ―→=12MN ―→,点P 的轨迹图形的面积为π,则a 的值为________.解析:设P(x,y),M(x 0,y 0),则N(0,y 0), 由条件MP ―→=12MN ―→可知点P 是线段MN 的中点,故⎩⎪⎨⎪⎧x =12x 0,y =y 0,即⎩⎪⎨⎪⎧x 0=2x ,y 0=y ,由离心率为c a =32,可得4c 2=3a 2,即4a 2-4b 2=3a 2,故a =2b. 故椭圆方程为x 24b 2+y2b 2=1,把点M(x 0,y 0)代入可得2x24b2+y2b2=1, 即x 2+y 2=b 2,表示半径为b 的圆,面积为πb 2=π. 故b =1,a =2b =2.答案:27.在平面直角坐标系xOy 中,点P 到两点(0,-3),(0,3)的距离之和等于4,设点P 的轨迹为C. (1)求C 的方程;(2)设直线y =kx +1与C 交于A,B 两点,k 为何值时OA ―→⊥OB ―→?此时|AB|的值是多少.解:(1)设P(x,y),由椭圆的定义知,点P 的轨迹C 是以(0,-3),(0,3)为焦点,长半轴长为2的椭圆,它的短半轴长b =22-32=1.故曲线C 的方程为y 24+x 2=1.(2)设A(x 1,y 1),B(x 2,y 2),联立⎩⎪⎨⎪⎧y =kx +1,y 2+4x 2=4.消去y,并整理,得(k 2+4)x 2+2kx -3=0. 由根与系数的关系得 x 1+x 2=-2k k 2+4,x 1x 2=-3k 2+4. 若OA ―→⊥OB ―→,则x 1x 2+y 1y 2=0. 因为y 1y 2=(kx 1+1)(kx 2+1) =k 2x 1x 2+k(x 1+x 2)+1,所以x 1x 2+y 1y 2=-3k 2+4-3k 2k 2+4-2k2k 2+4+1=-4k 2-1k 2+4=0,所以k =±12.当k =±12时,x 1+x 2=∓417,x 1x 2=-1217.所以|AB|=1+k 2·x 1+x 22-4x 1x 2=54×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫±4172+4×1217=46517.8.在直角坐标平面内,已知点A(2,0),B(-2,0),P 是平面内一动点,直线PA,PB 斜率之积为-34.(1)求动点P 的轨迹C 的方程;(2)过点⎝ ⎛⎭⎪⎫12,0作直线l 与轨迹C 交于E,F 两点,线段EF 的中点为M,求直线MA 的斜率k 的取值范围. 解:(1)设P 点的坐标为(x,y), 依题意,有y x -2·y x +2=-34(x≠±2),化简并整理,得x 24+y23=1(x≠±2).∴动点P 的轨迹C 的方程是x 24+y23=1(x≠±2).(2)依题意,直线l 过点⎝ ⎛⎭⎪⎫12,0且斜率不为零,故可设其方程为x =my +12,联立⎩⎪⎨⎪⎧x =my +12,x 24+y23=1消去x,并整理得4(3m 2+4)y 2+12my -45=0,∴Δ>0恒成立. 设E(x 1,y 1),F(x 2,y 2),M(x 0,y 0), 则y 1+y 2=-3m 3m 2+4,∴y 0=y 1+y 22=-3m23m 2+4, ∴x 0=my 0+12=23m 2+4,∴k =y 0x 0-2=m4m 2+4.①当m =0时,k =0; ②当m≠0时,k =14m +4m.∵⎪⎪⎪⎪⎪⎪4m +4m =4|m|+4|m|≥8,∴0<1⎪⎪⎪⎪⎪⎪4m +4m ≤18,∴0<|k|≤18,∴-18≤k≤18且k≠0. 综合①②可知直线MA 的斜率k 的取值范围是⎣⎢⎡⎦⎥⎤-18,18.。

直线与椭圆的位置关系-高中数学复习

直线与椭圆的位置关系-高中数学复习

点, O 为坐标原点,若 AB ∥ OP ,则椭圆的焦距为(
C. 1

D. 2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
目录
高中总复习·数学
解析: 由题意知, F 1(- c ,0), A ( a ,0), B (0,1),
1
1
则点 P (- c , ),所以直线 BA 的斜率 kBA =- ,直线 PO 的斜


1

1
1
1
率 kPO = =- .由 BA ∥ PO ,得 kBA = kPO ,所以- =- ,则




c =1,所以椭圆的焦距为2 c =2.故选D.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
目录
高中总复习·数学
4.
2
(2023·新高考Ⅱ卷5题)已知椭圆 C : + y 2=1的左、右焦点分别
2

(1 +2 )(1 −2 )
=0,
1 −2
2 1 +2
2
1

=- 2 ×
=2,∴ 2 = ,
1 −2


2
1 +2
2

故椭圆的离心率 e = =

1−
2
2
= .
2

2
目录
高中总复习·数学
1
2
2
(2)已知斜率为- 且不经过坐标原点 O 的直线与椭圆 + =1相

2022届高考数学一轮复习(新高考版) 第8章 第2课时 直线与椭圆

2022届高考数学一轮复习(新高考版) 第8章  第2课时 直线与椭圆

(2)若椭圆C的短轴长为2,过点F2的直线l与椭圆C相交于P,Q两点,且 —F1→P⊥—F1→Q ,求直线l的方程.
解 易知椭圆 C 的方程为x22+y2=1, 当直线l的斜率不存在时,其方程为x=1,不符合题意; 当直线l的斜率存在时,设直线l的方程为y=k(x-1),
y=kx-1, 由x22+y2=1, 得(2k2+1)x2-4k2x+2(k2-1)=0, Δ=8(k2+1)>0, 设P(x1,y1),Q(x2,y2), 则 x1+x2=2k42k+2 1,x1x2=22kk22+-11,
所以直线 AB 的方程为 y=12x-3 或 y=x-3, 即x-2y-6=0或x-y-3=0.
思维升华
(1)解答直线与椭圆相交的题目时,常用到“设而不求”的方法,即联立 直线和椭圆的方程,消去y(或x)得一元二次方程,然后借助根与系数的关 系,并结合题设条件,建立有关参变量的等量关系求解. (2)涉及直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不 存在等特殊情形.
当 Δ>0,即-3 2<m<3 2时,方程③有两个不同的实数根,可知原方程组
有两组不同的实数解.这时直线 l 与椭圆 C 有两个不重合的公共点.
(2)有且只有一个公共点;
解 当 Δ=0,即 m=±3 2时,方程③有两个相同的实数根,可知原方程组 有两组相同的实数解. 这时直线l与椭圆C有两个互相重合的公共点,即直线l与椭圆C有且只有 一个公共点.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2.直线 y=kx-k+1 与椭圆x92+y42=1 的位置关系为
√A.相交
C.相离
B.相切 D.不确定
解析 由题意得直线y-1=k(x-1)恒过定点(1,1), 而点(1,1)在椭圆x92+y42=1 的内部,所以直线与椭圆相交.故选 A.

直线与椭圆的位置关系

直线与椭圆的位置关系

直线与椭圆的位置关系【重要考点】1. 直线与椭圆的位置关系及判断方法(1)直线和椭圆有三种位置关系:相交、 相切 、 相离 ;(2)直线和椭圆的位置关系的判断:设直线方程:y =kx +m ,椭圆方程:22221x y a b+=(0a b >>),两方程联立消去y 可得:Ax 2+Bx +C =0,其判别式为Δ=B 2-4AC 。

当Δ>0时,直线与椭圆 相交 ; 当Δ=0时,直线与椭圆 相切 ; 当Δ<0时,直线与椭圆 相离 。

2. 向量的运算及其中一些特殊几何关系在直线和椭圆解题中的运用,例如直线AB ⊥AC 可转化为0AB AC ⋅=。

【易错点辨析】解答直线和椭圆相关问题要注意避免出现如下两种错误:(1)对直线l 斜率的存在性不作讨论而直接设为点斜式,出现漏解或思维不全造成步骤缺失;(2)对二次项系数不为零或Δ≥0这个前提忽略而直接使用根与系数的关系。

例题1 在直角坐标系xOy 中,椭圆C :x 24+y 23=1的左、右焦点分别为F 1、F 2,点M(23,263)为C 上的一点,点N 满足MN →=MF 1→+MF 2→,直线l ∥MN ,且与曲线C 交于A 、B 两点,若以AB 为直径的圆经过坐标原点O ,求直线l 的方程。

解析:由MN →=MF 1→+MF 2→知四边形MF 1NF 2是平行四边形,其中心为坐标原点O ,因为l ∥MN ,所以l 与OM 的斜率相同。

故l 的斜率k =26323=6。

设l 的方程为y =6(x -m )。

由⎩⎨⎧3x 2+4y 2=12,y =6(x -m ),消去y 并化简得 9x 2-16mx +8m 2-4=0。

设A (x 1,y 1),B (x 2,y 2),x 1+x 2=16m9,x 1x 2=8m 2-49。

因为OA ⊥OB ,所以x 1x 2+y 1y 2=0。

x 1x 2+y 1y 2=x 1x 2+6(x 1-m )(x 2-m ) =7x 1x 2-6m (x 1+x 2)+6m 2 =7·8m 2-49-6m ·16m9+6m 2=19(14m 2-28)=0。

新高考数学椭圆-第2课时 直线与椭圆的位置关系精品课件

课堂考点探究
解:易知F1(-1,0),F2(1,0).①当直线l的斜率存在时,设直线l的方程为y=k(x-1),设A(x1,y1),B(x2,y2),由消去y得(1+2k2)x2-4k2x+2k2-2=0,∴x1+x2=,x1·x2=.∵A(x1,y1),B(x2,y2)在椭圆C上,∴=1-,=1-,∴|AF1|===,
课堂考点探究
解:将直线l的方程与椭圆C的方程联立,得方程组将①代入②,整理得7x2+8mx+4m2-12=0③.方程③根的判别式Δ=(8m)2-4×7×(4m2-12)=-48m2+336.(1)当Δ>0,即-<m<时,方程③有两个不同的实数根,可知原方程组有两组不同的实数解,这时直线l与椭圆C有两个不重合的公共点.(2)当Δ=0,即m=±时,方程③有两个相同的实数根,可知原方程组有两组相同的实数解,这时直线l与椭圆C有两个互相重合的公共点,即直线l与椭圆C有且只有一个公共点.
课堂考点探究
例3 已知椭圆M:+=1(a>b>0)的左、右顶点分别为A,B,左焦点为F,椭圆M的离心率为,且过点.(2)若过点N(1,1)的直线与椭圆M交于P,Q两点,且线段PQ的中点恰为点N,求直线PQ的方程.
解:设P(xP,yP),Q(xQ,yQ),∵线段PQ的中点恰为点N,∴xP+xQ=2,yP+yQ=2.由题知+=1,+=1,两式相减可得(xP+xQ)(xP-xQ)+(yP+yQ)·(yP-yQ)=0,∴=-,即直线PQ的斜率为-,∴直线PQ的方程为y-1=-(x-1),即3x+4y-7=0.
课堂考点探究
例2 [2021·辽宁辽阳一模] 已知椭圆C:+=1(a>b>0)的左、右焦点分别为F1,F2,离心率为,且点在C上.(2)设过F2的直线l与C交于A,B两点,若|AF1|·|BF1|=,求|AB|.

直线与椭圆问题的常规解题方法

====Word 行业资料分享--可编辑版本--双击可删====源-于-网-络-收-集 直线与椭圆问题的常规解题方法:1.设直线与方程;(提醒:①设直线时分斜率存在与不存在;②设为n my x b kx y +=+=与的区别)2.设交点坐标;(提醒:之所以要设是因为不去求出它,即“设而不求”)3.联立方程组;4.消元韦达定理;(提醒:抛物线时经常是把抛物线方程代入直线方程反而简单)5.根据条件重转化;常有以下类型:①“以弦AB 为直径的圆过点0”(提醒:需讨论K 是否存在)001212121=+⇔=•⇔-=•⇔⊥⇔y y x x OB OA k k OB OA②“点在圆内、圆上、圆外问题”⇔“直角、锐角、钝角问题” ⇔“向量的数量积大于、等于、小于0问题”0,0,02121<=>+⇔y y x x ; ③“等角、角平分、角互补问题” 斜率关系(21210k k k k ==+或);④“共线问题”(如:QB AQ λ=数的角度:坐标表示法;形的角度:距离转化法);(如:A 、O 、B 三点共线直线OA 与OB 斜率相等);⑤“点、线对称问题” ⇔坐标与斜率关系;⑥“弦长、面积问题”⇔转化为坐标与弦长公式问题(提醒:注意两个面积公式 的 合理选择);6.化简与计算;7.细节问题不忽略;①判别式是否已经考虑;②抛物线、双曲线问题中二次项系数是否会出现0.二、基本解题思想:1、“常规求值”问题:需要找等式,“求范围”问题需要找不等式;2、“是否存在”问题:当作存在去求,若不存在则计算时自然会无解;3、证明定值问题的方法:⑴常把变动的元素用参数表示出来,然后证明计算结果与参数无关;⑵也可先在特殊条件下求出定值,再给出一般的证明。

4、处理定点问题的方法:⑴常把方程中参数的同次项集在一起,并令各项的系数为零,求出定点;⑵也可先取参数的特殊值探求定点,然后给出证明,5、求最值问题时:将对象表示为变量的函数,几何法、配方法(转化为二次函数的最值)、三角代换法(转化为三角函数的最值)、利用切线的方法、利用均值不等式的方法等再解决;6、转化思想:有些题思路易成,但难以实施。

直线与椭圆相交问题


联立方程求解法
总结词
直接、准确、快速
详细描述
联立方程求解法是解决直线与椭圆相交问题的一种坐标。这种方法直观、准确、快速,但需要一定的代数运算基础。
参数方程求解法
总结词
间接、参数、易错
详细描述
参数方程求解法是通过引入参数变量,将直线和椭圆的方程转化为参数方程,然 后通过解参数方程得到交点的坐标。这种方法虽然较为间接,但可以借助参数的 特性简化运算,但也可能因为参数的复杂性导致计算错误。
从物理角度的判定条件
• 光学性质:当光线从空气进入介质时,传播方向会发生改变。如果光 线从椭圆的一个焦点出发并穿过另一个焦点,则传播方向不变。因此 ,通过观察光线的传播方向是否改变,可以判断直线与椭圆是否相交 。当传播方向改变时,直线与椭圆相离;当传播方向不变时,直线与 椭圆相交。
04
直线与椭圆相交的解法
几何法求解法
总结词
直观、易于理解、但繁琐
详细描述
几何法求解法是通过分析直线的性质和椭圆的几何特征,借助几何关系找出 交点。这种方法直观且易于理解,但较为繁琐,需要较强的空间想象能力和 几何分析能力。
05
直线与椭圆相交的应用
在数学领域的应用
01
解析几何
直线和椭圆是解析几何中的基本图形,研究它们的相交问题可以深化
03
02
联立方程
椭圆方程
标准形式的椭圆方程为(x - a)^2 / b^2 + (y - c)^2 / d^2 = 1,其中 a、b、c和d为椭圆的半轴长。
将直线方程和椭圆方程联立,形 成二元二次方程组。
04 判别式
通过计算联立方程的判别式,可以 判断直线与椭圆是否有交点
从几何角度的判定条件

椭圆与直线位置关系-精心制作!

y x 1 由 x2 消去 y 并化简整理得 2 y 1 2
2
2
y 2 1 的两个焦点坐标 F1 (1, 0), F2 (1, 0)
3x 4x 0
4 ∴ AB ( x1 x2 )2 ( y1 y2 )2 2( x1 x2 )2 2 ( x1 x2 )2 4 x1 x2 = 3 2
2
= 2
例2:当m取何值时,直线l: y x m 与椭圆 2x 2 3y2 6 相交、相切、相离? 解:联立方程组
2
{ 2x 3y 6
2 2
yxm
2
消y得:
5x 6mx 3m 6 0
6m 4 5 3m 6
2 2


24m 2 120 相离 0, 则m 5或m 5
中点弦问题
关于中点的问题一般可采用两种方法解决:
(1)联立方程组,消元,利用根与系数的关系进行
设而不解,从而简化运算解题;
(2)利用“点差法”,求出与中点、斜率有关的式
子,进而求解.
= 2[x1+x22-4x1x2]= 2 = 10-8m2, 5 所以当 m=0 时,d 最大,此时直线方程为 y=x. 4m2 4 2 2[ - m -1] 25 5
题型:中点弦问题
例4 :已知椭圆 过点P(2,1)引一弦,使弦在这点被 平分,求此弦所在直线的方程. 解:
韦达定理→斜率
韦达定理法:利用韦达定理及中点坐标公式来构造
解得k1 =25,k 2 =-25
由图可知k 25.
解:∵椭圆
x2 y2 1 的左、右 例7 例 2:已知点 F1 、F2 分别是椭圆 2 1 焦点,过 F2 作倾斜角为 的直线,求 △F1 AB 的面积. 4 x2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.直线与椭圆怎么联立
2.圆的诸多性质
3.参数方程
4.点差法
5.极点极线
6.仿射
7.极坐标应用
1.直线与椭圆怎么联立
答:设y=kx+b,韦达定理

1.为了防止把b看成6,一般设y=kx+m
2.定点(0,m)在y轴上,设直线为y=kx+m。定点(n,0)在x轴上,设直线
为x=ky+n。称仿斜截式。

2.圆的诸多性质--一方面也是为仿射做铺垫
切割线定理
相交弦定理
垂径定理
垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧。
第二定义

扇形的面积底乘高除以二(弧长乘半径除以二)
Apollonius圆
平面内到两个定点的距离之比为常数k(k≠1)的点的轨迹是圆,这个圆就是阿
波罗圆。
已知:定点M(c,0),N(-c,0),P(x,y)
求证:平面内到两个定点M,N的距离之比为常数k(k≠1)的点P的轨迹是圆
证明:
d1=√[(x-c)²+y²]
d2=√[(x+c)²+y²]
d1/d2=√[(x-c)²+y²]/√[(x+c)²+y²]=k
通分后化简得(k²-1)x²+(k²-1)y²+(k²+1)x+(k²-1)c²=0
约分 x²+y²+(k²+1)/(k²-1)x+c²=0
此形式为圆的一般方程。
3.参数方程怎么搞
参数方程一般联立时切勿使用

4.点差法
5.极点极线
定义:
对于二次曲线C:Ax²+By²+Cx+Dy+E=0和一点P(x0,y0)
其中A²+B²≠0,P不在曲线的中心和渐近线上
用x0*x代x²,yo*y代y²,(x0+x)/2代x,(yo+y)/2代y,得到一条直线
方程

则称点P和直线l是关于曲线C的一对极点和极线
即点P是直线l关于曲线C的极点,直线l是点P关于曲线C的极线。
特殊的,焦点和准线是曲线的一对特殊的极点和极线。
其实,圆与椭圆的切线与渐切线就是特殊的极线,如图

椭圆类似,即
极点极线的性质:
一般的有如下性质(焦点所在区域为曲线内部)
①若P在曲线上,则P的极线是曲线的切线
②若P在曲线内,则P的极线与以P为中点弦平行(仅是斜率相等)
③若P在曲线外,则P的极线是过P做曲线的两条切线的切点的连线。
如图:

注:②的用处就是快速求出中点弦的斜率,比点差法求快。但正规告示应使用点
差法。
④极点与极线的对偶性
已知P和极线L是关于曲线的极点极线,则L上任一点Pn对应的继续Ln必过点
P,
反之亦然,任意过点P的直线Ln对应的极点Pn必在直线L上。
如图
⑤过点P作曲线C的两条割线L1、L2,L1交曲线C于AB,L2交曲线C于MN,
则直线AM、BN的交点T,直线AN、BM的交点S必都落在点P关于曲线C的极线
L上。

⑥点P是曲线C的极点,他对应的极线为L,则有
Ⅰ.若C为椭圆或双曲线,O是C的中心,直线OP交C与R,交L于Q,则OP*OQ=OR²
即OP/OR=OR/OQ
椭圆如图

Ⅱ.若曲线为抛物线,过点P作对称轴的平行线交C于R,交L于Q,则PR=QR
如图
椭圆方程是x²/3+y²=1

N是极点,性质⑤,代入极点5x/3+0y=1则x=3/5
故定点是(3/5,0)

6.仿射

圆里面内接四边形最大面积是正方形,三角形最大面积是正三角形
所以,椭圆里内接四边形面积就是拉过之后的面积
拉过之后比例不变,即AC:BC=AC:BC
a=2,b=1
在圆里面,斜率为1的时候,PA²+PB²=AB²=2
所以,在椭圆里斜率是1/2,定值是1²+2²=5
7.极坐标
过焦点就用极坐标

其中e表示离心率,p表示焦点到准线的距离。
如果e < 1,曲线为椭圆,
如果e = 1,曲线为抛物线,
如果e > 1,则表示双曲线。

相关文档
最新文档