拉普拉斯变换公式总结

合集下载

拉普拉斯变换微分定理

拉普拉斯变换微分定理

拉普拉斯变换微分定理拉普拉斯变换微分定理引言:在数学中,拉普拉斯变换是一种非常重要的数学工具,可以将一个函数f(t)转换为另一个函数F(s),从而方便地求解一些复杂的微积分方程。

在实际应用中,拉普拉斯变换经常被用来解决电路、控制系统、信号处理等领域的问题。

本文将介绍拉普拉斯变换的微分定理,这是应用最广泛的定理之一。

第一部分:定义与性质1.1 定义设f(t)为t≥0上的一个连续函数,则其Laplace变换F(s)定义为:F(s)= L{f(t)}=∫0∞e^(-st)f(t)dt其中s为复数。

1.2 性质(1)线性性:对于任意常数a,b和函数f(t),g(t),有:L{af(t)+bg(t)}=aL{f(t)}+bL{g(t)}(2)时移性:对于任意常数a和函数f(t),有:L{e^(at)f(t)}=F(s-a)(3)频移性:对于任意常数a和函数f(t),有:L{f(at)}=1/aF(s/a)(4)导数定理:设f'(t)为f(t)的导数,则有:L{f'(t)}=sF(s)-f(0)(5)积分定理:设F(s)为f(t)的Laplace变换,则有:L{∫0^tf(u)du}=1/sF(s)第二部分:微分定理2.1 定义设f(t)为t≥0上的一个连续函数,其Laplace变换为F(s),则有:L{f'(t)}=sF(s)-f(0)这个公式称为拉普拉斯变换的微分定理。

它表明,对于连续可导的函数f(t),它的导数在Laplace域中可以通过对其Laplace变换进行简单的运算得到。

2.2 推导我们来推导一下这个公式。

设F(s)=L{f(t)},则有:F'(s)=d/ds L{f(t)}=d/ds ∫0∞e^(-st)f(t)dt=∫0∞d/ds(e^(-st))f(t)dt=-∫0∞te^(-st)f(t)dt注意到这里用到了求导和积分的交换顺序,这是由于假设了函数在一定范围内连续可导。

拉普拉斯逆变换

拉普拉斯逆变换

即得
1 2π j
j
F
(
s)
e
st
d
j
s
n k 1
Res [
F (s)est ,
sk
].
(返回)
18
第九章 拉普拉斯变换
§9.3 Laplace 逆变换 文档仅供参考,如有不当之处,请联系改正。
附:将实系数真分式 F (s) P(s) / Q(s) 化为部分分式
1. Q(s) 含单重一阶因子旳情况 若 Q(s) 含单重一阶因子 (s a) , 即 Q(s) (s a)Q1(s) ,
第九章 拉普拉斯变换
解 措施二 利用留数法求解
(1) s1 2, s2 1 分别为 F (s) 旳一阶与二阶极点,
Res[ F (s)est,
2]
1 (s 1)2
est
s2
e2t,
Res[ F (s)est, 1] ( est ) et t et.
s 2 s1
(2) f (t ) Res[ F (s)est, 2 ] Res[ F (s)est, 1]
上面讨论了 Q(s) 含单重和多重一阶因子旳情况,假如是 在复数范围内进行分解,这两种情况已经够了。
但假如仅在实数范围内进行分解,这两种情况还不够。
因为实系数多项式旳复零点总是互为共轭地成对出现旳, 即假如复数 z a jb 为 Q(s) 旳零点,那么它旳共轭复数 z a jb 也必为 Q(s) 旳零点。 所以,Q(s)必具有(实旳) 二阶因子 (s z)(s z ) (s a)2 b2 .
(1) s1 3 , s2,3 1 2i 为 F (s) 旳一阶极点,
Res[ F (s)est, 3 ] 2e3t,

拉普拉斯变换公式总结..

拉普拉斯变换公式总结..
5.系统的稳定性
若系统对任意的有界输入,其零状态响应也是有界的,则此系统为稳定系统。
(1)稳定系统的时域判决条件 (充要条件)
若系统是因果的,则 式可改写为
(2)对于因果系统,其稳定性的s域判决条件
若系统函数 的全部极点落于s左半平面,则该系统稳定;
若系统函数 有极点落于s右半平面,或在虚轴上具有二阶以上的极点,则该系统不稳定;
若系统函数 没有极点落于s右半平面,但在虚轴上有一阶极点,则该系统临界稳定。
内容摘要
例题
·例题1:求拉氏变换
·例题2:求拉氏变换,拉氏变换的性质
·例题3:拉氏变换的微分性质
·例题4:系统函数,求解系统的响应
·例题5:用拉氏变换法分析电路·
例4-1
求下列函数的拉氏变换
分析
拉氏变换有单边和双边拉氏变换,为了区别起见,本书以 表示 单边拉氏变换,以 表示 双边拉氏变换。若文字中未作说明,则指单边拉氏变换。单边拉氏变换只研究 的时间函数,因此,它和傅里叶变换之间有一些差异,例如在时移定理,微分定理和初值定理等方面。本例只讨论时移定理。请注意本例各函数间的差异和时移定理的正确应用。
例4-4
某线性时不变系统,在非零状条件不变的情况下,三种不同的激励信号作用于系统。
为图中所示的矩形脉冲时,求此时系统的输出
阶跃响应

例4-5
电路如图4-5(a)所示
(1)求系统的冲激响应。
(2)求系统的起始状态使系统的零输
入响应等于冲激响应。
(3)求系统的起始状态,
解答
(1)求系统的冲激响应。
系统冲激响应 与系统函数 是一对拉氏变换的关系。对 求逆变换可求得 ,这种方法比在时域求解微分方程简便。

拉普拉斯变换公式

拉普拉斯变换公式

拉普拉斯变换公式
拉普拉斯变换是一种常用的函数转换,本质上是把一个函数的时域分析映射到
频域进行分析的一种数学技术,它可以将复杂的时域信号转换成简单容易分析的频域信号,并把频域信号返回到时域中,更加进行精确分析。

拉普拉斯变换是线性变换,用数学表达式可以表示为:ltf(f)=∫f(t)dt。

拉普拉斯变换可把非线性时间变成线性频域,可简化信号分析和处理。

拉普拉斯变换可广泛用于信号检测、数字滤波器、信号识别、语音信号处理和图像处理等,可以应用到无人机、信号处理、智能安防系统等多个领域。

拉普拉斯变换的定义式可以进一步拆解,它可以使用傅里叶变换的性质拆分成
两步来计算,即对原始函数的幅值和相位各自进行傅里叶变换计算,最后取出拉普拉斯变换各自的幅值和相位,从而确定其结果。

拉普拉斯变换是一项伟大的数学发明,是理解时间系统和频率系统之间的相互
关系的必要工具。

由于其准确性和无偏性的特性,它已经成为解决非线性信号处理问题的重要工具,在数学、物理、信号处理等众多领域有着重要意义。

积分的拉普拉斯变换公式

积分的拉普拉斯变换公式

积分的拉普拉斯变换公式拉普拉斯变换是数学中一种重要的变换方法,可以将一个函数从时间域转换到复频域。

积分的拉普拉斯变换公式是拉普拉斯变换的基本公式之一,其形式如下:$$F(s) = \int_{0}^{\infty} f(t) e^{-st} dt$$其中,$f(t)$是定义在时间域上的函数,$F(s)$是其在复频域上的拉普拉斯变换,$s$是复变量。

拉普拉斯变换公式的应用广泛,尤其在信号与系统、控制理论、电路分析等领域中起着重要作用。

通过拉普拉斯变换,可以将复杂的微分方程转化为简单的代数方程,从而简化问题的求解过程。

在信号与系统领域,拉普拉斯变换被广泛应用于信号的分析和处理。

通过拉普拉斯变换,可以将时域信号转换为复频域信号,从而更加直观地观察信号的频谱特性。

例如,通过对信号的拉普拉斯变换,可以计算信号的频谱密度、频率响应等重要指标,进而分析信号的稳定性、滤波特性等。

在控制理论中,拉普拉斯变换被广泛应用于系统的建模和分析。

通过将系统的微分方程进行拉普拉斯变换,可以得到系统的传递函数,从而分析系统的稳定性、阶跃响应、频率响应等性能指标。

基于拉普拉斯变换的控制理论,可以设计出稳定、高性能的控制器,应用于工业控制、自动化系统等领域。

在电路分析中,拉普拉斯变换被广泛应用于电路的分析和设计。

通过将电路方程进行拉普拉斯变换,可以得到电路的复频域等效电路,从而分析电路的频率响应、稳定性、传输特性等。

基于拉普拉斯变换的电路分析方法,可以设计出满足特定要求的电路,应用于通信、计算机等领域。

除了在信号与系统、控制理论、电路分析中的应用,拉普拉斯变换还在其他领域中发挥着重要作用。

例如,在图像处理中,拉普拉斯变换可以用于图像的增强、去噪等操作;在概率论和统计学中,拉普拉斯变换可以用于求解随机变量的概率密度函数;在经济学中,拉普拉斯变换可以用于求解经济模型的稳定性等。

积分的拉普拉斯变换公式是一种重要的数学工具,广泛应用于信号与系统、控制理论、电路分析等领域。

矩阵拉普拉斯变换公式

矩阵拉普拉斯变换公式

矩阵拉普拉斯变换公式
矩阵拉普拉斯变换是一种广泛应用于信号处理、控制系统和电路分析等领域的线性变换方法。

它将一个矩阵作为输入,经过变换得到一个新的矩阵作为输出。

在实际应用中,矩阵拉普拉斯变换可以用于求解线性微分方程、稳定性分析和控制系统设计等问题。

矩阵拉普拉斯变换的基本定义是:
对于一个 n×n 的实矩阵 A,其拉普拉斯变换 L(A) 定义为:
L(A) = ∫^∞ e^(-st) A dt
其中,s 是一个复数,e^(-st) 是指数函数。

矩阵拉普拉斯变换具有许多重要性质,包括线性性、时间平移性、复共轭性、微分性、积分性等。

这些性质使得矩阵拉普拉斯变换成为一个强大的工具,用于解决各种复杂的数学和工程问题。

在矩阵拉普拉斯变换中,最常用的公式是矩阵求逆公式。

它表达了一个矩阵的拉普拉斯变换和其逆矩阵的拉普拉斯变换之间的关系,即:
L(A^(-1)) = sL(A) - A(0)
其中,A^(-1) 是矩阵 A 的逆矩阵,A(0) 是矩阵 A 在 t=0 时的值。

矩阵拉普拉斯变换公式是一个非常重要的数学工具,它在各种领域中都得到广泛的应用。

通过使用矩阵拉普拉斯变换公式,可以简化问题的求解过程,提高计算的效率和准确度,从而为许多工程应用提供了更好的解决方案。

拉普拉斯变换公式

拉普拉斯变换公式在数学和工程领域中,拉普拉斯变换公式是一个极其重要的工具,它为解决各种复杂的数学问题和工程实际问题提供了强大的支持。

要理解拉普拉斯变换公式,咱们先得从函数的概念说起。

在数学中,函数就是一种输入和输出之间的对应关系。

比如说,我们常见的一次函数 y = 2x ,当我们输入 x = 1 时,输出就是 2 ;输入 x = 2 时,输出就是 4 。

而拉普拉斯变换呢,它是一种将时域中的函数(也就是以时间为自变量的函数)转换到复频域中的方法。

这可能听起来有点抽象,别急,咱们慢慢解释。

假设我们有一个函数 f(t) ,其中 t 表示时间。

拉普拉斯变换就是要把这个函数转换成另一个函数 F(s) ,这里的 s 是一个复数,通常表示为 s =σ +jω ,其中σ 是实部,ω 是虚部。

那拉普拉斯变换公式到底长啥样呢?它的定义式是这样的:F(s) =∫0,∞ f(t) e^(st) dt这个公式看起来有点复杂,但咱们一点点来剖析。

先看 e^(st) 这部分,它是一个指数函数。

其中的 s 就起到了关键的作用,通过调整 s 的值,我们可以对原函数 f(t) 进行各种“操作”。

积分符号∫0,∞ 表示对 t 从 0 到正无穷进行积分。

简单来说,就是把所有时刻 t 的值按照一定的规则加起来。

那拉普拉斯变换有啥用呢?首先,它能把微分方程变成代数方程。

在工程中,很多系统的特性可以用微分方程来描述,比如电路中的电流和电压关系、机械系统的运动方程等等。

但微分方程求解往往比较困难。

通过拉普拉斯变换,把微分方程变成代数方程,求解就变得容易多了。

其次,它有助于分析系统的稳定性。

通过研究变换后的函数 F(s) 在复平面上的特性,我们可以判断系统是否稳定。

再来说说拉普拉斯变换的一些基本性质。

线性性质:如果有函数 f1(t) 和 f2(t) ,它们的拉普拉斯变换分别是F1(s) 和 F2(s) ,那么对于任意常数 a 和 b ,有 Laf1(t) + bf2(t) = aF1(s) + bF2(s) 。

信号三大变换公式

信号三大变换公式信号处理领域中,常用的三大变换公式分别为傅里叶变换、拉普拉斯变换和Z变换。

这些变换公式在信号处理中起到了重要的作用,能够帮助我们分析和处理各种类型的信号。

下面将详细介绍这三大变换公式。

一、傅里叶变换:傅里叶变换是一种将一个信号从时域转换到频域的方法。

它可以将一个信号分解成不同频率的正弦波和余弦波的叠加。

傅里叶变换的数学表达式为:F(ω) = ∫[f(t) ⨉ e^(-jωt)] dt其中,F(ω)是信号在频域的表示,f(t)是信号在时域的表示,ω是角频率,e^(-jωt)是复指数函数。

傅里叶变换可以用于信号的频谱分析,可以将信号分解成频率分量,从而帮助我们了解信号的频率分布情况。

此外,傅里叶变换还可以用于滤波、编码和解码等方面的应用。

二、拉普拉斯变换:拉普拉斯变换是一种将一个信号从时域转换到复平面的变换方法。

它将时域中的信号转换为复平面上的点,可以将信号的幅度和相位信息进行分析。

拉普拉斯变换的数学表达式为:F(s) = ∫[f(t) ⨉ e^(-st)] dt其中,F(s)是信号在复平面上的表示,f(t)是信号在时域的表示,s 是复平面上的变量,e^(-st)是复指数函数。

拉普拉斯变换可以用来解决时域中的微分方程和差分方程问题,以及处理电路和控制系统等方面的信号分析和系统设计问题。

三、Z变换:Z变换是一种将离散信号从时域转换到复平面的方法。

它是离散时间傅里叶变换的离散形式,可以将离散信号的频谱和相位信息进行分析。

Z 变换的数学表达式为:F(z)=Σ[f[n]⨉z^(-n)]其中,F(z)是信号在复平面上的表示,f[n]是信号在时域的表示,z 是复平面上的变量,z^(-n)是复数的幂。

Z变换可以用来分析和设计数字滤波器、解离散时间系统的差分方程和处理离散序列的频谱分析等问题。

总结:傅里叶变换、拉普拉斯变换和Z变换是信号处理中常用的三大变换公式。

它们分别将信号从时域、时频域和到频域进行转换,可以帮助我们理解和分析各种类型的信号,并在信号处理、滤波和系统设计等方面提供重要的工具。

拉普拉斯变换


三、一些常用函数的拉普拉斯变换
公式
1 1. L[u (t )] = (Re p > 0) p 1 − pb L[u (t − b)] = e (Re p > 0) p 1 at 2. L[e ] = (Re p > Re a ) p−a a 3. L[sin at ] = (Re p > Im a ) 2 2 p +a p L[cos at ] = 2 (Re p > Im a ) 2 p +a
(2) L[t sin t ]
5. 积分性
F ( p) L[ f (t )] = F ( p ) ⇒ L[ ∫0 f (u )du ] = , p ∞ f (t ) ∞ −1 若 ∫p F ( ρ )d ρ 存在 ⇒ = L [ ∫p F ( ρ )d ρ ] t f (t ) ∞ ⇔ L[ ] = ∫p F ( ρ )d ρ t
p →∞
f (0) = lim f (t )= lim pF ( p).
t →0 p →∞
终值定理 若 L[ f (t )] = F ( p ), L[ f ′(t )]与 lim f (t )
t →+∞
存在,则
f (+∞) = lim f (t )= lim pF ( p).
t →+∞ p →0
基本公式
+∞
1 α + i∞ pt ==== ∫α −i∞ F ( p)e dp = f (t )(t > 0) dp = idw 2π i
p =α + iw
二、求拉氏逆变换的方法
1、公式+性质法: 2、留数法:(p181定理)
f (t ) = L [ F ( p )] = ∑ Re s[ F ( p)e , pk ]

拉氏变换公式表 -回复

拉氏变换公式表 -回复
拉普拉斯变换是一种数学工具,用于将一个函数从时间域转换到复频率域。

它在信号处理、控制系统和电路分析等领域有广泛应用。

以下是一些常见的拉普拉斯变换公式:
1. 单位阶跃函数:L{u(t)} = 1/s
2. 单位脉冲函数:L{δ(t)} = 1
3. 指数函数:L{e^(-at)} = 1/(s+a),其中a为正实数
4. 正弦函数:L{sin(ωt)} = ω/(s^2 + ω^2)
5. 余弦函数:L{cos(ωt)} = s/(s^2 + ω^2)
6. 幂函数:L{t^n} = n!/(s^(n+1)),其中n为非负整数
7. 指数函数乘以多项式:L{te^(-at)} = 1/(s+a)^2,其中a为正实数
8. 指数函数乘以三角函数:L{e^(-at)sin(ωt)} = ω/((s+a)^2 +
ω^2)
这只是一些常见的例子,拉普拉斯变换还有很多其他的公式和性质。

使用这些公式,可以将一个函数从时间域转换到复频率域,从而更容易进行分析和处理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

拉普拉斯变换、连续时间系统的S 域分析基本要求通过本章的学习,学生应深刻理解拉普拉斯变换的定义、收敛域的概念:熟练掌握拉普拉斯变换的性质、卷积定理的意义及它们的运用。

能根据时域电路模型画出S 域等效电路模型,并求其冲激响应、零输入响应、零状态响应和全响应。

能根据系统函数的零、极点分布情况分析、判断系统的时域与频域特性。

理解全通网络、最小相移网络的概念以及拉普拉斯变换与傅里叶变换的关系。

会判定系统的稳定性。

知识要点1. 拉普拉斯变换的定义及定义域 (1) 定义单边拉普拉斯变换: 正变换0[()]()()stf t F s f t dt e ζ∞--==⎰逆变换 1[()]()()2j stj F s f t F s ds j e σσζπ+∞-∞==⎰双边拉普拉斯变换: 正变换()()stB s f t dt e F ∞--∞=⎰逆变换1()()2j stB j f t s ds j e F σσπ+∞-∞=⎰(2) 定义域若0σσ>时,lim ()0tt f t eσ-→∞=则()tf t eσ-在0σσ>的全部范围内收敛,积分0()stf t dt e +∞--⎰存在,即()f t 的拉普拉斯变换存在。

0σσ>就是()f t 的单边拉普拉斯变换的收敛域。

0σ与函数()f t 的性质有关。

2. 拉普拉斯变换的性质 (1) 线性性 若11[()]()f t F S ζ=,22[()]()f t F S ζ=,1κ,2κ为常数时,则11221122[()()]()()f t f t F s F s ζκκκκ+=+(2) 原函数微分 若[()]()f t F s ζ=则()[]()(0)df t sF s f dtζ-=- 11()0()[]()(0)n n n n r r nr d f t s F s s f dt ζ----==-∑ 式中()(0)r f-是r 阶导数()r rd f t dt 在0-时刻的取值。

(3) 原函数积分 若[()]()f t F s ζ=,则(1)(0)()[()]tf F s f t dt s sζ---∞=+⎰式中0(1)(0)()ff t dt ---∞=⎰ (4) 延时性若[()]()f t F s ζ=,则000[()()]()st f t t u t t e F s ζ---=(5) s 域平移若[()]()f t F s ζ=,则[()]()atf t e F s a ζ-=+(6) 尺度变换若[()]()f t F s ζ=,则1[()]()sf at F a aζ=(a >0) (7) 初值定理lim ()(0)lim ()t o s f t f sF s ++→→∞==(8) 终值定理lim ()lim ()t s f t sF s →+∞→∞=(9) 卷积定理若11[()]()f t F s ζ=,22[()]()f t F s ζ=,则有1212[()()]()()f t f t F s F s ζ*=12121[()()][()()]2f t f t F s F s jζπ=*=121()()2j j F p F s p dp j σσπ+∞-∞-⎰3. 拉普拉斯逆变换 (1) 部分分式展开法首先应用海维赛展开定理将()F s 展开成部分分式,然后将各部分分式逐项进行逆变换,最后叠加起来即得到原函数()f t 。

(2)留数法留数法是将拉普拉斯逆变换的积分运算转化为求被积函数()stF s e 在围线中所有极点的留数运算,即(1)11[()]()()[()]22j st st st j cF s F s e ds F s e ds F s e j jσσζππ+∞--∞===∑⎰⎰极点的留数若i p 为一阶级点,则在极点i s p =处的留数21[()()]insti i i s p i r s p F s e X===-∑若i p 为k 阶级点,则111[()()](1)!ik k st i i s p k d r s p F s e k ds-=-=--4. 系统函数(网络函数)H (s ) (1) 定义系统零状态响应的拉普拉斯变换与激励的拉普拉斯变换之比称为系统函数,即()()()zs R s H s E s =冲激响应()h t 与系统函数()H s 构成变换对,即()[()]H s h t ζ=系统的频率响应特性()()()()j w s jwH jw H s H jw e ϕ===式中,()H jw 是幅频响应特性,()w ϕ是相频响应特性。

(2) 零极点分布图1212()()()()()()()()()m n K s z s z s z N s H s D s s p s p s p ---==--- 式中,K 是系数;1z ,2z ,m z 为()H s 的零点;1p ,2p ,,n p 为()H s 的极点。

在s 平面上,用“”表示零点,“X ”表示极点。

将()H s 的全部零点和极点画在s 平面上得到的图称为系统的零极点分布图。

对于实系统函数而言,其零极点要么位于实轴上,要么关于实轴成镜像对称分布。

(3) 全通函数如果一个系统函数的极点位于左半平面,零点位于右半平面,而且零点与极点对于jw 轴互为镜像,那么这种系统函数称为全通函数,此系统则为全通系统或全通网络。

全通网络函数的幅频特性是常数。

(4) 最小相移函数如果系统函数的全部极点和零点均位于s 平面的左半平面或jw 轴,则称这种函数为最小相移函数。

具有这种网络函数的系统为最小相移网络。

(5) 系统函数()H s 的求解方法错误!未找到引用源。

由冲激响应()h t 求得,即()[()]H s h t ζ=。

错误!未找到引用源。

对系统的微分方程进行零状态条件下的拉普拉斯变换,然后由()()()zs R s H s E s =获得。

错误!未找到引用源。

根据s 域电路模型,求得零状态响应的像函数与激励的像函数之比,即为()H s 。

5. 系统的稳定性若系统对任意的有界输入,其零状态响应也是有界的,则此系统为稳定系统。

(1)稳定系统的时域判决条件()h t dt M +∞-∞≤⎰(充要条件) 错误!未找到引用源。

若系统是因果的,则错误!未找到引用源。

式可改写为0()h t dt M +∞≤⎰(2) 对于因果系统,其稳定性的s 域判决条件错误!未找到引用源。

若系统函数()H s 的全部极点落于s 左半平面,则该系统稳定; 错误!未找到引用源。

若系统函数()H s 有极点落于s 右半平面,或在虚轴上具有二阶以上的极点,则该系统不稳定;错误!未找到引用源。

若系统函数()H s 没有极点落于s 右半平面,但在虚轴上有一阶极点,则该系统临界稳定。

内容摘要例题·例题1:求拉氏变换·例题2:求拉氏变换,拉氏变换的性质 ·例题3:拉氏变换的微分性质·例题4:系统函数,求解系统的响应 ·例题5:用拉氏变换法分析电路·例4-1求下列函数的拉氏变换 ()()1-=t tu t f 分析拉氏变换有单边和双边拉氏变换,为了区别起见,本书以()s F 表示()t f 单边拉氏变换,以()s F B 表示()t f 双边拉氏变换。

若文字中未作说明,则指单边拉氏变换。

单边拉氏变换只研拉氏变换的定义和收敛域典型信号的拉氏变换二.单边拉氏变换逆变换的求法部分分式展开法围线积分法三.拉氏变换的基本性质 四.用拉普拉斯变换法分析电路五.系统函数一.拉普拉斯究0≥t 的时间函数,因此,它和傅里叶变换之间有一些差异,例如在时移定理,微分定理和初值定理等方面。

本例只讨论时移定理。

请注意本例各函数间的差异和时移定理的正确应用。

解答()()[]()()()[]s s st u t u t L t tu L s F -⎪⎭⎫⎝⎛+=-+--=-=e 1111112例4-2求三角脉冲函数)(f t 如图4-2(a )所示的象函数分析和傅里叶变换类似,求拉氏变换的时,往往要借助基本信号的拉氏变换和拉氏变换的性质,这比按拉氏变换的定义式积分简单,为比较起见,本例用多种方法求解。

解答方法一:按定义式求解方法二:利用线性叠加和时移性质求解 方法三:利用微分性质求解 方法四:利用卷积性质求解方法一:按定义式求解方法二:利用线性叠加和时移性质求解 由于()⎪⎩⎪⎨⎧<<-<<=其他 02t 1 21t 0t t tf ()()()()22222222110101010210e 11e 1e 2e 2e 21e 1e 1d e d e 2d e 1e 1d e 2d e d e sss s s s s st st st st st ststs s s s s s s s tt t t s s t t t t t t t f s F -------------∞--=-++-+--=-++⎪⎭⎫⎝⎛-=-+==⎰⎰⎰⎰⎰⎰-----()()()()()()22112--+---=t u t t u t t tu t f ()[]12s t tu L =于是方法三:利用微分性质求解 分析信号的波形仅由直线组成,信号导数的象函数容易求得,或者信号经过几次微分后出现原信号,这时利用微分性质比较简单。

将()t f 微分两次,所得波形如图4-2(b )所示。

显然根据微分性质由图4-2(b )可以看出于是方法四:利用卷积性质求解()t f 可看作是图4-2(c )所示的矩形脉冲()t f 1自身的卷积于是,根据卷积性质()()()2222e 11e e 211sss ss s F ----=+-=2()()()()[]()222e 1212d d s t δt δt δL t t f L --=-+--=⎥⎦⎤⎢⎣⎡()()()()---'-=⎥⎦⎤⎢⎣⎡00d d 222sf f s F s t t f L (),00=-f ()0='-f ()()22e1s s F s --=()()22e 11s s s F --=()()()t f t f t f 11*=()()()s F s F s F 11=而所以例4-3应用微分性质求图4-3(a )中 的象函数下面说明应用微分性质应注意的问题,图4-3(b ) (),2t f ()t f 3是的导数 的波形。

图4-3(a )解答说明(1)对于单边拉氏变换, ()()(),21t u t f t f =由于故二者的象函数相同,即()()sss F --=e 111()()22e 11sss F --=图4-2(c )()()t f t f t f 321),(,(),1t f ()()()t f t f t f 321,,'''图4-4(b)()()s s F s F 321==()()()()(),因而,但虽然t f t f s F s F 21212≠=()[]()[]t f L t f L 21'≠'()(),故,由于对于0011=-f t f ()[]()301=-='s sF t f L ()(),故,由于对于2022=-f t f ()[]()122=-='s sF t f L因而这是应用微分性质应特别注意的问题。

相关文档
最新文档