(整理)向量数量积的坐标运算.

(整理)向量数量积的坐标运算.
(整理)向量数量积的坐标运算.

《向量的数量积的坐标运算与度量公式》预习案

【学习目标】:

(1)灵活运用向量数量积的坐标运算公式,夹角余弦的坐标表达式;

(2)体会公式中体现的数形结合的思想

【学习重难点】

重点:向量数量积的坐标运算与度量公式 难点:灵活运用公式解决有关问题

【知识链接】

1.两向量数量积定义:a b =

2.向量数量积的性质:

【知识重现】

1. 已知5b =,a 在b 方向上的正射影的数量是3,则a b =

2. 在ABC 中,5,5,120BA AC BAC ==∠=?,则BA AC =

【知识点梳理】

1.数量积的坐标表达式

a b =

2、用向量的坐标表示两个向量垂直的条件:

(1)a b ⊥? 。

(2)与向量12(,)b b b =垂直的向量可以写成 。

3、向量的长度、距离和夹角公式推导

向量的长度公式: a =

距离公式: AB =

两向量夹角余弦公式的坐标表达式:

cos ,a b =

自学课本P113--P114例1—例4,完成自学检测

【自学检测】

1.已知(4,5),(4,3),a b ==-则a b = ,a = ,b = ,

cos ,a b =

2.已知(3,5),(5,3),a b ==-则,a b =

3.判断下面各对向量是否垂直

(1)(3,2),(4,6)a b =-= (2)(3,5),(5,3)a b ==

《向量的数量积的坐标运算与度量公式》探究案

【课内探究】

探究一:推导向量内积的坐标运算公式

建立正交基底12{,}e e ,已知1212(,),(,)a a a b b b ==,则

a b =

= ,

因为 ,

所以得到:

用语言描述为: 。

练习一:已知向量的坐标,a b ,求a b

(1)(8,6),(3,4)a b ==--; (2)(11,2),(3,9)a b =-=

探究二:两向量的垂直条件

例1. 已知点(1,2),(2,3),(2,5)A B C -,求证:AB AC ⊥

练习二:已知(1,2),(5,8),(2,1)A B C ---,求证:AB AC ⊥

考查的知识点:两向量垂直的条件

数学方法:用向量作工具将几何问题代数化,体现了数形结合的数学思想

探究三:向量的长度,距离和夹角公式推导

1.已知12(,)a a a =,由向量数量积的性质及向量的内积运算公式知,

2a a a == =

所以得到,a =

可以用语言表述为: 。

2.如果1122(,),(,)A x y B x y ,则AB =

所以得到,AB =

3.两向量夹角余弦的坐标表达式:

cos ,a b =

例2.已知(3,1),(1,2),a b =-=-求,,,,a b a b a b 思考:你能否写出求两向量夹角的

一个算法?

S1:

S2:

S3:

S4:

例3.已知点(1,2),(3,4),(5,0)A B C ,求BAC ∠的正弦值.

考查的知识点:两向量夹角坐标公式,长度公式

数学方法:两向量的坐标夹角公式体现了数形结合的数学思想

【课堂小结】

这节课研究的主要问题有:

知识方面:

数学思想方面:

【当堂检测】

(B 级)1.已知(1,2),(2,3)a b ==-,则2()a b += ,

cos ,a b = 。

(B 级)2. 已知(7,5),(2,3),(6,7)A B C -,则ABC 是 三角形

(A 级)3.在ABC 中90,(,1),(2,3)C AB k AC ∠=?==,则k 的值是( )

A.5

B.-5

C.

32 D. 32-

【思考探究】 在ABC 中,(1,2),(3,4),(0,8)A B C -,判断

ABC 形状的方法有哪些?

向量的坐标及向量积

龙文教育一对一个性化辅导教案 学生伍靖雯学校第四十一中年级高一次数第 8次 科目数学 教师林泽钦日期2016-4-16时段 10:00-12: 00 课题向量的坐标运算及向量积 教学重点1.平面向量的坐标运算 2.平面向量的夹角公式 教学 难点 1.平面向量与三角函数结合 教学目标1.掌握平面向量的坐标运算 2.掌握向量积公式的应用及与三角函数的综合型问题 教学步骤及教学内容一、错题回顾: 已知() P4,1,F -为抛物线28 y x =的焦点,M为此抛物线上的点,求|MP|+|MF|的值最小,并求此时M点的坐标. 二、内容讲解: 主要知识点1:平面向量的坐标运算 主要知识点2:平面向量的积运算 主要知识点3:平面向量与三角函数结合 三、课堂总结: 1、平面向量的坐标运算 2、平面向量的积运算 四、作业布置: 见讲义

一.错题回顾 已知()P 4,1,F -为抛物线28y x =的焦点,M 为此抛物线上的点,求|MP|+|MF|的值最小,并求此时M 点的坐标. 二、内容讲解 (一)平面向量的坐标运算 (1)已知向量 和实数λ,那么 . (2)已知 则 ,即一个向 量的坐标等于该向量的_______的坐标减去________的坐标. 例1. 若A (2,-1),B (-1,3),则的坐标是( ) A.(1,2) B.(-3,4) C. (3,-4) D. 以上都不对 例2.若a =(2,1),b =(1,0),则3a +2b 的坐标是 A.(5,3) B.(4,3) C.(8,3) D.(0,-1) 管理人员签字: 日期: 年 月 日 作业布置 1、学生上次作业评价: ○ 好 ○ 较好 ○ 一般 ○ 差 备注: 2、本次课后作业: 课堂小结 小结 家长签字: 日期: 年 月 日

向量公式大全

向量公式大全 『ps.加粗字母表示向量』1.向量加法 羈AB+BC=AC a+b=(x+x',y+y') a+0=0+a=a 运算律: 交换律:a+b=b+a 结合律:(a+b)+c=a+(b+c) 2.向量减法 罿AB-AC=CB 即“共同起点,指向被减”

如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0 a=(x,y) b=(x',y') 则a-b=(x-x',y-y'). 3.数乘向量 实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣?∣a∣ 当λ>0时,λa与a同方向 当λ<0时,λa与a反方向 当λ=0时,λa=0,方向任意 当a=0时,对于任意实数λ,都有λa=0 『ps.按定义知,如果λa=0,那么λ=0或a=0』实数λ

向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩 当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍 当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍 数乘运算律: 结合律:(λa)?b=λ(a?b)=(a?λb) 向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa. 数对于向量的分配律(第二分配律):λ(a+b)=λa+λb. 数乘向量的消去律:①如果实数λ≠0且λa=λb,那么a=b②如果a≠0且λa=μa,那么λ=μ 4.向量的数量积

定义:已知两个非零向量a,b作OA=a,OB=b,则∠AOB称作a和b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π 两个向量的数量积(内积、点积)是一个数量,记作a?b若a、b不共线,则a?b=|a|?|b|?c os〈a,b〉若a、b共线,则a?b=+-∣a∣∣b∣ 向量的数量积的坐标表示:a?b=x?x'+y?y' 向量数量积运算律 a?b=b?a(交换律) (λa)?b=λ(a?b)(关于数乘法的结合律) (a+b)?c=a?c+b?c(分配律) 向量的数量积的性质 a?a=|a|2 a⊥b〈=〉a?b=0

平面向量数量积及运算基础练习题

精品 平面向量的数量积及运算练习题 一、选择题: 1、下列各式中正确的是 ( ) (1)(λ·a) ·b=λ·(a b)=a · (λb), (2)|a ·b|= | a |·| b |, (3)(a ·b)· c= a · (b ·c), (4)(a+b) · c = a ·c+b ·c A .(1)(3) B .(2)(4) C .(1)(4) D .以上都不对. 2、在ΔABC 中,若(CA CB)(CA CB)0+?-=,则ΔABC 为 ( ) A .正三角形 B .直角三角形 C .等腰三角形 D .无法确定 3、若| a |=| b |=| a -b |, 则b 与a+b 的夹角为 ( ) A .30° B .60° C .150° D .120° 4、已知| a |=1,| b |=2 ,且(a -b)和a 垂直,则a 与b 的夹角为 ( ) A .60° B .30° C .135° D .45° 5、若2AB BC AB 0?+=,则ΔABC 为 ( ) A .直角三角形 B .钝角三角形 C .锐角三角形 D .等腰直角三角形 6、设| a |= 4, | b |= 3, 夹角为60°, 则| a+b |等于 ( ) A .37 B .13 C .37 D .13 7、己知 | a |= 1,| b |= 2, a 与的夹角为60, c =3a+b, d =λa -b ,若c ⊥d,则实数λ的值为( ) A . 74 B .75 C .47 D .5 7 8、设 a,b,c 是平面内任意的非零向量且相互不共线,则其中真命题是 ( ) ① (a ·b)·c -(c ·a)·b=0 ② | a | -| b |< | a -b | ③ (b ·c)·a -(c ·a)·b 不与c 垂直 ④ (3a+2b) ·(3a -2b)= 9| a | 2-4| b | 2 A .①② B .②③ C .③④ D .②④ 9.(陕西)已知非零向量AB 与AC 满足0AB AC BC AB AC ?? ?+?= ???且12AB AC AB AC ?=, 则ABC △为 .A 等边三角形 .B 直角三角形 .C 等腰非等边三角形 .D 三边均不相等的三角形 10(全国Ⅰ文)点O 是ABC △所在平面内的一点,满足OA OB OB OC OC OA ?=?=?,则点O 是ABC △的 .A 三个内角的角平分线的交点 .B 三条边的垂直平分线的交点 .C 三条中线的交点 .D 三条高的交点 11.已知向量a =(x +z,3),b =(2,y -z ),且a ⊥b ,若x ,y 满足不等式|x |+|y |≤1,则z 的取值范围为( ). A .[-2,2] B .[-2,3] C .[-3,2] D .[-3,3]

平面向量数量积

第三节平面向量数量积及应用重点: 1.理解平面向量数量积的含义及其物理意义.了解平面向量的数量积与向量投影的关系. 2.掌握数量积的坐标表达式,会进行平面向量数量积的运算. 3.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系. 4.会用向量方法解决某些简单的平面几何问题.会用向量方法解决简单的力学问题与其他一些实际问题. 难点: 1.掌握数量积的坐标表达式,会进行平面向量数量积的运算. 2 .会用向量方法解决某些简单的平面几何问题.会用向量方法解决简单的力学问题与其他一些实际问题. 教学过程: 1.平面向量的数量积 (1)定义:已知两个非零向量a与b,它们的夹角为θ,则数量|a||b|cos__θ叫作a与b的数量积(或内积),记作a·b,即a·b=|a||b|cos__θ,规定零向量与任一向量的数量积为0,即0·a =0. (2)几何意义:数量积a·b等于a的长度|a|与b在a的方向上的投影|b|cosθ的乘积. 2.平面向量数量积的性质及其坐标表示 设向量a=(x1,y1),b=(x2,y2),θ为向量a,b的夹角. (1)数量积:a·b=|a||b|cos θ=x1x2+y1y2. (2)模:|a|=a·a=x21+y21.学-科网 (3)夹角:cos θ=a·b |a||b|= x1x2+y1y2 x21+y21·x22+y22 . (4)两非零向量a⊥b的充要条件:a·b=0?x1x2+y1y2=0. (5)|a·b|≤|a||b|(当且仅当a∥b时等号成立)?|x1x2+y1y2|≤ x21+y21·x22+y22. 3.平面向量数量积的运算律 (1)a·b=b·a(交换律). (2)λa·b=λ(a·b)=a·(λb)(结合律). (3)(a+b)·c=a·c+b·c(分配律).

平面向量内积的坐标运算

课 题:平面向量数量积的坐标表示 教学目的: ⑴要求学生掌握平面向量数量积的坐标表示 ⑵掌握向量垂直的坐标表示的充要条件,及平面内两点间的距离公式 ⑶能用所学知识解决有关综合问题 教学重点:平面向量数量积的坐标表示 教学难点:平面向量数量积的坐标表示的综合运用 授课类型:新授课 课时安排:1课时 教 具:多媒体、实物投影仪 教学过程: 一、复习引入: 1.两个非零向量夹角的概念 已知非零向量a 与b ,作=a ,OB =b ,则∠A OB =θ(0≤θ≤ π)叫a 与b 的夹角. 2.平面向量数量积(内积)的定义:已知两个非零向量a 与b ,它们的夹角是 θ,则数量|a ||b |c os θ叫a 与b 的数量积,记作a ?b ,即有a ?b = |a ||b |c os θ, (0≤θ≤π).并规定0 与任何向量的数量积为0 3.向量的数量积的几何意义: 数量积a ?b 等于a 的长度与b 在a 方向上投影|b |c os θ的乘积 4.两个向量的数量积的性质: 设a 、b 为两个非零向量,e 是与b 同向的单位向量 1?e ?a = a ?e =|a |c os θ;2?a ⊥b ? a ?b = 0 3?当a 与b 同向时,a ?b = |a ||b |;当a 与b 反向时,a ?b = -|a ||b | 特别的a ?a = |a |2或a a a ?=||

4?c os θ =| |||b a b a ? ;5?|a ?b | ≤ |a ||b | 5. 平面向量数量积的运算律 交换律:a ? b = b ? a 数乘结合律:(λa )?b =λ(a ?b ) = a ?(λb ) 分配律:(a + b )?c = a ?c + b ?c 二、讲解新课: ⒈平面两向量数量积的坐标表示 已知两个非零向量),(11y x a = ,),(22y x b = ,试用a 和b 的坐标表示b a ? 设i 是x 轴上的单位向量,j 是y 轴上的单位向量,那么 j y i x a 11+=,j y i x b 22+= 所以))((2211j y i x j y i x b a ++=?2211221221j y y j i y x j i y x i x x +?+?+= 又1=?i i ,1=?j j ,0=?=?i j j i 所以b a ?2121y y x x += 这就是说:两个向量的数量积等于它们对应坐标的乘积的和 即b a ?2121y y x x += 2.平面内两点间的距离公式 (1)设),(y x a = ,则222||y x a += 或 ||a = (2)如果表示向量a 的有向线段的起点和终点的坐标分别为),(11y x 、),(22y x ,那么221221)()(||y y x x a -+-= (平面内两点间的距离公式) 3.向量垂直的判定 设),(11y x a = ,),(22y x b = ,则b a ⊥ ?02121=+y y x x

(重点)平面向量数量积公式的应用(可编辑修改word版)

F D C A a B 1 O - A 1 b B 平面向量数量积公式的应用 向量的数量积是我们学习向量中的一种新的运算,它是两个向量之间的乘法关系,它们的积是数量,因此,数量积公式充分把向量与数结合在一起,为我们解题提供了一种新的思维方式。下面谈谈数量积公式在解题中的应用。 一、解决平面几何问题: 1. 长度问题 例 1:设 AC 是平行四边形 ABCD 的长对角线,从 C 引 AB 、AD 的垂线 CE 、CF ,垂足分别为 E 、F ,如图所示,求证: AB ? AE + AD ? AF = AC 2 。 B E 2. 垂直问题 例 2:如图所示,四边形 ADCB 是正方形,P 是对角线 DB 上一点,PFCE 是矩形,证明: PA ⊥ EF 。 3. 夹角问题 例 3:求等腰直角三角形两直角边上的中线所成的钝角。 二、解决三角问题: 1. 证明一些公式: 例 4: 对 于 任 意 实 数 , Y , 求 证 : cos(+ ) = cos cos - sin sin 。 X y A B P E D O F C x y A E O C D B x

2. 证明三角恒等式: 例 5:已知 、 为锐角, 且 3sin 2 + 2 s in 2 = 1 , A 5 3sin 2- 2 s in 2= 0 ,求证:+ 2= 。 2 A 6 A 4 A 7 e A 3 A 1 A 2 3. 求三角函数值: 2 例 6:求值: cos 7 + cos 4+ c os 6。 7 7 4. 解与三角形有关的问题: 例 7:在锐角△ABC 中,已知cos A + cos B - cos( A + B ) = 3 ,求角 C 的值。 2 三、证明等式: 一般来说,等式的证明都要进行恒等运算,但应用向量的有关知识和运算,并且简单明了。 例 8:设(x 2 + y 2 )(a 2 + b 2 ) = (ax + by )2 ( ab ≠ 0 ),求证: x = y a b

平面向量数量积运算专题(附标准答案)

平面向量数量积运算 题型一 平面向量数量积的基本运算 例1 (1)(2014·天津)已知菱形ABCD 的边长为2,∠BAD =120°,点E ,F 分别在边BC ,DC 上,BC =3BE ,DC =λDF .若AE →·AF →=1,则λ的值为________. (2)已知圆O 的半径为1,P A ,PB 为该圆的两条切线,A ,B 为切点,那么P A →·PB →的最小值为( ) A.-4+ 2 B.-3+ 2 C.-4+2 2 D.-3+2 2 变式训练1 (2015·湖北)已知向量OA →⊥AB →,|OA →|=3,则OA →·OB →=________. 题型二 利用平面向量数量积求两向量夹角 例2 (1)(2015·重庆)若非零向量a ,b 满足|a |=22 3 |b |,且(a -b )⊥(3a +2b ),则a 与b 的夹角为( ) A.π4 B.π2 C.3π4 D.π (2)若平面向量a 与平面向量b 的夹角等于π 3,|a |=2,|b |=3,则2a -b 与a +2b 的夹角的余弦 值等于( )

A.126 B.-126 C.112 D.-1 12 变式训练2 (2014·课标全国Ⅰ)已知A ,B ,C 为圆O 上的三点,若AO →=12(AB →+AC →),则AB → 与 AC → 的夹角为________. 题型三 利用数量积求向量的模 例3 (1)已知平面向量a 和b ,|a |=1,|b |=2,且a 与b 的夹角为120°,则|2a +b |等于( ) A.2 B.4 C.2 5 D.6 (2)已知直角梯形ABCD 中,AD ∥BC ,∠ADC =90°,AD =2,BC =1,P 是腰DC 上的动点,则|P A →+3PB → |的最小值为________. 变式训练3 (2015·浙江)已知e 1,e 2是平面单位向量,且e 1·e 2=1 2.若平面向量b 满足b ·e 1=b ·e 2 =1,则|b |=________.

向量公式大全83635

向量公式 设a=(x,y),b=(x',y')。 1、向量的加法 向量的加法满足平行四边形法则和三角形法则。 AB+BC=AC。 a+b=(x+x',y+y')。 a+0=0+a=a。 向量加法的运算律: 交换律:a+b=b+a; 结合律:(a+b)+c=a+(b+c)。 2、向量的减法 如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0 AB-AC=CB. 即“共同起点,指向被减” a=(x,y) b=(x',y') 则 a-b=(x-x',y-y'). 4、数乘向量 实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣?∣a∣。 当λ>0时,λa与a同方向; 当λ<0时,λa与a反方向; 当λ=0时,λa=0,方向任意。 当a=0时,对于任意实数λ,都有λa=0。 注:按定义知,如果λa=0,那么λ=0或a=0。 实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。 当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍; 当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。 数与向量的乘法满足下面的运算律 结合律:(λa)?b=λ(a?b)=(a?λb)。 向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa. 数对于向量的分配律(第二分配律):λ(a+b)=λa+λb. 数乘向量的消去律:①如果实数λ≠0且λa=λb,那么a=b。②如果a≠0且λa=μa,那么λ=μ。 3、向量的的数量积 定义:已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b

最新向量数量积的坐标运算

向量数量积的坐标运 算

仅供学习与交流,如有侵权请联系网站删除 谢谢5 《向量的数量积的坐标运算与度量公式》预习案 【学习目标】: (1)灵活运用向量数量积的坐标运算公式,夹角余弦的坐标表达式; (2)体会公式中体现的数形结合的思想 【学习重难点】 重点:向量数量积的坐标运算与度量公式 难点:灵活运用公式解决有关问题 【知识链接】 1.两向量数量积定义:?Skip Record If...? 2.向量数量积的性质: 【知识重现】 1. 已知?Skip Record If...?,?Skip Record If...?在?Skip Record If...?方向 上的正射影的数量是3,则?Skip Record If...? 2. 在?Skip Record If...? 中,?Skip Record If...?,则?Skip Record If...? 【知识点梳理】 1.数量积的坐标表达式 ?Skip Record If...? 2、用向量的坐标表示两个向量垂直的条件: (2)与向量?Skip Record If...?垂直的向量可以写成 。

3、向量的长度、距离和夹角公式推导 向量的长度公式: ?Skip Record If...? 距离公式:?Skip Record If...? 两向量夹角余弦公式的坐标表达式: ?Skip Record If...? 自学课本P113--P114例1—例4,完成自学检测 【自学检测】 1.已知?Skip Record If...?则?Skip Record If...?,?Skip Record If...?,?Skip Record If...?,?Skip Record If...? 2.已知?Skip Record If...?则?Skip Record If...? 3.判断下面各对向量是否垂直 (1)?Skip Record If...?(2)?Skip Record If...? 仅供学习与交流,如有侵权请联系网站删除谢谢5

向量积的运算公式及度量公式

如对您有帮助,请购买打赏,谢谢您! 张喜林制 2.3.2 向量数量积的运算律 2.3.3 向量数量积的坐标运算与度量公式 考点知识清单 1.向量数量积的运算律: (1)交换律: (2)分配律: (3)数乘向量结合律: 2.常用结论: 3.两个向量的数量积等于它们对应坐标乘积的和,即若=a ),,(21a a ),,(21b b b =则=?b a 4.设).,(),,(2121b b b a a a == 如果,b a ⊥则 如果,02211=+b a b a 则 对于任意实数k ,向量),(12b b k -与向量),(21b b 垂直. 5.向量),,(),,(2121b b b a a a ==则=||a ,cos a <>=b 6.若),,(),,(2211y x B y x A 则),,(1212y y x x AB --=所以=||AB 要点核心解读 1.向量数量积的运算律 a b b a ?=?)1((交换律) ; )()())(2(b a b a b a λλλ?=?=?(结合律) ; c b c a c b a ?+?=?+))(3((分配律) . 2.向量数量积的运算律的证明 a b b a ?=?)1((交换律) 证明:,,cos ||||,cos ||||a b a b a b b a b a b a ?>=<>=<=? )()()()2(b a b a b a λλλ?=?=?(结合律) 证明:.,cos ||||)(><=?b a b a b a λλ① 当0>λ时,a λ与a 同向,),,(,b a b a >=<λ 当0=λ时,,00)0()(=?=?=?b b a b a λ

平面向量的数量积及运算练习题

周周清13平面向量的数量积及运算练习题 一、选择题: 1、下列各式中正确的是 ( ) (1)(λ·a ) ·b =λ·(a b )=a · (λb ), (2)|a ·b |= | a |·| b |, (3)(a ·b )· c = a · (b ·c ), (4)(a +b ) · c = a ·c +b ·c A .(1)(3) B .(2)(4) C .(1)(4) D .以上都不对. 2、在ΔABC 中,若(CA CB)(CA CB)0+?-=u u u v u u u v u u u v u u u v ,则ΔABC 为 ( ) A .正三角形 B .直角三角形 C .等腰三角形 D .无法确定 3、若| a |=| b |=| a -b |, 则b 与a +b 的夹角为 ( ) A .30° B .60° C .150° D .120° 4、已知| a |=1,| b |=2 ,且(a -b )和a 垂直,则a 与b 的夹角为 ( ) A .60° B .30° C .135° D .45° 5、若 2AB BC AB 0?+=u u u v u u u v u u u v ,则ΔABC 为 ( ) A .直角三角形 B .钝角三角形 C .锐角三角形 D .等腰直角三角形 6、设| a |= 4, | b |= 3, 夹角为60°, 则| a+b |等于 ( ) A .37 B .13 C .37 D .13 7、己知 | a |= 1,| b |= 2, a 与的夹角为60, c =3a+b , d =λa -b ,若c ⊥d ,则实数λ的值为( ) A . 7 4 B . 7 5 C . 4 7 D . 5 7 8、设 a ,b ,c 是平面内任意的非零向量且相互不共线,则 ( ) ① (a ·b )·c -(c ·a )·b =0 ② | a | -| b |< | a -b | ③ (b ·c )·a -(c ·a )·b 不与c 垂直 ④ (3a +2b ) ·(3a -2b )= 9| a | 2 -4| b | 2 其中真命题是 ( ) A .①② B .②③ C .③④ D .②④ 9.(06陕西)已知非零向量AB u u u r 与AC u u u r 满足0AB AC BC AB AC ?? ?+?= ??? u u u r u u u r u u u r u u u r u u u r 且12 AB AC AB AC ?=u u u r u u u r u u u r u u u r , 则ABC △为 .A 等边三角形 .B 直角三角形 .C 等腰非等边三角形 .D 三边均不相等的三角形 10.(05全国Ⅰ文)点O 是ABC △所在平面内的一点,满足OA OB OB OC OC OA ?=?=?u u u r u u u r u u u r u u u r u u u r u u u r ,则点O 是

平面向量数量积运算的解题方法与策略

平面向量数量积运算的解题方法与策略 平面向量数量积运算一直是高考热点内容,它在处理线段长度、垂直等问题的方式方法上尤为有突出的表现,而正确理解数量积的定义和几何意义是求解的关键,同时平面向量数量积的运算结果是实数而不是向量,因此要注意数量积运算和实数运算律的差异,本文仅举数例谈谈求解向量数量积运算的方法和策略。 1.利用数量积运算公式求解 在数量积运算律中,有两个形似实数的完全平方和(差)公式在解题中的应用较为广泛,即(a +b ) 2 =a 2+2a 2b +b 2,(a -b )2=a 2-2a 2b +b 2 上述两公式以及(a +b )(a -b )=a 2 -b 2 这一类似于实数平方差的公式在解题过程中 可以直接应用. 例1 已知|a |=2,|b |=5,a 2b =-3,求|a +b |,|a -b |. 解析:∵|a +b |2=(a +b )2=a 2+2a 2b +b 2=22+23(-3)+52 =23 ∴|a +b |=23,∵(|a -b |)2 =(a -b )2 =a 2 -2a 2b +b 2 =22 -23(-3) 352 =35, ∴|a -b |=35. 例2 已知|a |=8,|b |=10,|a +b |=16,求a 与b 的夹角θ(精确到1°). 解析:∵(|a +b |)2=(a +b )2=a 2+2a 2b +b 2=|a |2 +2|a |2|b |co sθ+|b | 2 ∴162=82+238310cosθ+102 , ∴cosθ= 40 23 ,∴θ≈55° 例3 已知a =(3,4),b =(4,3),求x ,y 的值使(xa +yb )⊥a ,且|xa +yb |=1. 分析:这里两个条件互相制约,注意体现方程组思想. 解:由a =(3,4),b =(4,3),有xa +yb =(3x +4y ,4x +3y ) 又(xa +yb )⊥a ?(xa +yb )2a =0?3(3x +4y )+4(4x +3y )=0 即25x +24y =0 ① 又|xa +yb |=1?|xa +yb |2=1?(3x +4y )2+(4x +3y )2 =1 整理得:25x 2+48xy +25y 2=1即x (25x +24y )+24xy +25y 2 =1 ② 由①②有24xy +25y 2 =1 ③ 将①变形代入③可得:y =± 7 5 再代回①得:??? ????=-=???????-==7535 24753524y x y x 和

平面向量坐标运算及其数量积习题

平面向量坐标及数量积练习 1. 已知e 1→,e 2→是一组基底,那么下面四组向量中,不能作为一组基底的是( ) A. e 1→, e 1→+e 2→ B. e 1→—2e 2→, e 2→—2e 1→ C. e 1→—2e 2→, 4e 2→—2e 1→ D. e 1→+e 2→, e 1→—e 2→ 2. 若a →,b →不共线且λa →+μb →=0→(λ , μ ∈ R), 则 ( ) A. a →=0→,b →=0→ B. λ=μ=0 C. λ=0, b →=0 D. a →=0→, μ=0 3. 如图1,ΔABC 中,M, N, P 顺次是AB 的四等分点, CB →=e 1→, CA →=e 2→, 则下列正确的是( ) A. CN →=12e 1→+12e 2→, CM →=14e 1→+34e 2→ B. AB →=e 1→—e 2→, CP →=14e 1→+34 e 2→ C. CP →=34e 1→+14e 2→, AM →=14(e 1→+e 2→) D. AM →=14 (e 1→—e 2→), AB →=e 1→+e 2→ 4. 若|a →|=1,|b →|=2,c →=a →+b →且c →⊥a →, 则向量a →与b →的夹角为 ( ) A. 30° B. 60° C. 120° D. 150° 5. 已知单位向量i →与j →的夹角为60°,则2j →—i →与i →的关系为 ( ) A. 相等 B. 垂直 C. 平行 D. 共线 6 下列命题中真命题的个数为 ( ) ①|a →·b →|=|a →|·|b →|;②a →·b →=0 ? a →=0→或b →=0; ③ |λa →|=|λ|·|a →|; ④ λa →=0→ ? λ=0或a →=0→ A. 1 B. 2 C. 3 D. 4 7. 设a →,b →,c →是单位向量,且a →·b →=0,则(a →—c →)·(b →—c →)的最小值为 ( ) A. —2 B. 2—2 C. —1 D. 1— 2 8. 若点A 的坐标是(x 1, y 1),向量AB →的坐标为(x 2, y 2),则点B 的坐标为 ( ) A .(x 1—x 2, y 1—y 2) B .(x 2—x 1, y 2—y 1) C .(x 1+x 2, y 1+y 2) D .(x 2—x 1, y 1—y 2) 9. 已知M(3,—2), N(—5,—1),且MP →=2MN →, 则MP → = ( ) A .(—8,1) B .(—4, 12) C .(—16, 2) D .(8, —1) 10 与a →=(3,4)垂直的单位向量是 ( ) A. (45, 35) B. (—45, —35) C. (45, —35)或(—45, 35) D. (45, 35)或(—45, —35) 11. A(1,2),B(2,3),C(2,0)所以ΔABC 为 ( ) A.直角三角形 B.锐角三角形 C.钝角三角形 D.不等边三角形 12.已知A(1,0),B(5,-2),C(8,4),D.(4.6)则四边形ABCD 为 ( ) A.正方形 B.菱形 C.梯形 D. 矩形 13.已知a →=(—3,4),b →=(5,2),c →=(1,—1), 则(a →·b →)·c →等于 ( ) A. —14 B. —7 C. (7,—7) D. (—7,7) 14.已知A(—1,1),B(1,2),C(3, 12) , 则AB →·AC →等于 ( ) A. 52 B. 152 C. —52 D. —152 15已知|m →|=6 ,n →=(cos θ,sin θ), m →·n →=9, 则m →, n →的夹角为 ( ) A.150o B.120 o C.60 o D.30 o 16.若a →=(—2,1)与b →=(—1,—m 5 )互相垂直,则m 的值为 ( ) A. —6 B.8 C. —10 D. 10 17. 已知M(3, —2), N(—5,—1),且MP → = 12 MN →,则P 点的坐标 ( ) A .(—4, 12) B .(—1, —32 ) C .(—1, 32 ) D .(8, —1) 18. 已知a → = (3, —1), b → = (—1, 2), c → = 2a → + b →, 则 c → = ( ) A .(6,—2) B .(5,0) C .(—5,0) D .(0,5) 19. 已知a →=(—6, y ), b →=(—2, 1), 且a →与b →共线,则x = ( ) A .—6 B .6 C .3 D .—3 20. 已知A(2,—1),B(3,1), 与AB →方向相反的向量a →是 ( ) A .a →=(1, 12) B .a →=(—6,—3) C .a →=(—1,2) D .a → =(—4,—8)

2020高考数学专题复习《平面向量的坐标运算》

平面向量的坐标运算 一、知识精讲 1.平面向量的正交分解 把一个向量分解成两个互相垂直的向量,叫做把向量正交分解. 2.平面向量的坐标表示 (1)向量的坐标表示: 在直角坐标系中,分别取与x 轴、y 轴方向相同的两个单位向量i、j 作为基底,对于平面内的一个向量a,由平面向量基本定理知,有且只有一对实数x,y 使得a=xi+yj,则把有序数对(x,y)叫做向量a 的坐标.记作a=(x,y),此式叫做向量的坐标表示. (2)在直角坐标平面中,i=(1,0),j=(0,1),0= (0,0).3.平面向量的坐标运算 设a=(x1,y1),b=(x2,y2),其中b≠0.则a∥b?a=λb?x1y2-x2y1=0. [小问题·大思维] 1.与坐标轴平行的向量的坐标有什么特点? 提示:与x 轴平行的向量的纵坐标为0,即a=(x,0);与y 轴平行的向量的横坐标为0,即b=(0,y).

2.已知向量OM =(-1,-2),M 点的坐标与OM 的坐标有什么关系? 提示:坐标相同但写法不同;OM =(-1,-2),而M(-1,-2).3.在基底确定的条件下,给定一个向量.它的坐标是唯一的一对实数,给定一对实数,它表示的向量是否唯一? 提示:不唯一,以这对实数为坐标的向量有无穷多个,这些向量都是相等向量. 4.向量可以平移,平移前后它的坐标发生变化吗? 提示:不发生变化。向量确定以后,它的坐标就被唯一确定,所以向量在平移前后,其坐标不变. 5 x1 y1 .已知a=(x1,y1),b=(x2,y2),若a∥b,是否有=成立? x2 y2 x1 y1 提示:不一定.由于=的意义与x1y2-x2y1=0 的意义不同,前者不 x2 y2 允许x2和y2为零,而后者允许,当x1=x2=0,或y1=y2=0 或x2=y2=0 时,a∥b x1 y1 但=不成立. x2 y2 二、典例精析 例1、如图所示,已知△ABC,A(7,8),B(3,5),C(4,3),M,N,D 分别是AB,AC,BC 的中点,且MN 与AD 交于点F,求DF 的 坐标.

向量公式大全

向量公式 设a= (x, y), b=(x' , y')。 1、向量的加法 向量的加法满足平行四边形法则和三角形法则 AB+BC=AC a+b=(x+x' ,y+y')。 a+0=0+a=a。 向量加法的运算律: 交换律:a+b=b+a 结合律:(a+b)+c=a+(b+c)。 2、向量的减法 如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0 AB-AC=CB.即“共同起点,指向被减” a=(x,y) b=(x',y')则a-b=(x-x',y-y'). 4、数乘向量 实数入和向量a的乘积是一个向量,记作入a,且I入a l =1X1 ? I a l。 当入〉0时,入a与a同方向; 当XV 0时,入a与a反方向; 当入=0时,X a=0,方向任意。 当a=0时,对于任意实数X,都有X a=0。 注:按定义知,如果X a=0,那么X =0或a=0。 实数X叫做向量a的系数,乘数向量X a的几何意义就是将表示向量a的有向线段伸长或压缩。 当IXI> 1时,表示向量a的有向线段在原方向(X> 0)或反方向(XV 0)上伸长为原来的IXI倍; 当IXI V 1时,表示向量a的有向线段在原方向(X> 0)或反方向(XV 0)上缩 短为原来的IXI倍。 数与向量的乘法满足下面的运算律 结合律:(X a)?b= X (a ?b)=(a ?X b)。 向量对于数的分配律(第一分配律):(X +卩)a= X a+卩a. 数对于向量的分配律(第二分配律):X (a+b)= X a+X b. 数乘向量的消去律:① 如果实数入工0且X a=X b,那么a=b。②如果a^0 .且X a=(1 a,那么X =卩。 3、向量的的数量积

高一数学优质课比赛 平面向量数量积的坐标表示教案

平面向量数量积的坐标表示 一、本教学设计主要思考的几个问题: 1、 教材的地位和作用是什么? 2、 学生在学习中会遇到什么困难? 3、 如何根据新课程理念,设计教学过程? 4、 如何结合教学内容,指导学生学法、发挥评价作用、发展学生能力? 二、教材分析: 1、 向量是近代数学中最重要的概念之一; 2、 向量的几何形式与代数形式的“双重身份”以及它的一套优良的运算系统使它成为“重要工具” 和“桥梁”; 3、 数量积的坐标表示为解决“形”中的长度、角度等问题带来了方便; 4、 有助于理解和掌握 数形结合的思想方法; 5、 为学习物理等其他学科解决实际问题作准备; 三、教学目标分析: ⒈知识目标:(1)掌握数量积和模的坐标; (2)掌握两向量垂直的充要条件(等价条件)、夹角公式. ⒉能力目标:(1)领悟数形结合的思想方法; (2)培养学生自主学习及提出、分析、解决问题的能力. ⒊情感目标:体验探索的乐趣认识世间事物的联系与转化. 四、教学的重点、难点分析: 重点:数量积坐标表示的推理过程. 难点:公式的建立与应用. 五、学生分析: 知识上:学习过向量加减法坐标运算和数量积定义性质运算等; 方法上:研究过向量加减法坐标运算的推理过程; 思维上:由经验型抽象思维逐渐过渡理论性严谨抽象思维; 能力上:主动迁移、主动重组整合的能力较弱. 六、教学方法和教学手段分析: 1、建构主义学习理论认为:学生的认知结构是通过同化和顺化而不断发展,学习不是对教师所授予的 知识被动接受,而是一个以学生已有的知识和经验为基础的主动的建构过程。学生真正获得知识的消化,是把新的学习内容正确纳入已有的认知结构,使其成为整个认知结构的有机组成部分,所以在教学中,以向量为载体,按照“直观感知----操作确认-----思辩论证”的认识过程展开。通过创设良好的问题情境,不断引导学生观察、实验、思考、探索,通过自己的亲身实践,充分发挥学生学习的主动性,培养学生的自主、合作、探索能力。同时采用电脑课件的教学手段,加强直观性和启发性,提高课堂效益; 2、 运用“导学探究式” 教学方法; 3、 本节课的基调定为,自主探索、民主开放、合作交流、师生对话、分层评价; 4、多媒体信息技术教学手段整合教学过程. 七、学法指导: 1、根据本节课特点及学生的认知心理,把重点放在如何让学生“会学习”这一方面,学生在教师营 造的“可探索”环境里,积极参与、生动活泼地获取知识、善于观察类比、掌握规律、主动发现、积极探索质疑,从而培养学生观察能力、想象能力、探索思维能力,设计转化、分析问题及解决问题的能力; 2、 紧紧围绕数形结合这条主线; 认知主体

《空间向量的数量积运算》示范教案

3.1.3空间向量的数量积运算 整体设计 教材分析 本节课在平面向量的夹角和向量长度的概念的基础上,引入了空间向量的夹角和向量长度的概念和表示方法,介绍了空间两个向量数量积的概念、计算方法、性质和运算律,并举例说明利用向量的数量积解决问题的基本方法. 通常,按照传统方法解立体几何题,需要有较强的空间想象能力、逻辑推理能力以及作图能力,学生往往由于这些能力的不足造成解题困难.用向量处理立体几何问题,可使学生克服空间想象力的障碍而顺利解题,为研究立体几何提供了新的思想方法和工具,具有相当大的优越性;而且,在丰富学生思维结构的同时,应用数学的能力也得到了锻炼和提高.课时分配 1课时 教学目标 知识与技能 1.掌握空间向量夹角的概念及表示方法; 2.掌握两个向量数量积的概念、性质和计算方法及运算律; 3.掌握两个向量数量积的主要用途,会用它解决立体几何中的一些简单问题. 过程与方法 1.运用类比方法,经历向量的数量积运算由平面向空间推广的过程; 2.引导学生借助空间几何体理解空间向量数量积运算的意义. 情感、态度与价值观 1.培养学生的类比思想、转化思想,培养探究、研讨、综合自学应用能力; 2.培养学生空间向量的应用意识. 重点难点 教学重点: 1.空间向量的数量积运算及其运算律、几何意义; 2.空间向量的数量积运算及其变形在空间几何体中的应用. 教学难点: 1.空间想象能力的培养,思想方法的理解和应用; 2.空间向量的数量积运算及其几何应用和理解. 教学过程 引入新课 提出问题:已知在正方体ABCD—A′B′C′D′中,E为AA′的中点,点F在线段 D′C′上,D′F=1 2FC′,如何确定BE → ,FD → 的夹角?

空间向量的数量积运算练习题

课时作业(十五) 一、选择题 1.设a 、b 、c 是任意的非零平面向量,且它们相互不共线,下列命题:①(a ·b )c -(c ·a )b =0;②|a |=a ·a ;③a 2b =b 2a ;④(3a +2b )·(3a -2b )=9|a |2-4|b |2.其中正确的有( ) A .①② B .②③ C .③④ D .②④ 【解析】 由于数量积不满足结合律,故①不正确,由数量积的性质知②正确,③中|a |2·b =|b |2·a 不一定成立,④运算正确. 【答案】 D 2.已知a +b +c =0,|a |=2,|b |=3,|c |=4,则a 与b 的夹角〈a ,b 〉=( ) A .30° B .45° C .60° D .以上都不对 【解析】 ∵a +b +c =0,∴a +b =-c ,∴(a +b )2=|a |2+|b |2+2a ·b =|c |2 ,∴a ·b =32,∴cos 〈a ,b 〉=a ·b |a ||b |=14. 【答案】 D 3.已知四边形ABCD 为矩形,PA ⊥平面ABCD ,连结AC ,BD ,PB ,PC ,PD ,则下列各组向量中,数量积不为零的是( ) 与BD → 与PB → 与AB → 与CD →

【解析】 用排除法,因为PA ⊥平面ABCD ,所以PA ⊥CD ,故PA →·CD →=0,排除D ;因为AD ⊥AB ,PA ⊥AD ,又PA ∩AB =A ,所 以AD ⊥平面PAB ,所以AD ⊥PB ,故DA →·PB →=0,排除B ,同理PD →·AB →=0,排除C. 【答案】 A 4. 如图3-1-21,已知空间四边形每条边和对角线都等于a ,点E ,F ,G 分别是AB ,AD ,DC 的中点,则下列向量的数量积等于a 2的是( ) 图3-1-21 A .2BA →·AC → B .2AD →·DB → C .2FG →·AC → D .2EF →·CB → 【解析】 2BA →·AC →=-a 2,故A 错;2AD →·DB →=-a 2,故B 错; 2EF →·CB →=-12a 2,故D 错;2FG →·AC →=AC →2=a 2,故只有C 正确. 【答案】 C 二、填空题 5.已知|a |=2,|b |=3,〈a ,b 〉=60°,则|2a -3b |=________. 【解析】 |2a -3b |2=(2a -3b )2=4a 2-12a ·b +9b 2 =4×|a |2+9×|b |2-12×|a |·|b |·cos 60°=61,

平面向量的所有公式

平面向量的所有公式 设a=(x,y),b=(x',y')。 1、向量的加法 向量的加法满足平行四边形法则和三角形法则。 AB+BC=AC。 a+b=(x+x',y+y')。 a+0=0+a=a。 向量加法的运算律: 交换律:a+b=b+a; 结合律:(a+b)+c=a+(b+c)。 2、向量的减法 如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0 AB-AC=CB. 即“共同起点,指向被减” a=(x,y) b=(x',y') 则a-b=(x-x',y-y'). 3、数乘向量 实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣?∣a∣。 当λ>0时,λa与a同方向; 当λ<0时,λa与a反方向; 当λ=0时,λa=0,方向任意。 当a=0时,对于任意实数λ,都有λa=0。 注:按定义知,如果λa=0,那么λ=0或a=0。 实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。 当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍; 当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。 数与向量的乘法满足下面的运算律 结合律:(λa)?b=λ(a?b)=(a?λb)。 向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa. 数对于向量的分配律(第二分配律):λ(a+b)=λa+λb. 数乘向量的消去律:①如果实数λ≠0且λa=λb,那么a=b。②如果a≠0且λa=μa,那么λ=μ。 4、向量的的数量积 定义:已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π 定义:两个向量的数量积(内积、点积)是一个数量,记作a?b。若a、b不共线,则a?b=|a|?|b|?cos 〈a,b〉;若a、b共线,则a?b=+-∣a∣∣b∣。 向量的数量积的坐标表示:a?b=x?x'+y?y'。 向量的数量积的运算律 a?b=b?a(交换律); (λa)?b=λ(a?b)(关于数乘法的结合律); (a+b)?c=a?c+b?c(分配律); 向量的数量积的性质 a?a=|a|的平方。 a⊥b 〈=〉a?b=0。 |a?b|≤|a|?|b|。 向量的数量积与实数运算的主要不同点 1、向量的数量积不满足结合律,即:(a?b)?c≠a?(b?c);例如:(a?b)^2≠a^2?b^2。 2、向量的数量积不满足消去律,即:由a?b=a?c (a≠0),推不出b=c。

相关文档
最新文档