2011届高考数学一轮复习之圆锥曲线

合集下载

高三数学一轮复习圆锥曲线 抛物线

高三数学一轮复习圆锥曲线 抛物线
2 x2 x2 y= (x-x2)+ , 2 4

x1+x2 x1x2 由⑤⑥得 MA, MB 的交点 M(x0, y0)的坐标为 x0= , y0= , 2 4 因为点 M(x0,y0)在 C2 上,即 x2 0=-4y0,
2 x1 +x2 2 所以 x1x2=- . ⑦ 6
4 由③④⑦得 x = y,x≠0. 3
p [听课记录] 依题意, 设抛物线方程是 y =2px(p>0),则有 2+ = 2
2
3,得 p=2, 故抛物线方程是 y2=4x,点 M 的坐标是(2,± 2 2), |OM|= 22+8=2 3. 答案 B


[规律方法] 1 . 求抛物线的方程一般是利用待定系数法, 即求p但要注意判断标准方程的形式. 2 .研究抛物线的几何性质时,一是注意定义 转化应用;二是要结合图形分析,同时注意平 面几何性质的应用.



[典题导入] (1)(2013·新课标全国Ⅱ高考)设抛物线C: y2 = 2px(p > 0) 的焦点为 F ,点 M 在 C 上, |MF| = 5 ,若以 MF 为直径的圆过点 (0 , 2) ,则 C 的 方程为 ( ) A.y2=4x或y2=8x B . y2 = 2x 或 y2 =8x C.y2=4x或y2=16x D . y2 = 2x 或 y2 =16x
2
当 x1=x2 时,A,B 重合于原点 O,AB 中点 N 为 O,坐标满足 x2 4 = y. 3 4 因此线段 AB 中点 N 的轨迹方程为 x = y. 3
2



[规律方法] 1.设抛物线方程为y2=2px(p>0),直线Ax+ By + C = 0 ,将直线方程与抛物线方程联立, 消去x得到关于y的方程my2+ny+q=0. (1)若m≠0,当Δ>0时,直线与抛物线有两个 公共点; 当Δ=0时,直线与抛物线只有一个公共点; 当Δ<0时,直线与抛物线没有公共点. (2) 若 m = 0 ,直线与抛物线只有一个公共点, 此时直线与抛物线的对称轴平行.

圆锥曲线中的定点、定值问题课件-2025届高三数学一轮复习

圆锥曲线中的定点、定值问题课件-2025届高三数学一轮复习

有lMN:x=2+1=3,也过定点(3,0), 故直线MN过定点,且该定点为(3,0).
(2)设G为直线AE与直线BD的交点,求△GMN面积的最小值.
解:由A(x1,y1),B(x2,y2),E(x3,y3),D(x4,y4), 则 lAE:y=yx33- -yx11(x-x1)+y1,由 y21=4x1,y22=4x2, 故 y=yy4323--yy4121x-y421+y1=y3+4xy1-y3+y21 y1+y1=y3+4xy1+y3y+1y3y1, 同理可得 lBD:y=y4+4xy2+y4y+2y4y2,
(2)过点(-2,3)的直线交C于P,Q两点,直线AP,AQ与y轴的交点分别为M, N,证明:线段MN的中点为定点.
解:证明:由题意可知:直线PQ的斜率存在, 设PQ:y=k(x+2)+3, P(x1,y1),Q(x2,y2), 联立方程
y=k(x+2)+3, y92+x42=1, 消去y得(4k2+9)x2+8k(2k+3)x+16(k2+3k)=0, 则Δ=64k2(2k+3)2-64(4k2+9)(k2+3k)=-1 728k>0,解得k<0,
[kx1+(2k+3)](x2+2)+[kx2+(2k+3)](x1+2) (x1+2)(x2+2)
=2kx1x2+x(14xk2++32)((xx11++xx22))++44(2k+3)
=32k4(kk22++19364k(kk)-22++893kk(4)-k4+1k263+4k)k((2292+kk++933))++44(2k+3)=13068=3, 所以线段MN的中点是定点(0,3).
综合①②知,|MN|=4 3,为定值.
规律方法
由特殊到一般法求定值问题的两个常用技巧

高考数学圆锥曲线复习策略.docx

高考数学圆锥曲线复习策略.docx

高考数学圆锥曲线复习策略一.圆锥曲线高考大纲文科(1)掌握椭圆的定义、几何图形、标准方程和简单的几何性质(范围、对称性、顶点、离心率)(2)了解双曲线的定义、几何图形、标准方程,知道其简单的几何性质(范围、对称性、顶点、离心率、渐近线)(3)了解抛物线的的定义、儿何图形、标准方程,知道其简单的儿何性质(范围、对称性、顶点、离心率)(4)理解数形结合的思想。

(5)了解圆锥曲线的简单应用。

理科.(1)了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用.(2)掌握椭圆、抛物线的定义、儿何图形、标准方程及简单儿何性质.(范围、对称性、顶点、离心率)(3)了解双曲线的定义、几何图形和标准方程,知道它的简单几何性质(范围、对称性、顶点、离心率、渐近线).(4)了解圆锥曲线的简单应用.(5)理解数形结合的思想.锥曲线知识网络'对称轴兀轴 住占 八、、八、、标准方程y 2=2P x\顶点 离心率 准线 (卩>0)二.试题趋势近年來圆锥1111线在高考中比较稳定,解答题往往以屮档题或以押轴题形式出现,主要考察学 生逻辑推理能力、运算能力,考察学生综合运用数学知识解决问题的能力。

但圆锥曲线在新 课标中化归到选学内容,要求有所降低,估计2011年高考对本讲的考察,主要考察热点有:(1) 圆锥Illi 线的定义及标准方程; (2) 与圆锥曲线有关的轨迹问题;(3) 与圆锥曲线有关的最值、定值问题;(4) 与平面向量、导数等知识相结合的交汇试题(1)圆锥曲线的定义及标准方程;1. (2010北京文理)(13)已知双曲线二—1的离心率为2,焦点与椭圆—= 1的a 2b 225 9焦点相同,那么双Illi 线的焦点坐标为 _______ ;渐近线方程为 ________ o定义::椭圆l + IF2PI=2a(2a >1 F.F 2 I)标准方程召+令(a > b > 0)2 f 2a =b +对称轴 兀轴,长轴长为2d y 轴,短轴长为2b隹占 八、、八、、定义::< 双曲线{lIFfl —IF2PII=2a(2a<F }F 2 I)2 2 标准方程才*卄严轴卜轴,实轴长为2d 对称轴彳I 》轴,虚轴长为"隹占八、、JW\(Q 〉O,b 〉O )彳顶点21 2 a +b =c离心率 渐近线定义• 抛物线 <・\MF\=d答案:(±4,0)= 02 ,22.(2010天津文数)(13)已知双Illi线罕―仝=1«〉0上〉0)的一条渐近线方程是a b厶y = ^x ,它的一个焦点与抛物线r =16x的焦点相同。

高三数学高考第一轮复习——圆锥曲线的定义,基本性质(理)人教实验A版 知识精讲

高三数学高考第一轮复习——圆锥曲线的定义,基本性质(理)人教实验A版 知识精讲

高三数学高考第一轮复习——圆锥曲线的定义,基本性质(理)人教实验A 版【本讲教育信息】一. 教学内容:圆锥曲线的定义,基本性质二. 重点、难点: 1. 第一定义椭圆:a PF PF 2||||21=+ 双曲线:a PF PF 2||||||21=- 2. 第二定义e l P d PF =),(||(1))1,0(∈e 为椭圆 (2)1=e 为抛物线 (3)),1(+∞∈e 为双曲线【典型例题】[例1] 求过)2,3(-M 且与椭圆14922=+y x 共焦点的(1)椭圆方程(2)双曲线方程。

解:(1)设12222=+by a x∴⎪⎩⎪⎨⎧==⇒⎪⎩⎪⎨⎧=-=+10155149222222b a b a ba ∴1101522=+y x (2)设12222=-by a x∴⎪⎩⎪⎨⎧==⇒⎪⎩⎪⎨⎧=+=-235149222222b a b a ba ∴12322=-y x另解:14922=-+-λλy x ∴14499=-+-λλ ∴6±=λ∴λ=6时,双曲线12322=-y x 6-=λ时,椭圆1101522=+y x[例2] (1)P 为椭圆)0(12222>>=+b a b y a x 上一点,P 不在x 轴上,21,F F 为焦点,α=∠2FPF ,求21PF F S ∆;(2)P 为双曲线12222=-by a x )0,0(>>b a 上一点,P 不在x 轴上,21,F F 为焦点,α=∠21PF F ,求21PF F S ∆。

解:(1)221222142a PF PF PF PF =⋅++22122214cos 2c PF PF PF PF =⋅-+α∴2214)cos 1(2b PF PF =+⋅α∴αcos 12221+=⋅b PF PF∴αsin 212121⋅⋅⋅=∆PF PF S F PF ⋅=2b 2tan cos 1sin 2αααb =+(2)221222142a PF PF PF PF =-+22122214cos 2c PF PF PF PF =⋅⋅-+α∴2214)cos 1(2b PF PF =-⋅⋅α=⋅21PF PF αcos 122-b∴αsin 212121⋅⋅=∆PF PF S PF F =2cot cos 1sin 22αααb b =-⋅[例3] (1)已知椭圆)0(1:2222>>=+b a b y a x M ,P 为M 上一点,3021=∠F PF ,12012=∠F PF ,求离心率;(2)已知双曲线1:2222=-by a x M ,P 为M 上一点,1521=∠F PF , 7512=∠F PF ,求离心率。

2011届高三数学复习计划

2011届高三数学复习计划

湘阴六中2011届高三数学第一轮复习计划高三理科数学备课组(钟岳林老师)一. 背景分析新学期的到来也是新一届高三的开始,也是新一轮复习的启始。

这一届高三是我省实行《新课程标准》命题的第二年,也是我们师生适应新高考模式关键的一年。

高考怎么考我们已清楚,我们的任务应是:指导学生在有限的时间内有效的学习、复习,为高考、更为他们以后的发展服务近年来的高考数学试题逐步做到科学化、规范化,坚持了稳中求改、稳中创新的原则。

考试题不但坚持了考查全面,比例适当,布局合理的特点,也突出体现了变知识立意为能力立意这一举措。

更加注重考查考生进入高校学习所需的基本素养,这些问题应引起我们在教学中的关注和重视。

2011年是湖南省自主命题的第八年,数学试卷充分发挥数学作为基础学科的作用,既重视考查中学数学基础知识的掌握程度,又注意考查进入高校继续学习的潜能。

在前七年命题工作的基础上做到了总体保持稳定,深化能力立意,积极改革创新,兼顾了数学基础、思想方法、思维、应用和潜能等多方面的考查,融入课程改革的理念,拓宽题材,选材多样化,宽角度、多视点地考查数学素养,多层次地考查思想能力,充分体现出湖南卷的特色:1 试题题型平稳突出对主干知识的考查重视对新增内容的考查2 充分考虑文、理科考生的思维水平与不同的学习要求,体现出良好的层次性3 重视对数学思想方法的考查4 深化能力立意,考查考生的学习潜能5 重视基础,以教材为本6 重视应用题设计,考查考生数学应用意识二. 学情分析本届高三理科班的学生普遍基础差,其中只有几个同学数学成绩稍微好一点(如邹勇、黄应得、黎坤、黄雄、钟耿等),他们大多不爱好学习,没有良好的学习习惯,对数学的认知能力太差,这给我们的教学带来了一定的难度,但是面对现实我们不得不在特殊的环境下采取特殊的方法,尽一切可能提高他们的成绩,为明年高考取得伟大的胜利而努力奋斗。

三. 教学指导原则1.高度重视基础知识,基本技能和基本方法的复习。

高三数学一轮复习必备:圆锥曲线方程及性质

高三数学一轮复习必备:圆锥曲线方程及性质

~高三数学(人教版A 版)第一轮复习资料第33讲 圆锥曲线方程及性质一.【课标要求】1.了解圆锥曲线的实际背景,感受圆锥曲线在刻画现实世界和解决实际问题中的作用;2.经历从具体情境中抽象出椭圆、抛物线模型的过程,掌握它们的定义、标准方程、几何图形及简单性质;3.了解双曲线的定义、几何图形和标准方程,知道双曲线的有关性质二.【命题走向】本讲内容是圆锥曲线的基础内容,也是高考重点考查的内容,在每年的高考试卷中一般有2~3道客观题,难度上易、中、难三档题都有,主要考查的内容是圆锥曲线的概念和性质,从近十年高考试题看主要考察圆锥曲线的概念和性质。

圆锥曲线在高考试题中占有稳定的较大的比例,且选择题、填空题和解答题都涉及到,客观题主要考察圆锥曲线的基本概念、标准方程及几何性质等基础知识和处理有关问题的基本技能、基本方法对于本讲内容来讲,预测:(1)1至2道考察圆锥曲线概念和性质客观题,主要是求值问题;(2)可能会考察圆锥曲线在实际问题里面的应用,结合三种形式的圆锥曲线的定义。

三.【要点精讲】1.椭圆(1)椭圆概念平面内与两个定点1F 、2F 的距离的和等于常数(大于21||F F )的点的轨迹叫做椭圆。

这两个定点叫做椭圆的焦点,两焦点的距离叫椭圆的焦距。

若M 为椭圆上任意一点,则有21||||2MF MF a +=椭圆的标准方程为:22221x y a b +=(0a b >>)(焦点在x 轴上)或12222=+bx a y (0a b >>)(焦点在y 轴上)。

注:①以上方程中,a b 的大小0a b >>,其中222c a b =-; ②在22221x y a b +=和22221y x a b+=两个方程中都有0a b >>的条件,要分清焦点的位置,只要看2x 和2y 的分母的大小。

例如椭圆221x y m n+=(0m >,0n >,m n ≠)当m n >时表示焦点在x 轴上的椭圆;当m n <时表示焦点在y 轴上的椭圆(2)椭圆的性质①范围:由标准方程22221x y a b+=知||x a ≤,||y b ≤,说明椭圆位于直线x a =±,y b =±所围成的矩形里;②对称性:在曲线方程里,若以y -代替y 方程不变,所以若点(,)x y 在曲线上时,点(,)x y -也在曲线上,所以曲线关于x 轴对称,同理,以x -代替x 方程不变,则曲线关于y 轴对称。

高考理科第一轮复习课件(7.10圆锥曲线的综合问题)

y k x 1 , 2 x y2 1, 3 4
得(3+4k2)x2+8k2x+4k2-12=0.
由于Δ>0,设A(x1,y1),B(x2,y2),则有
8k 2 4k 2 12 x1 x 2 , x1 x 2 , 2 2 3 4k 3 4k AB
得x2+ky2-4y=0.
当k=0时,方程为x2=4y表示抛物线;
当k=1时,方程表示以(0,2)为圆心,2为半径的圆;
当k>0且k≠1时,方程表示椭圆;
当k<0时,方程表示焦点在x轴上的双曲线.
(2)当k=0时,轨迹T的方程为x2=4y.
设A(xA,yA),B(xB,yB),M(xM,yM),N(xN,yN). 由题意设直线AB的方程为y=k1x+1, 联立x2=4y有:x2-4k1x-4=0,
3 4
②是否存在点M,使得直线MQ与抛物线C相切于点M?若存在,
求出点M的坐标;若不存在,说明理由;
③若点M的横坐标为 2 ,直线l: kx 与抛物线C有两个不 y
同的交点A,B,l与圆Q有两个不同的交点D,E,求当
1 ≤k≤2 2
1 4
时,|AB|2+|DE|2的最小值.
【思路点拨】(1)利用椭圆的两个顶点(a,0)与(0,b)一个在圆
(2)两大解法:①从特殊入手,求出定值,再证明这个值与变
量无关.
②引进变量法:其解题流程为
x 2 y2 【变式训练】已知椭圆 2 2 1(a b 0) 的左焦点F1(-1, a b
0),长轴长与短轴长的比是 2 3. ∶ (1)求椭圆的方程. (2)过F1作两直线m,n交椭圆于A,B,C,D四点,若m⊥n, 求证: 1

高考数学一轮复习专题训练—圆锥曲线的定值问题

圆锥曲线的定值问题题型一 长度或距离为定值【例1】 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的上顶点A 与左、右焦点F 1,F 2构成一个面积为1的直角三角形. (1)求椭圆C 的标准方程;(2)若直线l 与椭圆C 相切,求证:点F 1,F 2到直线l 的距离之积为定值.(1)解 ∵椭圆C 的上顶点A 与左、右焦点F 1,F 2构成一个面积为1的直角三角形,∴⎩⎪⎨⎪⎧b =c ,bc =1, ∴b =c =1, ∴a 2=b 2+c 2=2,∴椭圆C 的方程为x 22+y 2=1.(2)证明 ①当直线l 的斜率不存在时,直线l 的方程为x =±2, 点F 1,F 2到直线l 的距离之积为(2-1)(2+1)=1. ②当直线l 的斜率存在时,设其方程为y =kx +m , 联立⎩⎪⎨⎪⎧y =kx +m ,x 22+y 2=1得(1+2k 2)x 2+4kmx +2m 2-2=0,Δ=(4km )2-4(1+2k 2)(2m 2-2)=-8(m 2-2k 2-1)=0, ∴m 2=1+2k 2,点F 1到直线l :y =kx +m 的距离d 1=|-k +m |k 2+1,点F 2到直线l :y =kx +m 的距离d 2=|k +m |k 2+1.∴d 1d 2=|-k +m |k 2+1·|k +m |k 2+1=|m 2-k 2|k 2+1=|2k 2+1-k 2|k 2+1=1.综上,可知当直线l 与椭圆C 相切时,点F 1,F 2到直线l 的距离之积为定值1.感悟升华 圆锥曲线中的定值问题通常是通过设参数或取特殊值来确定“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒定的.定值问题同证明问题类似,在求定值之前已知该值的结果,因此求解时应设参数,运用推理,到最后必定参数统消,定值显现.【训练1】 在平面直角坐标系xOy 中,已知双曲线C 1:2x 2-y 2=1.设椭圆C 2:4x 2+y 2=1.若M ,N 分别是C 1,C 2上的动点,且OM ⊥ON ,求证:O 到直线MN 的距离是定值. 证明 当直线ON 垂直于x 轴时,|ON |=1,|OM |=22,则O 到直线MN 的距离为33, 当直线ON 不垂直于x 轴时,设直线ON 的方程为y =kx ⎝⎛⎭⎫显然|k |>22,则直线OM 的方程为y =-1kx ,由⎩⎪⎨⎪⎧y =kx ,4x 2+y 2=1,得⎩⎨⎧x 2=14+k 2,y 2=k24+k 2,所以|ON |2=1+k 24+k 2,同理|OM |2=1+k 22k 2-1, 设O 到直线MN 的距离为d ,因为(|OM |2+|ON |2)d 2=|OM |2|ON |2, 所以1d 2=1|OM |2+1|ON |2=3k 2+3k 2+1=3,即d =33.综上,O 到直线MN 的距离是定值. 题型二 斜率或其表达式为定值【例2】 (2020·兰州诊断)如图,椭圆E :x 2a 2+y 2b 2=1(a >b >0)经过点A (0,-1)且离心率为22.(1)求椭圆E 的方程;(2)经过点(1,1),且斜率为k 的直线与椭圆E 交于不同的两点P ,Q (均异于点A ),证明:直线AP 与AQ 的斜率之和为定值.(1)解 由题设知c a =22,b =1,结合a 2=b 2+c 2,解得a =2,所以椭圆E 的方程为x 22+y 2=1.(2)证明 由题设知,直线PQ 的方程为y =k (x -1)+1(k ≠2),代入x 22+y 2=1,得(1+2k 2)x 2-4k (k -1)x +2k (k -2)=0, 由已知Δ>0,设P (x 1,y 1),Q (x 2,y 2), x 1x 2≠0,则x 1+x 2=4k (k -1)1+2k 2,x 1x 2=2k (k -2)1+2k 2, 从而直线AP ,AQ 的斜率之和为k AP +k AQ =y 1+1x 1+y 2+1x 2=kx 1+2-k x 1+kx 2+2-kx 2=2k +(2-k )⎝⎛⎭⎫1x 1+1x 2=2k +(2-k )x 1+x 2x 1x 2=2k +(2-k )4k (k -1)2k (k -2)=2k -2(k -1)=2(即为定值).【训练2】 (2021·大同模拟)如图,在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A ,B ,已知|AB |=4,且点⎝⎛⎭⎫e ,345在椭圆上,其中e 是椭圆的离心率.(1)求椭圆C 的方程;(2)设P 是椭圆C 上异于A ,B 的点,与x 轴垂直的直线l 分别交直线AP ,BP 于点M ,N ,求证:直线AN 与直线BM 的斜率之积是定值. (1)解 ∵|AB |=4,∴2a =4,∴a =2, 又点⎝⎛⎭⎫e ,354在椭圆上,∴e 24+4516b2=1, 又b 2+c 2=a 2=4,联立方程组解得b 2=3, ∴椭圆方程为x 24+y 23=1.(2)证明 设点P 的坐标为(s ,t ),点M ,N 的横坐标为m (m ≠±2), 则直线AP 的方程为y =t s +2(x +2),故M ⎝⎛⎭⎫m ,ts +2(m +2),故直线BM 的斜率k 1=t (m +2)(s +2)(m -2),同理可得直线AN 的斜率k 2=t (m -2)(s -2)(m +2),故k 1k 2=t (m +2)(s +2)(m -2)×t (m -2)(s -2)(m +2)=t 2s 2-4,又点P 在椭圆上,∴s 24+t 23=1,∴t 2=-34(s 2-4),∴k 1k 2=-34(s 2-4)s 2-4=-34.即直线AN 与直线BM 的斜率之积为定值.题型三 几何图形面积为定值【例3】 (2021·昆明诊断)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为e ,点(1,e )在椭圆E上,点A (a,0),B (0,b ),△AOB 的面积为32,O 为坐标原点.(1)求椭圆E 的标准方程;(2)若直线l 交椭圆E 于M ,N 两点,直线OM 的斜率为k 1,直线ON 的斜率为k 2,且k 1k 2=-19,证明:△OMN 的面积是定值,并求此定值.解 (1)由⎩⎪⎨⎪⎧1a 2+e 2b 2=1,e =ca ,c 2=a 2-b 2,得b =1.又S △AOB =12ab =32,得a =3.所以椭圆E 的标准方程为x 29+y 2=1.(2)当直线l 的斜率不存在时,设直线l :x =t (-3<t <3且t ≠0), 由⎩⎪⎨⎪⎧x 29+y 2=1,x =t ,得y 2=1-t 29,则k 1k 2=1-t 29t×-1-t 29t=-1-t 29t 2=-19,解得t 2=92.所以S △OMN =12×2×1-t 29×|t |=32.当直线l 的斜率存在时,设M (x 1,y 1),N (x 2,y 2),直线l :y =kx +m (m ≠0), 由⎩⎪⎨⎪⎧y =kx +m ,x 29+y 2=1消去y 并整理,得(9k 2+1)x 2+18kmx +9m 2-9=0. Δ=(18km )2-4(9k 2+1)(9m 2-9)=36(9k 2-m 2+1)>0, x 1+x 2=-18km9k 2+1,x 1x 2=9m 2-99k 2+1,k 1k 2=y 1x 1×y 2x 2=(kx 1+m )(kx 2+m )x 1x 2=-9k 2+m 29m 2-9=-19, 化简得9k 2+1=2m 2,满足Δ>0.|MN |=1+k 2|x 1-x 2| =1+k 2·(x 1+x 2)2-4x 1x 2=1+k 2·⎝⎛⎭⎫-18km 9k 2+12-4·9m 2-99k 2+1=61+k 2·9k 2-m 2+19k 2+1.又原点O 到直线l 的距离d =|m |1+k 2, 所以S △OMN =12×|MN |×d=31+k 2·9k 2-m 2+19k 2+1×|m |1+k 2=3|m |2m 2-m 22m 2=32.综上可知,△OMN 的面积为定值32.感悟升华 探求圆锥曲线中几何图形的面积的定值问题,一般用直接求解法,即可先利用三角形面积公式(如果是其他凸多边形,可分割成若干个三角形分别求解)把要探求的几何图形的面积表示出来,然后利用题中的条件得到几何图形的面积表达式中的相关量之间的关系式,把这个关系式代入几何图形的面积表达式中,化简即可.【训练3】 已知点F (0,2),过点P (0,-2)且与y 轴垂直的直线为l 1,l 2⊥x 轴,交l 1于点N ,直线l 垂直平分FN ,交l 2于点M . (1)求点M 的轨迹方程;(2)记点M 的轨迹为曲线E ,直线AB 与曲线E 交于不同两点A (x 1,y 1),B (x 2,y 2),且x 2-1=x 1+m 2(m 为常数),直线l ′与AB 平行,且与曲线E 相切,切点为C ,试问△ABC 的面积是否为定值.若为定值,求出△ABC 的面积;若不是定值,说明理由.解 (1)由题意得|FM |=|MN |,即动点M 到点F (0,2)的距离和到直线y =-2的距离相等,所以点M 的轨迹是以F (0,2)为焦点,直线y =-2为准线的抛物线,根据抛物线定义可知点M 的轨迹方程为x 2=8y .(2)由题意知,直线AB 的斜率存在,设其方程为y =kx +b ,由⎩⎪⎨⎪⎧y =kx +b ,x 2=8y 消去x 整理得x 2-8kx -8b =0.则x 1+x 2=8k ,x 1·x 2=-8b .设AB 的中点为Q ,则点Q 的坐标为(4k,4k 2+b ).由条件设切线方程为y =kx +t ,由⎩⎪⎨⎪⎧y =kx +t ,x 2=8y 消去y 整理得x 2-8kx -8t =0.∵直线与抛物线相切,∴Δ=64k 2+32t =0,∴t =-2k 2, ∴切点C 的横坐标为4k ,∴点C 的坐标为(4k,2k 2). ∴CQ ⊥x 轴,∵x 2-x 1=m 2+1, ∴(x 2-x 1)2=(x 1+x 2)2-4(-8b ) =64k 2+32b =(m 2+1)2,∴b =(m 2+1)2-64k 232.∴S △ABC =12|CQ |·|x 2-x 1|=12·(2k 2+b )·(x 2-x 1)=(m 2+1)364,∵m 为常数,∴△ABC 的面积为定值.1.(2021·洛阳高三统考)已知抛物线C :y 2=2px (p >0),其焦点为F ,O 为坐标原点,直线l 与抛物线C 相交于不同的两点A ,B ,M 为AB 的中点. (1)若p =2,M 的坐标为(1,1),求直线l 的方程.(2)若直线l 过焦点F ,AB 的垂直平分线交x 轴于点N ,求证:2|MN |2|FN |为定值.(1)解 由题意知直线l 的斜率存在且不为0, 故设直线l 的方程为x -1=t (y -1) 即x =ty +1-t ,设A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧x =ty +1-t ,y 2=4x ,得y 2-4ty -4+4t =0, ∴Δ=16t 2+16-16t =16(t 2-t +1)>0,y 1+y 2=4t , ∴4t =2,即t =12.∴直线l 的方程为2x -y -1=0.(2)证明 ∵抛物线C :y 2=2px (p >0),∴焦点F 的坐标为⎝⎛⎭⎫p 2,0. 由题意知直线l 的斜率存在且不为0,∵直线l 过焦点F ,故设直线l 的方程为x =ty +p2(t ≠0),设A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧x =ty +p 2y 2=2px,得y 2-2pty -p 2=0, ∴y 1+y 2=2pt ,Δ=4p 2t 2+4p 2>0. ∴x 1+x 2=t (y 1+y 2)+p =2pt 2+p , ∴M ⎝⎛⎭⎫pt 2+p2,pt .∴MN 的方程为y -pt =-t ⎝⎛⎭⎫x -pt 2-p2. 令y =0,解得x =pt 2+3p2,N ⎝⎛⎭⎫pt 2+3p 2,0, ∴|MN |2=p 2+p 2t 2,|FN |=pt 2+3p 2-p2=pt 2+p , ∴2|MN |2|FN |=2(p 2+p 2t 2)pt 2+p=2p ,为定值.2.(2020·新高考山东卷)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,且过点A (2,1).(1)求C 的方程;(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得|DQ |为定值.(1)解 由题设得4a 2+1b 2=1, a 2-b 2a 2=12,解得a 2=6,b 2=3. 所以C 的方程为x 26+y 23=1.(2)证明 设M (x 1,y 1),N (x 2,y 2). 若直线MN 与x 轴不垂直,设直线MN 的方程为y =kx +m ,代入x 26+y 23=1,得(1+2k 2)x 2+4kmx +2m 2-6=0. 于是x 1+x 2=-4km1+2k 2,x 1x 2=2m 2-61+2k 2.①由AM ⊥AN ,得AM →·AN →=0, 故(x 1-2)(x 2-2)+(y 1-1)(y 2-1)=0,整理得(k 2+1)x 1x 2+(km -k -2)(x 1+x 2)+(m -1)2+4=0. 将①代入上式,可得(k 2+1)2m 2-61+2k 2-(km -k -2)4km1+2k 2+(m -1)2+4=0, 整理得(2k +3m +1)(2k +m -1)=0. 因为A (2,1)不在直线MN 上,所以2k +m -1≠0,所以2k +3m +1=0,k ≠1. 所以直线MN 的方程为y =k ⎝⎛⎭⎫x -23-13(k ≠1). 所以直线MN 过点P ⎝⎛⎭⎫23,-13. 若直线MN 与x 轴垂直,可得N (x 1,-y 1).由AM →·AN →=0,得(x 1-2)(x 1-2)+(y 1-1)(-y 1-1)=0.又x 216+y 213=1,所以3x 21-8x 1+4=0. 解得x 1=2(舍去),或x 1=23.此时直线MN 过点P ⎝⎛⎭⎫23,-13. 令Q 为AP 的中点,即Q ⎝⎛⎭⎫43,13.若D 与P 不重合,则由题设知AP 是Rt △ADP 的斜边, 故|DQ |=12|AP |=223.若D 与P 重合,则|DQ |=12|AP |.综上,存在点Q ⎝⎛⎭⎫43,13,使得|DQ |为定值.。

高考数学一轮复习专题02 圆锥曲线弦长问题(解析版)

解析几何专题二:圆锥曲线弦长问题一、知识储备弦长公式||AB =12||AB x ==-= (最常用公式,使用频率最高)= 二、例题讲解1.(2022·辽宁高三开学考试)已知椭圆C 的标准方程为:22221(0)x y a b a b +=>>,若右焦点为F(1)求椭圆C 的方程;(2)设M ,N 是C 上的两点,直线MN 与曲线222x y b +=相切且M ,N ,F 三点共线,求线段MN 的长. 【答案】(1)2213x y +=;(2【分析】(1)根据椭圆的焦点、离心率求椭圆参数,写出椭圆方程即可.(2)由(1)知曲线为221(0)x y x +=>,讨论直线MN 的存在性,设直线方程联立椭圆方程并应用韦达定理求弦长即可. 【详解】(1)由题意,椭圆半焦距c =c e a =,则a =2221b a c =-=, ∴椭圆方程为2213x y +=;(2)由(1)得,曲线为221(0)x y x +=>当直线MN 的斜率不存在时,直线:1MN x =,不合题意:当直线MN 的斜率存在时,设()11,M x y ,()22,N x y 又M ,N ,F 三点共线,可设直线:(MN y k x =,即0kx y -=, 由直线MN 与曲线221(0)x y x +=>1=,解得1k =±,联立22(13y x x y ⎧=±⎪⎨+=⎪⎩,得2430x -+=,则12x x +=1234x x ⋅=,∴||MN ==2.(2022·全国高三专题练习)过双曲线142x y -=的右焦点F 作斜率为2的直线l ,交双曲线于A ,B 两点.(1)求双曲线的离心率和渐近线; (2)求AB 的长. 【答案】(1)e =,渐近线方程为y =;(2)207.【分析】(1)由双曲线方程得出,a b ,再求出c ,可得离心率,渐近线方程;(2)写出直线方程,代入双曲线方程,设()11,A xy ,()22,B x y,由韦达定理得1212,x x x x +,然后由弦长公式计算弦长. 【详解】解:(1)因为双曲线方程为22142x y -=, 所以2a =,b =则c =所以62cea,渐近线方程为2y x =±. (2)双曲线右焦点为0),则直线l 的方程为2(y x = 代入双曲线22142x y -=中,化简可得27520x -+=设()11,A x y ,()22,B x y 所以12x x +=12527x x ⋅=,所以2120|||7AB x x -==. 【点睛】方法点睛:本题考查双曲线的离心率和渐近线方程,考查直线与双曲线相交弦长.解题方法是直线方程与双曲线方程联立并消元后应用韦达定理求出1212,x x x x +,然后由弦长公式12d x =-求出弦长.3.(2022·全国高三模拟预测)在平面直角坐标系xOy 中,已知()2,0F ,()2,3M -,动点P 满足12OF MP PF ⋅=. (1)求动点P 的轨迹C 的方程;(2)过点()1,0D 作直线AB 交C 于A ,B 两点,若AFD 的面积是BFD △的面积的2倍,求AB . 【答案】(1)28y x =;(2【分析】(1)设(),P x y ,求得,,MP OF PF 的坐标,结合12OF MP PF ⋅=,化简、整理,即可求得抛物线的方程; (2)设()()1122,,,A x y B x y ,不妨设120,0y y ><,由2AFD BFD S S =△△,求得122y y =-,设直线AB 的方程为1x my =+,联立方程组,结合根与系数的关系,求得128y y m +=,128y y =-,进而求得12,,y y m ,利用弦长公式,即可求解. 【详解】(1)设(),P x y ,因为()2,0F ,()2,3M -,则()2,3MP x y =+-,()2,0OF =,()2,PF x y =--. 由12OF MP PF ⋅=,可得2x +=28y x =,即动点P 的轨迹C 的方程为28y x =. (2)设()11,A x y ,()22,B x y , 由题意知112AFD S FD y =⋅△,212BFD S FD y =⋅△, 易知120y y <,不妨设120,0y y ><,因为2AFD BFD S S =△△,所以122y y =,所以122y y =-. ① 设直线AB 的方程为1x my =+,联立281y xx my ⎧=⎨=+⎩消去x ,得2880y my --=,则264320m ∆=+>,可得128y y m +=,128y y =- ② 由①②联立,解得1214,2,4y y m ==-=,所以124(2)AB y =-=--=. 【点睛】本题主要考查了向量的坐标运算,抛物线的标准方程的求解,以及直线与抛物线的位置关系的综合应用,解答此类题目,通常联立直线方程与抛物线方程,应用一元二次方程根与系数的关系进行求解,此类问题易错点是复杂式子的变形能力不足,导致错解,能较好的考查考生的逻辑思维能力、运算求解能力、分析问题解决问题的能力等.三、实战练习1.(2022·江门市培英高级中学高三模拟预测)已知椭圆()2222:10x y C a b a b +=>>过点P ⎭,离心率为12. (1)求椭圆C 的标准方程;(2)若1A 为椭圆C 的左顶点,直线l 过右焦点2F 与椭圆C 交于M ,N 两点(M ,N 与1A 不重合),l 不与x 轴垂直,若11A M A N MN k k k +=-,求MN .【答案】(1)22143x y +=;(2)247 【分析】(1)由题意可得关于,,a b c 的方程组,求解,a b 的值,即可求得椭圆C 的标准方程;(2)根据题意设()()1122,,,M x y N x y ,直线l :()1,0x my m =+≠,联立直线方程与椭圆方程,化为关于y 的一元二次方程,利用根与系数的关系结合11A M A N MN k k k +=-,求出m 的值,再根据弦长公式即可求得MN . 【详解】(1)由题意可得:22222123314c a a b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩,解得:224,3a b ==,∴ 椭圆C 的标准方程为:22143x y +=; (2)()()211,0,2,0F A -,由题意可设:直线l :()1,0x my m =+≠,()()1122,,,M x y N x y ,联立:221143x my x y =+⎧⎪⎨+=⎪⎩ 得:()2234690m y my ++-=, 则12122269,3434m y y y y m m --+==++, 1112121,,22A M A N MN y y k k k x x m===++, 11121222A M A N y yx k x k ∴+=+++ ()()()()1221122222y x y x x x +++=++()()()()1221213333y my y my my my +++=++()()2122112122339y y y m y y y my m y ++=+++222229623343496393434mm m m m m m m m --⨯+⨯++=--⨯+⨯+++ m =-,又11A M A N MN k k k +=-, 1m m∴-=-, 解得:21,1m m ==±, 故1212226699,347347m y y y y m m --+==±==-++,247MN =.2.(2022·广东执信中学高三月考)已知椭圆C 的方程为22221(0)x y a b a b +=>>,右焦点为F.(1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线MN 与曲线222(0)x y b x +=>相切.证明:M ,N ,F三点共线的充要条件是||MN =【答案】(1)2213x y +=;(2)证明见解析.【分析】(1)由离心率公式可得a =2b ,即可得解;(2)必要性:由三点共线及直线与圆相切可得直线方程,联立直线与椭圆方程可证MN =充分性:设直线():,0MN y kx b kb =+<,由直线与圆相切得221b k=+,联立直线与椭圆方程结合弦长公式可得=1k =±,即可得解. 【详解】(1)由题意,椭圆半焦距c =c e a =,所以a = 又2221b a c =-=,所以椭圆方程为2213x y +=;(2)由(1)得,曲线为221(0)x y x +=>,当直线MN 的斜率不存在时,直线:1MN x =,不合题意; 当直线MN 的斜率存在时,设()()1122,,,M x y N x y , 必要性:若M ,N,F 三点共线,可设直线(:MN y k x =即0kx y --=,由直线MN 与曲线221(0)x y x +=>1=,解得1k =±,联立(2213y x x y ⎧=±⎪⎨⎪+=⎩可得2430x -+=,所以121234x x x x +⋅=,所以MN ==所以必要性成立;充分性:设直线():,0MN y kx b kb =+<即0kx y b -+=, 由直线MN 与曲线221(0)x y x +=>1=,所以221b k =+,联立2213y kx b x y =+⎧⎪⎨+=⎪⎩可得()222136330k x kbx b +++-=, 所以2121222633,1313kb b x x x x k k -+=-⋅=++,所以MN === 化简得()22310k -=,所以1k =±,所以1k b =⎧⎪⎨=⎪⎩1k b =-⎧⎪⎨=⎪⎩:MN y x =或y x =-+所以直线MN 过点F ,M ,N ,F 三点共线,充分性成立; 所以M ,N ,F 三点共线的充要条件是||MN = 【点睛】 关键点点睛:解决本题的关键是直线方程与椭圆方程联立及韦达定理的应用,注意运算的准确性是解题的重中之重.3.(2022·全国高三月考(文))已知椭圆2222:1(0)x y C a b a b+=>>与抛物线24y x =有公共的焦点F ,1A ,2A 分别为椭圆C 长轴的左、右端点,P 为C 上一动点,且12PAA ∆的最大面积为 (1)求椭圆C 的标准方程;(2)直线l 经过点F ,且与C 交于A ,B 两点,若10||3AB =,求直线l 的方程. 【答案】(1)22143x y +=;(20=. 【分析】(1)利用已知条件可以直接得出焦点F 的坐标,当三角形面积最大时P 为短轴端点,从而解出a ,b 的值即可; (2)利用(1)中求出的点F 的坐标,设出直线方程,然后与椭圆方程联立,利用弦长公式即可求出直线的方程. 【详解】(1)抛物线24y x =的焦点F 坐标为()1,0∴椭圆C 中的半焦距为1.由椭圆的几何性质可知,当12PA A ∆面积最大时,P 为椭圆短轴端点,不妨令()0,P b ,则221a b ab ⎧-=⎪⎨=⎪⎩解得2a b =⎧⎪⎨=⎪⎩∴椭圆C 的标准方程为22143x y +=. (2)直线l 经过椭圆C 的右焦点,且10||3AB =∴直线l 的斜率存在,设直线l 的斜率为k ,则直线l 的方程为(1)y k x =-, 与椭圆C 的方程联立可得()22223484120k xk x k +-+-=,0∆>,设()11,A x y ,()22,B x y ,则2122834k x x k +=+,212241234k x x k -=+12||AB x ∴-=()2212110343k k +==+解得k =∴直线l 0=0.【点睛】本题考查椭圆的标准方程、抛物线的几何性质以及直线与椭圆的位置关系,要求较高的运算求解能力,属于中档题.本题的关键点有:(1)韦达定理的应用,韦达定理是联系各个变量之间的桥梁是解决解析几何问题的重要方法; (2)计算能力和计算技巧是解决解析几何问题的关键能力.4.(2022·陕西(文))已知点B 是圆22:(1)16C x y -+=上的任意一点,点(1,0)F -,线段BF 的垂直平分线交BC 于点P .(1)求动点P 的轨迹E 的方程;(2)直线:2l y x m =+与E 交于点M ,N ,且MN =m 的值. 【答案】(1)22143x y +=,(2)1m =±.(1)由条件可得42PC PF PC PB BC FC +=+==>=,然后由椭圆的定义可求出答案;(2)设()()1122,,,M x y N x y ,然后联立直线与椭圆的方程消元,韦达定理得出1212,x x x x +,然后利用MN =出m 的值即可. 【详解】(1)由条件可得42PC PF PC PB BC FC +=+==>=所以动点P 的轨迹E 是以,F C 为焦点的椭圆,设其方程为()222210x y a b a b+=>>所以24,22a c ==,所以2,1,a c b ===所以方程为22143x y += (2)设()()1122,,,M x y N x y联立221432x y y x m ⎧+=⎪⎨⎪=+⎩可得221916+4120x mx m +-= 所以由()22256764120m m ∆=-->得(m ∈2121216412,1919m m x x x x -+=-=因为MN =所以可解得1m =±5.(2022·全国高三专题练习)已知点(A 和B ,动点C到A ,B 两点的距离之差的绝对值为2,记点C 的(1)求轨迹E 的方程;(2)设E 与直线2y x =-交于两点M ,N ,求线段MN 的长度. 【答案】(1)2212y x -=;(2)【分析】(1)设(,)C x y ,由于||||2CA CB -=,||AB =,利用双曲线的定义求解即可; (2)直线和双曲线方程联立消y ,利用韦达定理以及弦长公式求解即可. 【详解】 (1)设(,)C x y , 则||||2CA CB -=,所以点C 的轨迹E 为双曲线22221(0,0)x y a b a b-=>>,且22a =,2||c AB == 则1a =,2222b c a =-=, 所以轨迹E 的方程为2212y x -=;(2)由22122y x y x ⎧-=⎪⎨⎪=-⎩, 得2460x x +-=, 因为0∆>,所以直线与双曲线有两个交点, 设()11,M x y ,()22,N x y , 则124x x +=-,126x x =-,故MN =所以线段MN 的长度为6.(2022·全国高三专题练习)已知双曲线C :22221(0,0)x y a b a b-=>>)是双曲线的一个顶点.(1)求双曲线的方程;(2)经过双曲线右焦点2F 作倾斜角为30的直线,直线与双曲线交于不同的两点A ,B ,求AB . 【答案】(1)22136x y -=;(2【分析】(1)求出,a b ,即可得出双曲线方程;(2)可先求出直线方程为3)y x =-,联立椭圆方程,再利用弦长公式即可求出. 【详解】(1)由题可得c a a ⎧=⎪⎨⎪=⎩3c =,b ,所以双曲线的方程为22136x y-=;(2)双曲线22136x y -=的右焦点为()23,0F所以经过双曲线右焦点2F 且倾斜角为30°的直线的方程为3)y x =-.联立221363)x y y x ⎧-=⎪⎪⎨⎪-⎪⎩得256270x x +-=.设()11,A x y ,()22,B x y ,则1265x x +=-,12275x x =-.所以AB ==【点睛】本题考查双曲线方程的求法,考查直线与双曲线相交弦长的求法,属于基础题.7.(2022·重庆高三模拟预测)已知直线l :4y kx =+与抛物线C :2y ax =交于A 、B 两点,O 为坐标原点,OA OB ⊥. (1)求抛物线C 的标准方程;(2)若过点A 的另一条直线1l 与抛物线C 交于另一点M ,与y 轴交于点N ,且满足||||AN AM =,求BM 的最小值.【答案】(1)214y x =;(2)【分析】(1)先联立直线与抛物线,得到判别式和韦达定理,再根据垂直关系,利用0OA OB ⋅=,求得参数即可;(2)设直线BM 的方程,并与抛物线联立,得到判别式和韦达定理,根据已知关系,判断中点位置,利用坐标关系求得参数m ,最后利用弦长公式计算BM ,利用二次函数判断最小值即可. 【详解】解:(1)依题意,设()()1122,,,A x y B x y ,由24y ax y kx ⎧=⎨=+⎩,消去y ,得240ax kx --=,2121604k a x x a ⎧∆=+>⎪∴⎨=-⎪⎩, OA OB ⊥,12120OA OB x x y y ∴⋅=+=,即2212120x x ax ax +⋅=,即22212120x x a x x +=,所以22440a a a ⎛⎫⎛⎫-+⋅-= ⎪ ⎪⎝⎭⎝⎭,解得14a =,∴抛物线C 的标准方程为214y x =; (2)由题意知,直线BM 的斜率存在,故可设直线BM 的方程为y tx m =+,()33,M x y ,由214y xy tx m ⎧=⎪⎨⎪=+⎩,消去y ,得2440x tx m --=,223231616044t m x x m x x t ⎧∆=+>⎪∴=-⎨⎪+=⎩,由(1)知,1216x x =-,故1123321644x x x x x x m m-===-, 由题意知,,A M N 三点共线,且|AN |=|AM |,即A 为线段MN 的中点,设()0,N n , 则3102x x +=,即13142x x m ==,即8m =,22323161680324t x x x x t⎧∆=+⨯>⎪∴=-⎨⎪+=⎩,23BM x ∴=-=)20t ==≥, 故20t =时,BM最小为=【点睛】 思路点睛:直线与抛物线中的弦长问题,我们常让直线与抛物线方程联立,再利用韦达定理及弦长公式,建立关系式.其中弦长公式:(已知直线上的两点距离)设直线:l y kx m =+,l 上两点()()1122,,,A x y B xy ,所以12AB x =-或12AB y =-,解决相关问题.8.(2022·全国高三模拟预测)已知抛物线()2:20C y px p =>的焦点为F ,点(),2P t -在C 上,且2PF OF =(O 为坐标原点).(1)求C 的方程;(2)若A ,B 是C 上的两个动点,且A ,B 两点的横坐标之和为8,求当AB 取最大值时,直线AB 的方程. 【答案】(1)24yx =;(2)220x ±-=. 【分析】(1)根据题意,列出方程组22242pp t pt⎧+=⨯⎪⎨⎪=⎩,求得p 的值,即可求得C 的标准方程; (2)设()11,A x y ,()22,B x y ,当12x x =时,得到AB 的方程4x =;当12x x ≠时,得到2AB k n =,得到()42nx y n =-+,联立方程组,结合根与系数的关系,得到1212,y y y y +,根据弦长公式和基本不等式,即可求解. 【详解】(1)由题意,点(),2P t -在()2:20C y px p =>上,且2PF OF =,可得22242pp t pt ⎧+=⨯⎪⎨⎪=⎩,解得21p t =⎧⎨=⎩,所以C 的标准方程为24y x =.(2)设()11,A x y ,()22,B x y ,且128x x +=,设AB 中点为(),D m n ,则122x x m +=,122y y n +=, 当12x x =时,:4AB l x =,8AB =; 当12x x ≠时,()212122212121442AB y y y y k x x y y y y n--====--+, 则()2:4AB l y n x n-=-,即()42n x y n =-+,与C 联立方程消去x ,整理得2222160y ny n -+-=, 由22(2)4(216)0n n ∆=--->,解得216n <,且122y y n +=,212216y y n =-,所以2212416102n n AB y ++-=-==, 当26n =时取“=”,所以AB 的最大值为10,此时AB 的方程为220x -=. 【点睛】直线与圆锥曲线的综合问题的求解策略:对于直线与圆锥曲线的位置关系的综合应用问题,通常联立直线方程与圆锥曲线方程,应用一元二次方程根与系数的关系,以及弦长公式等进行求解,此类问题易错点是复杂式子的变形能力不足,导致错解,能较好的考查考生的逻辑思维能力、运算求解能力.9.(2022·浙江高三模拟预测)已知直线:4l y kx =+与抛物线2:C y ax =交于A 、B 两点,O 为坐标原点,OA OB ⊥. (1)求抛物线C 的标准方程;(2)若过点A 的另一条直线1l 与抛物线C 交于另一点M ,与y 轴交于点N ,且满足AN AM =,求BM 的最小值. 【答案】(1)24x y=;(2)最小值为【分析】(1)联立直线l 与抛物线C 的方程,列出韦达定理,由已知条件可得出0OA OB ⋅=,利用平面向量数量积的坐标运算结合韦达定理求出a 的值,即可得出抛物线C 的标准方程;(2)设直线BM 的方程为y tx m =+,点()33,M x y ,将直线BM 的方程与抛物线C 的方程联立,列出韦达定理,由已知条件可得1312x x =,代入韦达定理求出m 的值,再利用弦长公式可求得BM 的最小值.【详解】(1)依题意设()11,A x y 、()22,B x y ,由24y ax y kx ⎧=⎨=+⎩消去y ,得240ax kx --=,所以,212160,4.k a x x a ⎧+>⎪⎨=-⎪⎩OA OB ⊥,12120OA OB x x y y ∴⋅=+=,即22212120x x a x x +=,4160a∴-+=,解得14a =,所以,抛物线C 的标准方程为24x y =;(2)由题意知,若直线BM 的斜率不存在,则该直线与抛物线C 只有一个公共点,不合乎题意.所以,直线BM 的斜率存在,故可设直线BM 的方程为y tx m =+,点()33,M x y , 由24x y y tx m ⎧=⎨=+⎩消去y ,得2440x tx m --=,223231616044t m x x t x x m⎧+>⎪∴+=⎨⎪=-⎩, 由(1)知1216x x =-,1123231644x x x x x x m m-∴===-①. 由题意知A 、M 、N 三点共线,且A 为线段MN 的中点,设()0,N n ,则3102x x +=,即1312x x =②,由①②得8m =,22323161680432t x x t x x ⎧+⨯>⎪∴+=⎨⎪=-⎩,23BM x ∴=-=)20t ==≥,当且仅当0t =时,等号成立,故BM 的最小值为【点睛】方法点睛:圆锥曲线中的最值问题解决方法一般分两种:一是几何法,特别是用圆锥曲线的定义和平面几何的有关结论来求最值;二是代数法,常将圆锥曲线的最值问题转化为二次函数或三角函数的最值问题,然后利用基本不等式、函数的单调性或三角函数的有界性等求最值.10.(2022·全国高三专题练习)如图所示,A ,B 是焦点为F 的抛物线24y x =上的两动点,线段AB 的中点M 在定直线34x =上.(1)求FA FB +的值; (2)求AB 的最大值. 【答案】(1)72;(2)【分析】(1)由抛物线定义有12FA FB x x p +=++,结合已知条件即可求FA FB +;(2)由直线与抛物线位置关系,联立方程得到一元二次方程,结合根与系数关系、弦长公式即可求AB 的最大值. 【详解】(1)由题意知:2p =,抛物线对称轴方程1x =-.设()11,A x y ,()22,B x y ,12324x x +=,则1272FA FB x x p +=++=; (2)点A 和B 在抛物线24y x =上,有2114y x =,2224y x =,两式相减得:()()()1212124y y y y x x -+=-,令3(,)4M m ,∴12122y y x x m -=-,即2AB k m=, ∴设直线AB 的方程为234y m x m ⎛⎫-=- ⎪⎝⎭,即23224m m x y =-+,代入抛物线方程得222230y my m -+-=,∴22248121240m m m ∆=-+=->,得203m ≤<,122y y m +=,21223y y m =-∴12AB y =-=∴当20m=时,max AB = 【点睛】思路点睛:求抛物线焦半径相关线段长度时注意抛物线定义的应用,即抛物线焦点到抛物线上点的距离等于该点到抛物线准线的距离;直线与抛物线相交,求弦长时一般要联立方程应用根与系数关系以及弦长公式.11.(2022·全国高三专题练习)已知抛物线C :22(0)y px p =>的焦点F 与椭圆22143x y +=的右焦点重合,点M 是抛物线C 的准线上任意一点,直线MA ,MB 分别与抛物线C 相切于点A ,B .(1)求抛物线C 的标准方程;(2)设直线MA ,MB 的斜率分别为1k ,2k ,证明:12k k ⋅为定值; (3)求AB 的最小值.【答案】(1)24y x =;(2)证明见解析;(3)4.【分析】(1)由椭圆的方程可得右焦点的坐标,由题意可得抛物线的焦点坐标,进而可得抛物线的方程;(2)可设M 的坐标,设过点(1,)M t -的直线方程为(1)y k x t =++,与抛物线方程24y x =联立,消去x 得:24440ky y k t -++=,利用判别式等于零可得结论;(3)设A ,B 的坐标,由(2)可得参数t ,k 的关系,代入过M 的切线方程与抛物线的方程中,可得A ,B 用参数1k ,2k 表示的坐标,代入弦长公式中求||AB的表达式,由参数的范围求出||AB 的最小值.【详解】(1)由椭圆方程得,椭圆的右焦点为(1,0) ∴抛物线的焦点为(1,0)F ,2p ∴=,所以抛物线的标准方程:24y x =. (2)抛物线C 的准线方程为1x =-. 设(1,)M t -,设过点(1,)M t -的直线方程为(1)y k x t =++,与抛物线方程24y x =联立,消去x 得:24440ky y k t -++=. 其判别式△1616()k k t =-+,令△0=,得:210k kt +-=. 由韦达定理知12k k t +=-,121k k =-, 故121k k =-(定值).(3)设1(A x ,1)y ,2(B x ,2)y ,由210k kt +-=,得21k t k-=,故2222214244444440k ky y k t ky y k ky y k y k k k -⎛⎫-++=-++⨯=-+=-= ⎪⎝⎭,所以2y k=,代入抛物线方程得21x k =,所以211(A k ,12)k ,221(B k ,22)k ,||AB=因为121k k =-,12k k t +=-,所以12|||AB k k -244t =+,当且仅当0t =时取等号. 当且仅时取等号. 故||AB 的最小值为4.【点睛】求曲线弦长的方法:(1)利用弦长公式12l x -;(2)利用12l y =-;(3)如果交点坐标可以求出,利用两点间距离公式求解即可.12.(2022·广西河池·高三期末(理))已知抛物线2:4C y x =的焦点为F ,斜率为2的直线l 与抛物线C 相交于A 、B 两点.(Ⅰ)若直线l 与抛物线C 的准线相交于点P ,且PF =l 的方程; (Ⅱ)若直线l 不过原点,且90AFB ∠=︒,求ABF 的周长.【答案】(Ⅰ)2y x =;(Ⅱ)15+【分析】(Ⅰ)设直线l 的方程为2y x m =+,则点P 的坐标为()1,2m --,联立直线与抛物线,由判别式大于0可得12m <,由PF =0m =或4m =(舍去),从而可得结果;(Ⅱ)设直线l 的方程为()20=+≠y x b b ,并代入抛物线2:4C y x =,根据韦达定理和0FA FB ⋅=可解得12b =-,根据弦长公式可得||AB =||||AF BF +,进一步可得ABF 的周长. 【详解】(Ⅰ)由抛物线2:4C y x =可知(1,0)F ,准线为1x =-, 设直线l 的方程为2y x m =+,则点P 的坐标为()1,2m --,联立方程242y x y x m⎧=⎨=+⎩,消去y 后整理为()224440x m x m +-+=,又由()22441616320m m m ∆=--=->,可得12m <,由点F 的坐标为()1,0,有PF ==, 解得0m =或4m =(舍去), 故直线l 的方程为2y x =.(Ⅱ)设直线l 的方程为()20=+≠y x b b , 点A 、B 的坐标分别为()11,x y ,()22,x y ,联立方程242y x y x b⎧=⎨=+⎩,消去y 后整理为()224440x b x b +-+=,可得121x x b +=-,21214x x b =,()()()()222121212122242212y y x b x b x x b x x b b b b b b =++=+++=+-+=又由()22441616320b b b ∆=--=->,可得12b <. 又由()111,FA x y =-,()221,FB x y =-,可得()()()1212121212111FA FB x x y y x x x x y y ⋅=--+=-+++ ()22111123044b b b b b =--++=+=,得0b =(舍去)或12b =-.由12b =-,可得1213x x +=,1236x x =,所以AB ===()()121211215AF BF x x x x +=+++=++=,故ABF 的周长为15+ 【点睛】本题考查了直线与抛物线的位置关系,考查了抛物线的定义,韦达定理和弦长公式,考查了运算求解能力,属于中档题.。

高三数学人教版A版数学(理)高考一轮复习教案1 直线与圆锥曲线的位置关系1

第九节 圆锥曲线的综合问题 第一课时 直线与圆锥曲线的位置关系1.直线与圆锥曲线的位置关系(1)能解决直线与椭圆、抛物线的位置关系等问题. (2)理解数形结合的思想. (3)了解圆锥曲线的简单应用. 2.定值(定点)与最值问题理解基本几何量,如:斜率、距离、面积等概念,掌握与圆锥曲线有关的定值(定点)、最值问题.3.存在性问题能够合理转化,掌握与圆锥曲线有关的存在性问题.知识点一 直线与圆锥曲线的位置关系判断直线l 与圆锥曲线C 的位置关系时,通常将直线l 的方程Ax +By +C =0(A ,B 不同时为0)代入圆锥曲线C 的方程F (x ,y )=0,消去y (也可以消去x )得到一个关于变量x (或变量y )的一元方程.即⎩⎪⎨⎪⎧Ax +By +C =0,F (x ,y )=0,消去y ,得ax 2+bx +c =0. (1)当a ≠0时,设一元二次方程ax 2+bx +c =0的判别式为Δ,则Δ>0⇔直线与圆锥曲线C 相交;Δ=0⇔直线与圆锥曲线C 相切; Δ<0⇔直线与圆锥曲线C 相离.(2)当a =0,b ≠0时,即得到一个一次方程,则直线l 与圆锥曲线C 相交,且只有一个交点,此时,若C 为双曲线,则直线l 与双曲线的渐近线的位置关系是平行;若C 为抛物线,则直线l 与抛物线的对称轴的位置关系是平行或重合.易误提醒 (1)直线与双曲线交于一点时,易误认为直线与双曲线相切,事实上不一定相切,当直线与双曲线的渐近线平行时,直线与双曲线相交于一点.(2)直线与抛物线交于一点时,除直线与抛物线相切外易忽视直线与对称轴平行时也相交于一点.[自测练习]1.若过点(0,1)作直线,使它与抛物线y 2=4x 仅有一个公共点,则这样的直线有( ) A .1条 B .2条 C .3条D .4条解析:结合图形(图略)分析可知,满足题意的直线共有3条:直线x =0,过点(0,1)且平行于x 轴的直线以及过点(0,1)且与抛物线相切的直线(非直线x =0),故选C.答案:C2.直线y =kx -k +1与椭圆x 29+y 24=1的位置关系为( )A .相交B .相切C .相离D .不确定解析:直线y =kx -k +1=k (x -1)+1恒过定点(1,1),又点(1,1)在椭圆内部,故直线与椭圆相交.答案:A知识点二 弦长问题设斜率为k (k ≠0)的直线l 与圆锥曲线C 相交于A ,B 两点,A (x 1,y 1),B (x 2,y 2),则 |AB |=1+k 2|x 1-x 2| =1+k 2·(x 1+x 2)2-4x 1x 2 =1+1k 2·|y 1-y 2| =1+1k2·(y 1+y 2)2-4y 1y 2. 必备方法 遇到中点弦问题常用“根与系数的关系”或“点差法”求解.在椭圆x 2a 2+y 2b 2=1中,以P (x 0,y 0)为中点的弦所在直线的斜率k =-b 2x 0a 2y 0;在双曲线x 2a 2-y 2b 2=1中,以P (x 0,y 0)为中点的弦所在直线的斜率k =b 2x 0a 2y 0;在抛物线y 2=2px 中,以P (x 0,y 0)为中点的弦所在直线的斜率k =py 0.[自测练习]3.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),F (2,0)为其右焦点,过F 且垂直于x 轴的直线与椭圆相交所得的弦长为2.则椭圆C 的方程为________.解析:则由题意得⎩⎪⎨⎪⎧c =2,b2a =1,a 2=b 2+c 2,解得⎩⎪⎨⎪⎧a =2,b =2,∴椭圆C 的方程为x 24+y 22=1.答案:x 24+y 22=14.已知抛物线y =ax 2的焦点到准线的距离为2,则直线y =x +1截抛物线所得的弦长等于________.解析:由题设p =12a =2,∴a =14.抛物线方程为y =14x 2,焦点为F (0,1),准线为y =-1.直线过焦点F ,联立⎩⎪⎨⎪⎧y =14x 2,y =x +1,消去x ,整理得y 2-6y +1=0,∴y 1+y 2=6, ∴所得弦|AB |=|AF |+|BF |=y 1+1+y 2+1=8. 答案:8考点一 直线与圆锥曲线的位置关系|1.(2016·兰州检测)若直线mx +ny =4和圆O :x 2+y 2=4没有交点,则过点(m ,n )的直线与椭圆x 29+y 24=1的交点个数为( )A .至多一个B .2C .1D .0解析:∵直线mx +ny =4和圆O :x 2+y 2=4没有交点,∴4m 2+n2>2,∴m 2+n 2<4.∴m 29+n 24<m 29+4-m 24=1-536m 2<1,∴点(m ,n )在椭圆x 29+y 24=1的内部,∴过点(m ,n )的直线与椭圆x 29+y 24=1的交点有2个,故选B.答案:B2.若直线y =kx +2与双曲线x 2-y 2=6的右支交于不同的两点,则k 的取值范围是( ) A.⎝⎛⎭⎫-153,153 B.⎝⎛⎭⎫0,153 C.⎝⎛⎭⎫-153,0 D.⎝⎛⎭⎫-153,-1 解析:由⎩⎪⎨⎪⎧y =kx +2,x 2-y 2=6,得(1-k 2)x 2-4kx -10=0.设直线与双曲线右支交于不同的两点A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧1-k 2≠0,Δ=16k 2-4(1-k 2)×(-10)>0,x 1+x 2=4k1-k2>0,x 1x 2=-101-k2>0,解得-153<k <-1. 答案:D考点二 弦长问题|已知F 1,F 2是椭圆x 2a 2+y 2b 2=1(a >b >0)的两个焦点,O 为坐标原点,点P ⎝⎛⎭⎫-1,22在椭圆上,且PF 1→·F 1F 2→=0,⊙O 是以F 1F 2为直径的圆,直线l :y =kx +m 与⊙O 相切,并且与椭圆交于不同的两点A ,B .(1)求椭圆的标准方程;(2)当OA →·OB →=λ,且满足23≤λ≤34时,求弦长|AB |的取值范围.[解] (1)依题意,可知PF 1⊥F 1F 2,∴c =1,1a 2+12b 2=1,a 2=b 2+c 2,解得a 2=2,b 2=1,c 2=1.∴椭圆的方程为x 22+y 2=1.(2)直线l :y =kx +m 与⊙O :x 2+y 2=1相切,则|m |k 2+1=1,即m 2=k 2+1,由⎩⎪⎨⎪⎧x 22+y 2=1,y =kx +m ,得(1+2k 2)x 2+4kmx +2m 2-2=0, ∵直线l 与椭圆交于不同的两点A ,B . 设A (x 1,y 1),B (x 2,y 2). ∴Δ>0⇒k 2>0⇒k ≠0,x 1+x 2=-4km1+2k 2,x 1x 2=2m 2-21+2k 2,y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+km (x 1+x 2)+m 2=m 2-2k 21+2k 2=1-k 21+2k 2,∴OA →·OB →=x 1x 2+y 1y 2=1+k 21+2k 2=λ∴23≤1+k 21+2k 2≤34,∴12≤k 2≤1, ∴|AB |=1+k 2(x 1+x 2)2-4x 1x 2=22(k 4+k 2)4(k 4+k 2)+1设u =k 4+k 2⎝⎛⎭⎫12≤k 2≤1, 则34≤u ≤2,|AB |=22u4u +1=212-12(4u +1),u ∈⎣⎡⎦⎤34,2, ∵|AB |(u )在⎣⎡⎦⎤34,2上单调递增, ∴62≤|AB |≤43. 解决弦长问题的注意点(1)利用弦长公式求弦长要注意斜率k 不存在的情形,若k 不存在时,可直接求交点坐标再求弦长.(2)涉及焦点弦长时要注意圆锥曲线定义的应用.已知抛物线y 2=8x 的焦点为F ,直线y =k (x -2)与此抛物线相交于P ,Q 两点,则1|FP |+1|FQ |=( ) A.12 B .1 C .2D .4解析:设P (x 1,y 1),Q (x 2,y 2),由题意可知, |PF |=x 1+2,|QF |=x 2+2,则1|FP |+1|FQ |=1x 1+2+1x 2+2=x 1+x 2+4x 1x 2+2(x 1+x 2)+4,联立直线与抛物线方程消去y 得,k 2x 2-(4k 2+8)x +4k 2=0,可知x 1x 2=4,故1|FP |+1|FQ |=x 1+x 2+4x 1x 2+2(x 1+x 2)+4=x 1+x 2+42(x 1+x 2)+8=12.故选A.答案:A考点三 中点弦问题|弦的中点问题是考查直线与圆锥曲线位置关系的命题热点.归纳起来常见的探究角度有:1.由中点弦确定直线方程. 2.由中点弦确定曲线方程. 3.由中点弦解决对称问题. 探究一 由中点弦确定直线方程1.已知(4,2)是直线l 被椭圆x 236+y 29=1所截得的线段的中点,则l 的方程是________________.解析:设直线l 与椭圆相交于A (x 1,y 1),B (x 2,y 2).则x 2136+y 219=1,且x 2236+y 229=1, 两式相减得y 1-y 2x 1-x 2=-x 1+x 24(y 1+y 2).又x 1+x 2=8,y 1+y 2=4,所以y 1-y 2x 1-x 2=-12,故直线l 的方程为y -2=-12(x -4),即x +2y -8=0.答案:x +2y -8=0探究二 由中点弦确定曲线方程2.过点M (2,-2p )作抛物线x 2=2py (p >0)的两条切线,切点分别为A ,B ,若线段AB 的中点的纵坐标为6,则抛物线方程为________.解析:设点A (x 1,y 1),B (x 2,y 2),依题意得,y ′=x p ,切线MA 的方程是y -y 1=x 1p (x-x 1),即y =x 1p x -x 212p .又点M (2,-2p )位于直线MA 上,于是有-2p =x 1p ×2-x 212p,即x 21-4x 1-4p 2=0;同理有x 22-4x 2-4p 2=0,因此x 1,x 2是方程x 2-4x -4p 2=0的两根,则x 1+x 2=4,x 1x 2=-4p 2.由线段AB 的中点的纵坐标是6得,y 1+y 2=12,即x 21+x 222p =(x 1+x 2)2-2x 1x 22p=12,16+8p 22p=12,解得p =1或p =2.答案:x 2=2y 或x 2=4y探究三 由中点弦解决对称问题3.已知双曲线x 2a 2-y 2b 2=1(a ,b >0)上的一点到双曲线的左、右焦点的距离之差为4,若抛物线y =ax 2上的两点A (x 1,y 1),B (x 2,y 2)关于直线y =x +m 对称,且x 1x 2=-12,则m 的值为( )A.32 B.52 C .2D .3解析:由双曲线的定义知2a =4,得a =2,所以抛物线的方程为y =2x 2.因为点A (x 1,y 1),B (x 2,y 2)在抛物线y =2x 2上,所以y 1=2x 21,y 2=2x 22,两式相减得y 1-y 2=2(x 1-x 2)(x 1+x 2),不妨设x 1<x 2,又A ,B 关于直线y =x +m 对称,所以y 1-y 2x 1-x 2=-1,故x 1+x 2=-12,而x 1x 2=-12,解得x 1=-1,x 2=12,设A (x 1,y 1),B (x 2,y 2)的中点为M (x 0,y 0),则x 0=x 1+x 22=-14,y 0=y 1+y 22=2x 21+2x 222=54,因为中点M 在直线y =x +m 上,所以54=-14+m ,解得m=32,选A. 答案:A对于中点弦问题,常用的解题方法是平方差法.其解题步骤为 ①设点:即设出弦的两端点坐标. ②代入:即代入圆锥曲线方程.③作差:即两式相减,再用平方差公式把上式展开. ④整理:即转化为斜率与中点坐标的关系式,然后求解.28.设而不求整体变换思想在圆锥曲线结合问题中的应用【典例】 (2016·台州模拟)设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的一个顶点与抛物线C :x 2=43y 的焦点重合,F 1,F 2分别是椭圆的左、右焦点,且离心率e =12,过椭圆右焦点F 2的直线l 与椭圆C 交于M ,N 两点.(1)求椭圆C 的方程;(2)若OM →·ON →=-2,求直线l 的方程;(3)若AB 是椭圆C 经过原点O 的弦,MN ∥AB ,求证:|AB |2|MN |为定值.[思维点拨](1)待定系数法求a ,b .(2)注意判断l 的斜率是否存在.(3)利用弦长公式表示出|AB |,|MN |后整体变形得结论.[解] (1)椭圆的顶点为(0,3),即b =3,e =c a =12,∴a =2,∴椭圆的标准方程为x 24+y 23=1. (2)由题可知,直线l 与椭圆必相交. ①当直线斜率不存在时,经检验不合题意.②当斜率存在时,设直线l 的方程为y =k (x -1)(k ≠0), 且M (x 1,y 1),N (x 2,y 2).由⎩⎪⎨⎪⎧x 24+y 23=1,y =k (x -1),得(3+4k 2)x 2-8k 2x +4k 2-12=0,x 1+x 2=8k 23+4k 2,x 1x 2=4k 2-123+4k 2,OM →·ON →=x 1x 2+y 1y 2=x 1x 2+k 2[x 1x 2-(x 1+x 2)+1]=4k 2-123+4k 2+k 2⎝ ⎛⎭⎪⎫4k 2-123+4k 2-8k 23+4k 2+1=-5k 2-123+4k 2=-2,解得k =±2,故直线l 的方程为y =2(x -1)或y =-2(x -1). (3)证明:设M (x 1,y 1),N (x 2,y 2),A (x 3,y 3),B (x 4,y 4), 由(2)可得|MN |=1+k 2|x 1-x 2| =(1+k 2)[(x 1+x 2)2-4x 1x 2] =(1+k 2)⎣⎢⎡⎦⎥⎤⎝⎛⎭⎫8k 23+4k 22-4⎝ ⎛⎭⎪⎫4k 2-123+4k 2=12(k 2+1)3+4k 2,由⎩⎪⎨⎪⎧x 24+y 23=1,y =kx 消去y 并整理得x 2=123+4k 2,|AB |=1+k 2|x 3-x 4|=43(1+k 2)3+4k 2,∴|AB |2|MN |=48(1+k 2)3+4k 212(k 2+1)3+4k 2=4,为定值. [方法点评] 对题目涉及的变量巧妙的引进参数(如设动点坐标、动直线方程等),利用题目的条件和圆锥曲线方程组成二元二次方程组,再化为一元二次方程,从而利用根与系数的关系进行整体代换,达到“设而不求,减少计算”的效果,直接得定值.A 组 考点能力演练1.直线y =b a x +3与双曲线x 2a 2-y 2b 2=1的交点个数是( )A .1B .2C .1或2D .0解析:因为直线y =b a x +3与双曲线的渐近线y =ba x 平行,所以它与双曲线只有1个交点.答案:A2.(2016·福州质检)抛物线C 的顶点为原点,焦点在x 轴上,直线x -y =0与抛物线C 交于A ,B 两点,若P (1,1)为线段AB 的中点,则抛物线C 的方程为( )A .y =2x 2B .y 2=2xC .x 2=2yD .y 2=-2x解析:设A (x 1,y 1),B (x 2,y 2),抛物线方程为y 2=2px ,则⎩⎪⎨⎪⎧y 21=2px 1,y 22=2px 2,两式相减可得2p =y 1-y 2x 1-x 2×(y 1+y 2)=k AB ×2=2,即可得p =1,∴抛物线C 的方程为y 2=2x ,故选B.答案:B3.已知双曲线 x 212-y 24=1的右焦点为F ,若过点F 的直线与双曲线的右支有且只有一个交点,则此直线斜率的取值范围是( )A.⎝⎛⎭⎫-33,33 B .(-3,3) C.⎣⎡⎦⎤-33,33 D .[-3,3]解析:由题意知F (4,0),双曲线的两条渐近线方程为y =±33x .当过点F 的直线与渐近线平行时,满足与右支只有一个交点,画出图象,数形结合可知应选C.答案:C4.已知抛物线C :y 2=8x 与点M (-2,2),过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若MA →·MB →=0,则k =( )A.12 B.22C. 2D .2解析:如图所示,设F 为焦点,取AB 的中点P ,过A ,B 分别作准线的垂线,垂足分别为G ,H ,连接MF ,MP ,由MA →·MB →=0,知MA ⊥MB ,则|MP |=12|AB |=12(|AG |+|BH |),所以MP 为直角梯形BHGA 的中位线,所以MP ∥AG ∥BH ,所以∠GAM =∠AMP =∠MAP ,又|AG |=|AF |,AM 为公共边,所以△AMG ≌△AMF ,所以∠AFM =∠AGM=90°,则MF ⊥AB ,所以k =-1k MF=2. 答案:D5.已知椭圆x 24+y 2b 2=1(0<b <2),左、右焦点分别为F 1,F 2,过F 1的直线l 交椭圆于A ,B 两点,若|BF 2|+|AF 2|的最大值为5,则b 的值是( )A .1 B. 2 C.32 D. 3解析:由椭圆的方程,可知长半轴长为a =2;由椭圆的定义,可知|AF 2|+|BF 2|+|AB |=4a =8,所以|AB |=8-(|AF 2|+|BF 2|)≥3.由椭圆的性质,可知过椭圆焦点的弦中,通径最短,即2b 2a=3,可求得b 2=3,即b = 3. 答案:D6.抛物线y 2=-12x 的准线与双曲线x 29-y 23=1的两条渐近线所围成的三角形的面积等于________.解析:y 2=-12x 的准线方程为x =3,双曲线x 29-y 23=1的渐近线为y =±33x . 设抛物线的准线与双曲线的两条渐近线的交点分别为A ,B ,由⎩⎪⎨⎪⎧ x =3,y =33x ,求得A (3,3),同理B (3,-3),所以|AB |=23,而O 到直线AB 的距离d =3,故所求三角形的面积S =12|AB |×d =12×23×3=3 3. 答案:3 3 7.过双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的一个焦点作圆x 2+y 2=a 2的两条切线,切点分别为A ,B .若∠AOB =120°(O 是坐标原点),则双曲线C 的离心率为________.解析:如图,由题知OA ⊥AF ,OB ⊥BF 且∠AOB =120°,∴∠AOF =60°.又OA =a ,OF =c ,∴a c =OA OF =cos 60°=12, ∴c a=2. 答案:28.直线l 过椭圆x 22+y 2=1的左焦点F ,且与椭圆相交于P ,Q 两点,M 为PQ 的中点,O 为原点.若△FMO 是以OF 为底边的等腰三角形,则直线l 的方程为________.解析:法一:由椭圆方程得a =2,b =c =1,则F (-1,0).在△FMO 中,|MF |=|MO |,所以M 在线段OF 的中垂线上,即x M =-12, 设直线l 的斜率为k ,则其方程为y =k (x +1),由⎩⎪⎨⎪⎧y =k (x +1),x 22+y 2=1,得x 2+2k 2(x +1)2-2=0, 即(2k 2+1)x 2+4k 2x +2(k 2-1)=0,∴x P +x Q =-4k 22k 2+1,而M 为PQ 的中点, 故x M =12(x P +x Q )=-2k 22k 2+1=-12, ∴k 2=12,解得k =±22. 故直线l 的方程为y =±22(x +1),即x ±2y +1=0. 法二:设P (x 1,y 1),Q (x 2,y 2),M (x 0,y 0),由题意知k PQ =-k OM ,由P 、Q 在椭圆上知⎩⎨⎧ x 212+y 21=1,x 222+y 22=1,两式相减整理得k PQ =y 1-y 2x 1-x 2=-x 1+x 22(y 1+y 2)=-x 02y 0,而k OM =y 0x 0,故x 02y 0=y 0x 0, 即x 20=2y 20,所以k PQ =±22,直线PQ 的方程为y =±22(x +1),即x ±2y +1=0. 答案:x ±2y +1=09.(2016·洛阳模拟)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点F (3,0),且椭圆C 经过点P ⎝⎛⎭⎫3,12. (1)求椭圆C 的方程;(2)设过点F 的直线l 交椭圆C 于A ,B 两点,交直线x =m (m >a )于M 点,若k P A ,k PM ,k PB 成等差数列,求实数m 的值.解:(1)由题意,⎩⎪⎨⎪⎧ a 2-b 2=3,3a 2+14b 2=1,得a 2=4,b 2=1. ∴椭圆C 的方程为x 24+y 2=1. (2)设直线l :y =k (x -3),A (x 1,y 1),B (x 2,y 2),M (m ,y m ).将直线方程代入椭圆方程x 2+4y 2=4中,得(1+4k 2)x 2-83k 2x +12k 2-4=0,则x 1+x 2=83k 21+4k 2,x 1·x 2=12k 2-41+4k 2. 此时k P A =y 1-12x 1-3=k -12(x 1-3),k PB =y 2-12x 2-3=k -12(x 2-3). ∴k P A +k PB =⎣⎢⎡⎦⎥⎤k -12(x 1-3)+⎣⎢⎡⎦⎥⎤k -12(x 2-3) =2k -x 1+x 2-232[x 1x 2-3(x 1+x 2)+3]=2k -83k 21+4k 2-232⎝ ⎛⎭⎪⎫12k 2-41+4k 2-3·83k 21+4k 2+3=2k - 3.又M (m ,y m )在直线l 上,∴y m =k (m -3),则k PM =y m -12m -3=k -12(m -3).若k P A ,k PM ,k PB 成等差数列,则2k PM =k P A +k PB ,则2k -1m -3=2k -3,解得m =433. 10.已知抛物线C :y 2=2px (p >0)上一点P (x 0,-2)到该抛物线焦点的距离为2,动直线l 与C 交于两点A ,B (A ,B 异于点P ),与x 轴交于点M ,AB 的中点N ,且直线P A ,PB 的斜率之积为1.(1)求抛物线C 的方程;(2)求|AB ||MN |的最大值. 解:(1)因为点P (x 0,-2)在抛物线上,所以2px 0=4⇒x 0=2p. 由抛物线的定义知,2p +p 2=2⇒(p -2)2=0⇒p =2, 故抛物线C 的方程为y 2=4x .(2)由(1)知,x 0=1,得P (1,-2).设A (x 1,y 1),B (x 2,y 2),设直线P A ,PB 的斜率分别为k 1,k 2,设直线AB 的方程为x =my +t ,联立⎩⎪⎨⎪⎧x =my +t ,y 2=4x ,消去x 得y 2-4my -4t =0. Δ=16m 2+16t >0⇒m 2+t >0,①y 1+y 2=4m ,y 1y 2=-4t ,因为k 1=y 1+2x 1-1=y 1+2y 214-1=4y 1-2. 同理k 2=4y 2-2.所以k 1k 2=4y 1-2·4y 2-2=1,即y 1y 2-2(y 1+y 2)-12=0,即-4t -8m -12=0⇒t =-2m -3.代入①得m 2-2m -3>0⇒m <-1或m >3.因为|AB |=1+m 2|y 1-y 2| =1+m 2·(y 1+y 2)2-4y 1y 2 =1+m 2·16m 2+16t =41+m 2·m 2-2m -3,又y M =0,y N =y 1+y 22=2m , 则|MN |=1+m 2|y M -y N |=21+m 2|m |. 所以|AB ||MN |=2m 2-2m -3|m |=21-2m -3m 2 =2-3⎝⎛⎭⎫1m +132+43, 故当m =-3时,|AB ||MN |取到最大值433. B 组 高考题型专练1.(2015·高考福建卷)已知点F 为抛物线E :y 2=2px (p >0)的焦点,点A (2,m )在抛物线E 上,且|AF |=3.(1)求抛物线E 的方程;(2)已知点G (-1,0),延长AF 交抛物线E 于点B ,证明:以点F为圆心且与直线GA 相切的圆,必与直线GB 相切.解:(1)由抛物线的定义得|AF |=2+p 2. 由已知|AF |=3,得2+p 2=3, 解得p =2,所以抛物线E 的方程为y 2=4x .(2)法一:如图,因为点A (2,m )在抛物线E :y 2=4x 上,所以m =±22,由抛物线的对称性,不妨设A (2,22).由A (2,22),F (1,0)可得直线AF 的方程为y =22(x -1).由⎩⎪⎨⎪⎧y =22(x -1),y 2=4x ,得2x 2-5x +2=0,解得x =2或x =12,从而B ⎝⎛⎭⎫12,-2.又G (-1,0),所以k GA =22-02-(-1)=223,k GB =-2-012-(-1)=-223, 所以k GA +k GB =0,从而∠AGF =∠BGF ,这表明点F 到直线GA ,GB 的距离相等, 故以F 为圆心且与直线GA 相切的圆必与直线GB 相切.法二:设以点F 为圆心且与直线GA 相切的圆的半径为r .因为点A (2,m )在抛物线E :y 2=4x 上,所以m =±22,由抛物线的对称性,不妨设A (2,22).由A (2,22),F (1,0)可得直线AF 的方程为y =22(x -1). 由⎩⎪⎨⎪⎧y =22(x -1),y 2=4x ,得2x 2-5x +2=0, 解得x =2或x =12,从而B ⎝⎛⎭⎫12,-2. 又G (-1,0),故直线GA 的方程为22x -3y +22=0,从而r =|22+22|8+9=4217. 又直线GB 的方程为22x +3y +22=0,所以点F 到直线GB 的距离d =|22+22|8+9=4217=r .这表明以点F 为圆心且与直线GA 相切的圆必与直线GB 相切.2.(2015·高考重庆卷)如图,椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,过F 2的直线交椭圆于P ,Q 两点,且PQ ⊥PF 1.(1)若|PF 1|=2+2,|PF 2|=2-2,求椭圆的标准方程;(2)若|PF 1|=|PQ |,求椭圆的离心率e .解:(1)由椭圆的定义,2a =|PF 1|+|PF 2|=(2+2)+(2-2)=4,故a =2. 设椭圆的半焦距为c ,由已知PF 1⊥PF 2,因此2c =|F 1F 2|=|PF 1|2+|PF 2|2 =(2+2)2+(2-2)2=23,即c =3,从而b =a 2-c 2=1. 故所求椭圆的标准方程为x 24+y 2=1. (2)法一:连接QF 1,如图,设点P (x 0,y 0)在椭圆上,且PF 1⊥PF 2,则x 20a 2+y 20b2=1,x 20+y 20=c 2,求得x 0=±a c a 2-2b 2,y 0=±b 2c. 由|PF 1|=|PQ |>|PF 2|得x 0>0,从而|PF 1|2=⎝ ⎛⎭⎪⎫a a 2-2b 2c +c 2+b 4c 2=2(a 2-b 2)+2a a 2-2b 2=(a +a 2-2b 2)2. 由椭圆的定义,|PF 1|+|PF 2|=2a ,|QF 1|+|QF 2|=2a .从而由|PF 1|=|PQ |=|PF 2|+|QF 2|,有|QF 1|=4a -2|PF 1|.又由PF 1⊥PF 2,|PF 1|=|PQ |,知|QF 1|=2|PF 1|, 因此(2+2)|PF 1|=4a ,即(2+2)(a +a 2-2b 2)=4a ,于是(2+2)(1+2e 2-1)=4,解得e=12⎣⎢⎡⎦⎥⎤1+⎝⎛⎭⎪⎫42+2-12=6- 3.法二:连接QF1,如图,由椭圆的定义,|PF1|+|PF2|=2a,|QF1|+|QF2|=2a.从而由|PF1|=|PQ|=|PF2|+|QF2|,有|QF1|=4a-2|PF1|.又由PF1⊥PQ,|PF1|=|PQ|,知|QF1|=2|PF1|,因此,4a-2|PF1|=2|PF1|,则|PF1|=2(2-2)a,从而|PF2|=2a-|PF1|=2a-2(2-2)a=2(2-1)a,由PF1⊥PF2,知|PF1|2+|PF2|2=|F1F2|2=(2c)2,因此e=ca =|PF1|2+|PF2|22a=(2-2)2+(2-1)2=9-62=6- 3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆锥曲线 选修1-1 第2章 圆锥曲线与方程

考纲总要求:①了解圆锥曲线的实际背景,了解在刻画现实世界和解决实际问题中的作用. ②掌握椭圆的定义、几何图形、标准方程及简单几何性质. ③了解双曲线、抛物线的定义、几何图形和标准方程,知道它们的简单几何性质. ④理解数形结合的思想. ⑤了解圆锥曲线的简单应用.

§2.1-2椭圆 重难点:建立并掌握椭圆的标准方程,能根据已知条件求椭圆的标准方程;掌握椭圆的简单几何性质,能运用椭圆的几何性质处理一些简单的实际问题.

经典例题:已知A、B为椭圆22ax+22925ay=1上两点,F2为椭圆的右焦点,若|AF2|+|BF2|=58a,AB中点到椭圆左准线的距离为23,求该椭圆方程.

当堂练习: 1.下列命题是真命题的是 ( ) A.到两定点距离之和为常数的点的轨迹是椭圆

B.到定直线cax2和定点F(c,0)的距离之比为ac的点的轨迹是椭圆 C.到定点F(-c,0)和定直线cax2的距离之比为ac(a>c>0)的点的轨迹 是左半个椭圆 D.到定直线cax2和定点F(c,0)的距离之比为ca(a>c>0)的点的轨迹是椭圆 2.若椭圆的两焦点为(-2,0)和(2,0),且椭圆过点)23,25(,则椭圆方程是 ( ) A.14822xy B.161022xy C.18422xy D.161022yx 3.若方程x2+ky2=2表示焦点在y轴上的椭圆,则实数k的取值范围为 ( ) A.(0,+∞) B.(0,2) C.(1,+∞) D.(0,1)

4.设定点F1(0,-3)、F2(0,3),动点P满足条件)0(921aaaPFPF,则点P的轨迹是( ) A.椭圆 B.线段 C.不存在 D.椭圆或线段

5.椭圆12222byax和kbyax22220k具有 ( ) A.相同的离心率 B.相同的焦点 C.相同的顶点 D.相同的长、短轴 6.若椭圆两准线间的距离等于焦距的4倍,则这个椭圆的离心率为 ( )

A.41 B.22 C.42 D. 21 7.已知P是椭圆13610022yx上的一点,若P到椭圆右准线的距离是217,则点P到左焦点的距离( ) A.516 B.566 C.875 D.877 8.椭圆141622yx上的点到直线022yx的最大距离是 ( ) A.3 B.11 C.22 D.10

9.在椭圆13422yx内有一点P(1,-1),F为椭圆右焦点,在椭圆上有一点M,使|MP|+2|MF|的值最小,则这一最小值是 ( )

A.25 B.27 C.3 D.4 10.过点M(-2,0)的直线m与椭圆1222yx交于P1,P2,线段P1P2的中点为P,设直线m的斜率为k1(01k),直线OP的斜率为k2,则k1k2的值为 ( )

A.2 B.-2 C.21 D.-21 11.离心率21e,一个焦点是3,0F的椭圆标准方程为 ___________ . 12.与椭圆4 x 2 + 9 y 2 = 36 有相同的焦点,且过点(-3,2)的椭圆方程为_______________.

13.已知yxP,是椭圆12514422yx上的点,则yx的取值范围是________________ . 14.已知椭圆E的短轴长为6,焦点F到长轴的一个端点的距离等于9,则椭圆E的离心率等于__________________.

15.已知椭圆的对称轴为坐标轴,离心率32e,短轴长为58,求椭圆的方程. 16.过椭圆4:),(148:220022yxOyxPyxC向圆上一点引两条切线PA、PB、A、 B为切点,如直线AB与x轴、y轴交于M、N两点.

(1)若0PBPA,求P点坐标; (2)求直线AB的方程(用00,yx表示); (3)求△MON面积的最小值.(O为原点)

17.椭圆12222byaxa>b>0与直线1yx交于P、Q两点,且OQOP,其中O为坐标原点. (1)求2211ba的值; (2)若椭圆的离心率e满足33≤e≤22,求椭圆长轴的取值范围.

18.一条变动的直线L与椭圆42x+2y2=1交于P、Q两点,M是L上的动点,满足关系|MP|·|MQ|=2.若直线L在变动过程中始终保持其斜率等于1.求动点M的轨迹方程,并说明曲线的形状. x

y

o x y o x y o x

y o

选修1-1 第2章 圆锥曲线与方程 §2.3双曲线 重难点:建立并掌握双曲线的标准方程,能根据已知条件求双曲线的标准方程;掌握双曲线的简单几何性质,能运用双曲线的几何性质处理一些简单的实际问题.

经典例题:已知不论b取何实数,直线y=kx+b与双曲线1222yx总有公共点,试求实数k的取值范围.

当堂练习: 1.到两定点0,31F、0,32F的距离之差的绝对值等于6的点M的轨迹 ( ) A.椭圆 B.线段 C.双曲线 D.两条射线

2.方程11122kykx表示双曲线,则k的取值范围是 ( ) A.11k B.0k C.0k D.1k或1k

3. 双曲线14122222mymx的焦距是 ( ) A.4 B.22 C.8 D.与m有关 4.已知m,n为两个不相等的非零实数,则方程mx-y+n=0与nx2+my2=mn所表示的曲线可 能是 ( ) A B C D 5. 双曲线的两条准线将实轴三等分,则它的离心率为 ( )

A.23 B.3 C.34 D. 3 6.焦点为6,0,且与双曲线1222yx有相同的渐近线的双曲线方程是 ( ) A.1241222yx B.1241222xy C.1122422xy D.1122422yx

7.若ak0,双曲线12222kbykax与双曲线12222byax有 ( ) A.相同的虚轴 B.相同的实轴 C.相同的渐近线 D. 相同的焦点

8.过双曲线191622yx左焦点F1的弦AB长为6,则2ABF(F2为右焦点)的周长是( ) A.28 B.22 C.14 D.12

9.已知双曲线方程为1422yx,过P(1,0)的直线L与双曲线只有一个公共点,则L的条数共有 ( ) A.4条 B.3条 C.2条 D.1条

10.给出下列曲线:①4x+2y-1=0; ②x2+y2=3; ③1222yx ④1222yx,其中与直线 y=-2x-3有交点的所有曲线是 ( ) A.①③ B.②④ C.①②③ D.②③④

11.双曲线17922yx的右焦点到右准线的距离为__________________________. 12.与椭圆1251622yx有相同的焦点,且两准线间的距离为310的双曲线方程为____________. 13.直线1xy与双曲线13222yx相交于BA,两点,则AB=__________________.

14.过点)1,3(M且被点M平分的双曲线1422yx的弦所在直线方程为 . 15.求一条渐近线方程是043yx,一个焦点是0,4的双曲线标准方程,并求此双曲线的离心率.

16.双曲线0222aayx的两个焦点分别为21,FF,P为双曲线上任意一点,求证:21PFPOPF、、成 等比数列(O为坐标原点). 17.已知动点P与双曲线x2-y2=1的两个焦点F1,F2的距离之和为定值,且cos∠F1PF2的最小值为-13. (1)求动点P的轨迹方程; (2)设M(0,-1),若斜率为k(k≠0)的直线l与P点的轨迹交于不同的两点A、B,若要使|MA|=|MB|,试求k的取值范围.

18.某中心接到其正东、正西、正北方向三个观测点的报告:正西、正北两个观测点同时听到了一声巨响,正东观测点听到的时间比其他两观测点晚4s. 已知各观测点到该中心的距离都是1020m. 试确定该巨响发生的位置.(假定当时声音传播的速度为340m/ s :相关各点均在同一平面上).

选修1-1 第2章 圆锥曲线与方程 §2.4抛物线 重难点:建立并掌握抛物线的标准方程,能根据已知条件求抛物线的标准方程;掌握抛物线的简单几何性质,能运用抛物线的几何性质处理一些简单的实际问题.

经典例题:如图, 直线y=21x与抛物线y=81x2-4交于A、B两点, 线段AB的垂直平分线与直线y=-5交于Q点. (1)求点Q的坐标;(2)当P为抛物线上位于线段AB下方(含A、B)的动点时, 求ΔOPQ面积的最大值.

当堂练习: 1.抛物线22xy的焦点坐标是 ( )

A.)0,1( B.)0,41( C.)81,0( D. )41,0( 2.已知抛物线的顶点在原点,焦点在y轴上,其上的点)3,(mP到焦点的距离为5,则抛物线方程为( ) A.yx82 B.yx42 C.yx42 D.yx82 3.抛物线xy122截直线12xy所得弦长等于 ( ) A.15 B.152 C.215 D.15 4.顶点在原点,坐标轴为对称轴的抛物线过点(-2,3),则它的方程是 ( )

A.yx292或xy342 B.xy292或yx342 C.yx342 D.xy292 5.点)0,1(P到曲线tytx22(其中参数Rt)上的点的最短距离为 ( ) A.0 B.1 C.2 D.2

6.抛物线)0(22ppxy上有),,(),,(2211yxByxA),(33yxC三点,F是它的焦点,若CFBFAF,, 成等差数列,则 ( )

A.321,,xxx成等差数列 B.231,,xxx成等差数列

C.321,,yyy成等差数列 D.231,,yyy成等差数列 7.若点A的坐标为(3,2),F为抛物线xy22的焦点,点P是抛物线上的一动点,则PFPA 取得最小值时点P的坐标是 ( )

A.(0,0) B.(1,1) C.(2,2) D.)1,21( 8.已知抛物线)0(22ppxy的焦点弦AB的两端点为),(11yxA,),(22yxB,则关系式

2121xx

yy

的值一定等于 ( )

A.4p B.-4p C.p2 D.-p 9.过抛物线)0(2aaxy的焦点F作一直线交抛物线于P,Q两点,若线段PF与FQ的长分别是qp,,则

qp11

( )

A.a2 B.a21 C.a4 D.a4 10.若AB为抛物线y2=2px (p>0)的动弦,且|AB|=a (a>2p),则AB的中点M到y轴的最近距离是 ( )

相关文档
最新文档