高中数学必修五:1.1《正弦定理和余弦定理(3)》ppt课件

合集下载

高中数学必修五北师大版 余弦定理课件(30张)

高中数学必修五北师大版 余弦定理课件(30张)

a c 方法一 由正弦定理sin A=sin C得: 3 5× 2 csin A 5 3 sin C= a = 7 = 14 . 5 3 ∴最大角 A 为 120° ,sin C= . 14 a2+b2-c2 72+32-52 11 解法二 ∵cos C= = = , 2ab 2×7×3 14 ∴C 为锐角,∴sin C= 1-cos C=
[ 分析 ] 可先由大边对大角,确定出最大的角,再由正、余弦定 理求出最大角及sin C.
[解析] ∵a>c>b,∴A 为最大角.
由余弦定理变形得: b2+c2-a2 32+52-72 1 cos A= 2bc = =-2. 2×3×5 又∵0° <A<180° ,∴A=120° . 3 ∴sin A=sin 120° =2.
)
2a2 = 2a =a=2.
答案:C
2.在△ABC中,如果sin A∶sin B∶sin C=2∶3∶4,那么cos C等
于________.
解析:由条件可设 a=2t,b=3t,c=4t a2+b2-c2 4t2+9t2-16t2 1 cos C= 2ab = =-4. 2×2×3t2
1 答案:-4
1.2 余弦定理
第1课时 余弦定理
பைடு நூலகம்
1.能证明余弦定理,了解并可以从向量方 法、解析方法和三角方法等多种途径证 明余弦定理; 重点:余弦定理的理 解和简单应用.
2.能够应用余弦定理及其推论解三角形; 难点:余弦定理的推 3.了解余弦定理与勾股定理之间的联系, 导及解决简单的三角 知道解三角形问题的几种情形及其基本 解法. 形度量问题.
1 3 3 解法二 由 b<c,B=30° ,b>csin 30° =3 3×2= 2 知本题有两解. 1 3 3×2 csin B 3 由正弦定理 sin C= = = , b 3 2 ∴C=60° 或 120° , 当 C=60° 时,A=90° , 由勾股定理 a= b2+c2= 32+3 32=6,

人教A版必修5第1章《正弦定理和余弦定理》ppt导学课件

人教A版必修5第1章《正弦定理和余弦定理》ppt导学课件
2 2 2 2 2 2 2 2 2 2 2 2
根据勾股定理知△ABC 是直角三角形. 4、 已知 a,b,c 分别为△ABC 三个内角 A,B,C 的对边,acosC+ 3asinC-b-c =0. (1)求 A; (2)若 a=2,△ABC 的面积为 3,求 b, c. 【解析】本题考查正弦定理.(1)利用正 弦定理边化角结合两角和差公式化简求 解; (2)利用三角形面积公式及余弦定理 求解. 【答案】 (1)由 acosC+ 3asinC-b-c= 0 及正弦定理得

【解析】本题考查正弦定理 . 在三角形中【解析】本题考查正弦定理.由正弦定理, 需要考虑大边对大角,三个内角的和不能得 sin B= 2, 2 0 超过 180 .利用正弦定理求得∠B,根据大 ∵a>b,∴∠A>∠B. 边对大角,故∠B =30°,勾股定理求得 ∴∠B 只有一解.∴∠B=45°. c. 【答案】45°.
人教(A)数学 · 必修5 对点助学PPT
【知识目标】
1、理解正弦定理和余弦定理公 式的推导过程;
正弦定理和余弦定理
【学习目标】
1、会根据正弦定理和余弦定理 解三角形(知三求一) ; 2、会利用正弦定理和余弦定理 进行边角的相互转化2 3, b=6,
B=60°或 120°.
a
sin A

= =2R sin B sin C
b
c
(R 为△ABC 的外接圆半径).
统一为“边”之间的关系式或“角” 【答案】由正弦定理 a = b sin A sin B 之间的关系式. 3 1 1 可得 = ,∴sin B= , sin 60° sin B 2
【对点巩固】
故∠B=30°或 150°.由 a>b,

必修五 1.1正弦定理与余弦定理(5课时)山西省优秀课件.

必修五 1.1正弦定理与余弦定理(5课时)山西省优秀课件.

思考1:在△ABC中,若已知边a,b和角C, 如何求边c和角A,B?
A
b
c
C a
B
思考2:已知三角形的三边a,b,c,求 三内角A,B,C,其计算公式如何?
b2 + c2 - a2 cos A =
2bc c2 + a2 - b2 cos B =
2ca
a2 + b2 - c2 cosC =
2ab
b2 + c2 - a2 cos A =
知识探究(一):正弦定理的形成
思考1:在Rt△ABC中,∠C=90°,BC=
a,AC=b,AB=c,则sinA,sinB,sinC
分别等于什么?
C
b
a
A
c
B
思考2:将上述关系变式,边长c 有哪几 种表示形式?由此可得什么结论?
C
b
a
A
c
B
a= b= c sin A sin Br uuur uur
AB = CB - CA
C
a
思考3:c边的长即为
|
uuur AB
B
|,向量
uuur AB
CuuA与r
uuur CB

有什么关系?
思考4:如何将
uuur AB
=
uuur CB -
uur CA
转化为c与
a,b,C的关系?
思考5:根据上述推导可得,
c2 = a2 + b2 - 2ab cosC ,此式对任意三角
sin A sin B
a sin B = b sin A , 在锐角△ABC中,该
等式是否成立?为什么?
C
b
a
A

三角函数解三角形正弦定理和余弦定理课件理新ppt

三角函数解三角形正弦定理和余弦定理课件理新ppt

正弦定理的应用
01
正弦定理可以应用于求解三角形中的边、角、面积等问题,其中最常用的应用 是求解三角形的三边关系和三角形的面积公式。
02
在求解三角形的三边关系时,可以使用正弦定理得到两边之比的表达式,再结 合余弦定理得到第三边的表达式,从而得到三边之间的关系。
03
在求解三角形的面积公式时,可以使用正弦定理得到三角形的底和高,从而得 到三角形的面积公式。
三角函数解三角形正弦定理和余弦 定理课件理新ppt
xx年xx月xx日
contents
目录
• 引言 • 正弦定理 • 余弦定理 • 案例分析 • 结论与展望 • 参考文献
01
引言
课程背景
1
三角函数是数学中的基础内容之一,具有广泛 的应用价值。
2
解三角形是三角函数应用的重要方面之一,涉 及到很多实际问题。
《三角函数解题方 法与技巧》
《高中数学竞赛教 程》
《三角函数图像与 性质》
THANKS
利用正弦定理和余弦定理解三角形
如何根据三角形的已知信息求解三边长
利用正弦定理求解三角形边长
利用余弦定理求解三角形边长
通过具体案例展示,进行计算
三角形的判定方法
如何判断一个三角形是否为直 角三角形
利用正弦定理和余弦定理进行 三角形判定
通过具体案例展示,进行计算
05
结论与展望
总结正余弦定理在解三角形中的应用
正弦定理:对于任意三角形,已知一边和它的对角 ,无法确定三角形的大小和形状,需要再知道其他
一些信息才能确定三角形的大小和形状.
余弦定理:对于任意三角形,已知三边,可确定这 个三角形的形状和大小;已知两边和其中一边的对

数学:1.1.2《余弦定理》课件(新人教b版必修5)

数学:1.1.2《余弦定理》课件(新人教b版必修5)

1 2
AB
1
3 2
3 AB 4. C
AC 2 AB 2 BC 2 2 AB BC COSB
16 1 2 41 1 13 AC 13.
A
2
Ac 2 BC 2 AB 2 13 1 16
13
cosC
B
2 AC BC
2 13 1 13
sinC
1
13 13
2
2 26 13
1.1.2 余弦定理 课件
2024/11/11
1.正弦定理:在任一个三角形中,各边和它所对角的正弦比相等,
即a =
sin A
b sin B
=
c =2R(R为△ABC外接圆半径)
sin C
2.正弦定理的应用: 从理论上正弦定理可解决两类问题: 1.两角和任意一边,求其它两边和一角;
2.两边和其中一边对角,求另一边的对角,进而可求其它的边和 角。
c2 a2 b2 2ab cosC
2024/11/11
1.余弦定理 :三角形任何一边的平方等于其他两边平方的和减去 这两边与它们夹角的余弦的积的两倍。
b2 c2 a2
即 a2 b2 c2 2bc cos A cos A 2bc
b2 c2 a2 2ac cosB cos B c2 a2 b2
2ab
2024/11/11
2.在△ABC中,若a2>b2+c2,则△ABC为 钝角三角形;若a2=b2+c2,
则△ABC为
直角三;角若形a2<b2+c2且b2<a2+c2且c2<a2+b2,
则△ABC为
锐角。三角形
3.在△ABC中,sinA=2cosBsinC,则三角形为 等腰三角形 。

(人教新课标)高二数学必修5第一章 解三角形《正、余弦定理》精品课件

(人教新课标)高二数学必修5第一章 解三角形《正、余弦定理》精品课件

正弦定理的应用举例 一、已知两个角和一边
变式训练一
二、已知两个边和其中一边的一个对角
变式训练二
已知下列各三角形中的两边及其一边的对角,先判断 三角形是否有解?有解的作出解答. (1)a=7,b=8,∠A=105°; (2)a=10,b=20,∠A=80°; (3)b=10,c=5,∠C=60°; (4)a=2,b=6,∠A=30°.
余弦定理的由来 /edu/ppt/ppt_playVideo.action?medi aVo.resId=55c96ff1af508f0099b1c5b6
高铁隧道招标,利用三角形确定隧道长度 /edu/ppt/ppt_playVideo.action? mediaVo.resId=55c97049af508f0099b1c5bc
A 5620
a 2 c 2 b 2 134.6 2 161.7 2 87.82 cosB 0.8398 , 2ac 2 134.6 161.7
B 3253
C 180 A B 180 5620 3253 9047
解三角形:
一般地,把三角形的三个角A,B,C和它们的对边a,b,c叫做三角形素的过程叫做解三角形. 说明: 根据初中学习的三角形全等,我们知道确定一个三角需要
三个条件,所以在利用正弦定理时要求已知两边和其中一 边的对角或者两角和一边,才可以进一步确定三角形其它 的边和角.
回忆一下直角三角形的边角关系? b a sin B sin A c c
两等式间有联系吗?
B
A c a b
a b c sin A sin B
sin C 1
C
a b c sin A sin B sin C

高中数学人教A版_正弦定理(15张PPT)

结论
LsinA=s nB= sin C
文字叙述
在一个三角形中,各边和它所对角的_正弦的比相 等
正弦定理
以上我们利用向量方法获得了正弦定理。事 实上,探索和证明这个定理的方法很多,有些方 法甚至比上述方法更加简洁。你还能想到其他方 法吗?
利用三角形的高证明正弦定理(1)当△ABC 是锐角三角形时,设边AB 上的高是CD, 根据锐角三角 函数的定义,有CD=asin B,CD=bsin A。
6.4平面向量的应用 6.4.3第二讲正弦定理
(1)在△ABC 中,若A=30°,B=45° ,AC=4, 你还能直接运用余弦定理求出边BC吗?[提示] 不能。(2)在直角三角形中,边与角之间的关系是什么?
因此我们由那视频可以得出:
B
C
定理推导
又因为sin C=sin 90°=1
同理,过点C 作与CB垂直的单位向量m, 可
【提示】 成立,如图,当△ABC为钝角三角形时,不妨设A为钝 角。过点A作与AC 垂直的单位向量j,则j与AB 的夹角为A; 与CB 的 夹角为 C.仿照上述方法,同样可得:
在钝角三角形中的这个边角关系成立吗?
条件
在△ABC中,角A,B,C所对的边分别为a,b,c
如图,△ABC 为锐角三角形,过点A 作与AC 垂直的单位向量j, 则j 与AB 的夹角 ,j 与CB的 夹 角
也即asin C=csin A,即因
因为AC+CB=AB, 所以 j·(AC+CB)=j·AB. 由分配律,得j·AC+j·CB=j·AB,
利用向量法证明正弦定理
4, 请你用正弦定理来求出
练一练
B
在一个三角形中,各边和它 所对角的正弦的比相等。

(人教版)数学必修五:1.1《正弦定理和余弦定理(1)》ppt课件


2.正弦定理的变形形式 bsinA csinA (1)a= = , sinB sinC asinB csinB b= = , sinA sinC asinC bsinC c= = . sinA sinB asinB asinC (2)sinA= = , b c bsinA bsinC sinB= = , a c csinA csinB sinC= = . a b
第1课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修5
已知三角形的两边和其中一边的对角解三角形
已知在△ABC 中,a=2 3,b=6,A=30° ,解 这个三角形.
[ 分析] 在△ABC 中,已知两边和其中一边的对角,可运 用正弦定理求解,但要注意解的个数的判定.
[ 解析] ∵A 为锐角,bsinA=6sin30° =3<a<b,
课前自主预习
第一章
1.1
第1课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修5
“无限风光在险峰”,在充满象征色彩的诗意里,对险峰 的慨叹跃然纸上,成为千古之佳句.对于难以到达的险峰应如
何测出其海拔高度呢?能通过在水平飞行的飞机上测量飞机下
方的险峰海拔高度吗?在本节中,我们将学习正弦定理,借助 已学的三角形的边角关系解决类似于上述问题的实际问题.
第一章 1.1 第1课时
已知两角,由三角形内角和定理第三角可求,已
在△ABC 中, C=180° -(A+B)=180° -(60° +45° )
知一边可由正弦定理求其它两边.
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修5
2 3+1 2 3 2 1 = × + × = . 2 2 2 2 4 csinA 2sin60° 根据正弦定理,得 a= = sinC sin75° 3 2× 2 = = 6( 3-1), 2 3+1 4 2 2× 2 csinB 2sin45° b= = = =2( 3-1). sinC sin75° 2 3+1 4

正弦定理和余弦定理ppt课件

总结词
正弦定理和余弦定理在物理学中有着 广泛的应用。
详细描述
在物理学中,许多现象可以用三角函数来描 述,如重力、弹力等。通过正弦定理和余弦 定理,我们可以更准确地计算这些力的作用 效果,从而更好地理解和分析物理现象。
06 总结与展望
总结正弦a、b、c与对应的角A、B、C 的正弦值之比都相等,即$frac{a}{sin A} = frac{b}{sin B} = frac{c}{sin C}$。
表达式形式
正弦定理的表达式形式简洁,易于理解和记 忆。相比之下,余弦定理的表达式较为复杂
,需要更多的数学基础才能理解和应用。
定理间的互补性
要点一
解决问题时的互补性
在解决三角形问题时,正弦定理和余弦定理常常是互补使 用的。对于一些问题,使用正弦定理可能更方便;而对于 另一些问题,使用余弦定理可能更合适。通过结合使用两 种定理,可以更全面地理解三角形的性质和关系,从而更 好地解决各种问题。
深入研究正弦定理和余弦定理的性质
可以进一步研究正弦定理和余弦定理的性质,如推广到多边形、高维空间等。
开发基于正弦定理和余弦定理的算法和软件
可以开发基于正弦定理和余弦定理的算法和软件,用于解决实际问题。
如何进一步深化理解与应用
深入理解正弦定理和余弦定理的证明过程
01
理解证明过程有助于更好地理解和应用正弦定理和余弦定理。
02 正弦定理
正弦定理的定义
总结词
正弦定理是三角形中一个重要的定理,它描述了三角形各边与其对应角的正弦值 之间的关系。
详细描述
正弦定理是指在一个三角形中,任意一边与其相对角的正弦值的比值都相等,即 $frac{a}{sin A} = frac{b}{sin B} = frac{c}{sin C}$,其中$a, b, c$分别代表三角形 的三边长度,$A, B, C$分别代表与三边相对应的角。

人教版高中数学必修5(A版) 1.1.2《余弦定理》 PPT课件


A
c a
B
C
余弦定理:
三角形中任何一边的平方等于其他 两边的平方的和减去这两边与它们的夹 角的余弦的积的两倍.
余弦定理:
三角形中任何一边的平方等于其他 两边的平方的和减去这两边与它们的夹 角的余弦的积的两倍. 即:
a b c 2bc cos A 2 2 2 b a c 2ac cos B 2 2 2 c a b 2ab cos C
复习引入
运用正弦定理能解怎样的三角形?
A
C
B
复习引入
运用正弦定理能解怎样的三角形? ①已知三角形的任意两角及其一边; ②已知三角形的任意两边与其中一边 的对角.
A C B

情境设置
问题1:
如果已知三角形的两边及其夹角, 根据三角形全等的判定方法,这个三 角形是大小、形状完全确定的三角形. 从量化的角度来看,如何从已知的两 边和它们的夹角求三角形的另一边和 两个角?
练习:
教材P. 8练习第1题. 在△ABC中,已知下列条件,解三角
形(角度精确到1 , 边长精确到0.1cm):
(1) a=2.7cm,b=3.6cm,C=82.2 ; (2) b=12.9cm,c=15.4cm,A=42.3 .
o o
o
课堂小结
1. 余弦定理是任何三角形边角之间存在 的共同规律,勾股定理是余弦定理的特 例; 2. 余弦定理的应用范围: ①已知三边求三角; ②已知两边及它们的夹角,求第三边.
思考4:
勾股定理指出了直角三角形中三边 平方之间的关系,余弦定理则指出了一 般三角形中三边平方之间的关系,如何 看这两个定理之间的关系?
思考4:
勾股定理指出了直角三角形中三边 平方之间的关系,余弦定理则指出了一 般三角形中三边平方之间的关系,如何 看这两个定理之间的关系?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档