专题01 等差数列的基本量的计算(解析版)

合集下载

高考数学专题03数列求和问题(第二篇)(解析版)

高考数学专题03数列求和问题(第二篇)(解析版)

⾼考数学专题03数列求和问题(第⼆篇)(解析版)备战2020年⾼考数学⼤题精做之解答题题型全覆盖⾼端精品第⼆篇数列与不等式【解析版】专题03 数列求和问题【典例1】【福建省福州市2019-2020学年⾼三上学期期末质量检测】等差数列{}n a 的公差为2, 248,,a a a 分别等于等⽐数列{}n b 的第2项,第3项,第4项. (1)求数列{}n a 和{}n b 的通项公式;(2)若数列{}n c 满⾜12112n n nc c c b a a a ++++=L ,求数列{}n c 的前2020项的和.【思路引导】(1)根据题意同时利⽤等差、等⽐数列的通项公式即可求得数列{}n a 和{}n b 的通项公式; (2)求出数列{}n c 的通项公式,再利⽤错位相减法即可求得数列{}n c 的前2020项的和.解:(1)依题意得: 2324b b b =,所以2111(6)(2)(14)a a a +=++ ,所以22111112361628,a a a a ++=++解得1 2.a = 2.n a n ∴= 设等⽐数列{}n b 的公⽐为q ,所以342282,4b a q b a ==== ⼜2224,422.n n n b a b -==∴=?= (2)由(1)知,2,2.n n n a n b ==因为11121212n n n n nc c c c a a a a +--++++= ①当2n ≥时,1121212n n n c c c a a a --+++= ②由①-②得,2n n nc a =,即12n n c n +=?,⼜当1n =时,31122c a b ==不满⾜上式,18,12,2n n n c n n +=?∴=?≥ .数列{}n c 的前2020项的和34202120208223220202S =+?+?++?2342021412223220202=+?+?+?++?设2342020202120201222322019220202T =?+?+?++?+? ③,则34520212022202021222322019220202T =?+?+?++?+? ④,由③-④得:234202120222020222220202T -=++++-?2202020222(12)2020212-=-?-2022420192=--? ,所以20222020201924T =?+,所以2020S =202220204201928T +=?+.【典例2】【河南省三门峡市2019-2020学年⾼三上学期期末】已知数列{}n a 的前n 项和为n S ,且满⾜221n S n n =-+,数列{}n b 中,2+,对任意正整数2n ≥,113nn n b b -??+=.(1)求数列{}n a 的通项公式;(2)是否存在实数µ,使得数列{}3nn b µ+是等⽐数列?若存在,请求出实数µ及公⽐q 的值,若不存在,请说明理由;(3)求数列{}n b 前n 项和n T . 【思路引导】(1)根据n S 与n a 的关系1112n nn S n a S S n -=?=?-≥?即可求出;(2)假设存在实数µ,利⽤等⽐数列的定义列式,与题⽬条件1331n n n n b b -?+?=,⽐较对应项系数即可求出µ,即说明存在这样的实数;(3)由(2)可以求出1111(1)4312nn n b -??=?+?- ,所以根据分组求和法和分类讨论法即可求出.解:(1)因为221n S n n =-+,当1n =时,110a S ==;当2n ≥时,22121(1)2(1)123n n n a S S n n n n n -=-=-+-----=-.故*0,1 23,2,n n a n n n N =?=?-∈?…;(2)假设存在实数µ,使得数列{}3xn b µ?+是等⽐数列,数列{}n b 中,2133a b a =+,对任意正整数2n (113)n n b b -??+=.可得116b =,且1331n nn n b b -?+?=,由假设可得(n n n b b µµ--?+=-?+,即1334n n n n b b µ-?+?=-,则41µ-=,可得14µ=-,可得存在实数14µ=-,使得数列{}3nn b µ?+是公⽐3q =-的等⽐数列;(3)由(2)可得11111133(3)(3)444nn n n b b ---=-?-=?- ,则1111(1)4312nn n b -??=?+?- ,则前n 项和11111111(1)123643121212nn n T -=++?+?+-+?+?-?? ? ????????? 当n 为偶数时,111111*********n n n T ??- =+=- ???- 当n 为奇数时,11111115112311128312248313n n n nT ??- =+=-+=- ????- 则51,21248311,2883nn n n k T n k ?-=-=??-=(*k N ∈).【典例3】【福建省南平市2019-2020学年⾼三上学期第⼀次综合质量检查】已知等⽐数列{}n a 的前n 项和为n S ,且( )*21,nn S a a n =?-∈∈R N.(1)求数列{}n a 的通项公式;(2)设11n n n n a b S S ++=,求数列{}n b 的前n 项和n T .【思路引导】(1)利⽤临差法得到12n n a a -=?,再根据11a S =求得1a =,从⽽求得数列通项公式;(2)由题意得1112121n n n b +=---,再利⽤裂项相消法求和. 解:(1)当1n =时,1121a S a ==-.当2n ≥时,112n n n n a S S a --=-=?()*,因为{}n a 是等⽐数列,所以121a a =-满⾜()*式,所以21a a -=,即1a =,因此等⽐数列{}n a 的⾸项为1,公⽐为2,所以等⽐数列{}n a 的通项公式12n n a -=.(2)由(1)知21nn S =-,则11n n n n a b S S ++=,即()()1121121212121n n n n n n b ++==-----,所以121111111113377152121n n n n T b b b +?=++???+=-+-+-+???+- ? ? ? ?--?,所以11121n n T +=--.【典例4】【⼭东省⽇照市2019-2020学年上学期期末】已知数列{}n a 的⾸项为2,n S 为其前n 项和,且()120,*n n S qS q n +=+>∈N (1)若4a ,5a ,45a a +成等差数列,求数列{}n a 的通项公式;(2)设双曲线2221ny x a -=的离⼼率为n e ,且23e =,求222212323n e e e ne ++++L .【思路引导】(1)先由递推式()120,*n n S qS q n +=+>∈N 求得数列{}n a 是⾸项为2,公⽐为q 的等⽐数列,然后结合已知条件求数列通项即可;(2)由双曲线的离⼼率为求出公⽐q ,再结合分组求和及错位相减法求和即可得解. 解:解:(1)由已知,12n n S qS +=+,则212n n S qS ++=+,两式相减得到21n n a qa ++=,1n ≥.⼜由212S qS =+得到21a qa =,故1n n a qa +=对所有1n ≥都成⽴.所以,数列{}n a 是⾸项为2,公⽐为q 的等⽐数列. 由4a ,5a ,45+a a 成等差数列,可得54452=a a a a ++,所以54=2,a a 故=2q .所以*2()n n a n N =∈.(2)由(1)可知,12n n a q-=,所以双曲线2的离⼼率n e ==由23e ==,得q =.所以()()()()2122222123231421414n n e e e n e q n q -++++?=++++++ ()()()21214122n n n q nq -+=++++,记()212123n n T q q nq -=++++①()()2122221n n n q T q q n qnq -=+++-+②①-②得()()221222221111n n nnq q ---=++++-=-- 所以()()()()222222222211122121(1)111nn n n n n n n q nq q nq T n n q q q q --=-=-=-+?=-+----. 所以()()222212121242n n n n e e n e n +++++?=-++. 【典例5】已知数列{}n a 的各项均为正数,对任意*n ∈N ,它的前n 项和n S 满⾜()()1126n n n S a a =++,并且2a ,4a ,9a 成等⽐数列. (1)求数列{}n a 的通项公式;(2)设()111n n n n b a a ++=-,n T 为数列{}n b 的前n 项和,求2n T .【思路引导】(1)根据n a 与n S 的关系,利⽤临差法得到13n n a a --=,知公差为3;再由1n =代⼊递推关系求1a ;(2)观察数列{}n b 的通项公式,相邻两项的和有规律,故采⽤并项求和法,求其前2n 项和. 解:(1)Q 对任意*n ∈N ,有() ()1126n n n S a a =++,①∴当1a =时,有()()11111126S a a a ==++,解得11a =或2. 当2n ≥时,有()()1111126n n n S a a ---=++.②①-②并整理得()()1130n n n n a a a a --+--=. ⽽数列{}n a 的各项均为正数,13n n a a -∴-=.当11a =时,()13132n a n n =+-=-,此时2429a a a =成⽴;当12a =时,()23131n a n n =+-=-,此时2429a a a =,不成⽴,舍去.32n a n ∴=-,*n ∈N .(2)2122n n T b b b =+++=L 12233445221n n a a a a a a a a a a +-+-+-L()()()21343522121n n n a a a a a a a a a -+=-+-++-L242666n a a a =----L ()2426n a a a =-+++L246261862n n n n +-=-?=--.【典例6】【2020届湖南省益阳市⾼三上学期期末】已知数列{}n a 的前n 项和为112a =,()1122n n n S a ++=-. (1)求2a 及数列{}n a 的通项公式;(2)若()1122log n n b a a a =L ,11n n nc a b =+,求数列{}n c 的前n 项和n T . 【思路引导】(1)利⽤临差法将递推关系转化成2112n n a a ++=,同时验证2112a a =,从⽽证明数列{}n a 为等⽐数列,再利⽤通项公式求得n a ;(2)利⽤对数运算法则得11221nn c n n ??=+- ?+??,再⽤等⽐数列求和及裂项相消法求和,可求得n T 。

专题01 实数的概念及运算(共50题)(解析版)

专题01 实数的概念及运算(共50题)(解析版)

专题01 实数的概念及运算(50题)一、单选题
A .9
B .1
9
-
C .
A.a B.b 【答案】B
A.点P B.点Q
B
故选:A.
【点睛】本题考查了不等式的性质,实数的大小比较,借助数轴比较是解题的关键.
A.a B.b
A .()0c b a -<
B .()0
b c a -<C .(a b
a b c ´=,数c 在数轴上用点C 表示,则点,,A B C 在数轴上的位置可能是( )
A .
B .
C .
D .
【答案】B
【分析】先由10a -<<,01b <<,a b c ´=,根据不等式性质得出0a c <<,再分别判定即可.【详解】解:∵10a -<<,01b <<,∴0a ab <<∵a b c ´=∴0
a c <<A 、01
b
c <<<,故此选项不符合题意;B 、0a c <<,故此选项符合题意;C 、1c >,故此选项不符合题意;D 、1c <-,故此选项不符合题意;故选:B .
【点睛】本题考查用数轴上的点表示数,不等式性质,由10a -<<,01b <<,a b c ´=得出0a c <<是解题的关键.
二、填空题
①按键的结果为
②按键的结果为
③按键的结果为
④按键的结果为以上说法正确的序号是.
①按键的结果为
②按键的结果为
③按键的结果为
④按键的结果为合题意;。

部编数学七年级上册专题01有理数的加减混合运算(解析版)含答案

部编数学七年级上册专题01有理数的加减混合运算(解析版)含答案

2022-2023学年人教版数学七年级上册压轴题专题精选汇编专题01 有理数的加减混合运算一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2022·台湾)算式91123722182218⎛⎫+-- ⎪⎝⎭之值为何?( )A .411B .910C .19D .54【答案】A【完整解答】解:91123722182218⎛⎫+-- ⎪⎝⎭91123722182218=+-+92311722221818⎛⎫⎛⎫=-++ ⎪ ⎪⎝⎭⎝⎭7111=-+411=.故答案为:A.【思路引导】首先根据去括号法则“括号前面是负号,去掉括号和负号,括号内各项都要变号”先去括号,再利用加法的交换律和结合律,将分母相同的加数结合在一起,进而根据有理数的加法法则算出答案.2.(2分)(2021六下·哈尔滨期中)一天早晨的气温为-3℃,中午上升了7°C ,半夜又下降了8℃,则半夜的气温是( )A .-5°CB .-4°C C .4°CD .-16°C【答案】B【完整解答】根据题意可得:-3+7-8=-4故答案为:B 【思路引导】根据题意可得算式:-3+7-8,计算即可。

3.(2分)(2022·雄县模拟)下面算式与11152234-+的值相等的是( )A.111324234⎛⎫⎛⎫--+-⎪ ⎪⎝⎭⎝⎭B.11133234⎛⎫--+⎪⎝⎭C.111227234⎛⎫+-+⎪⎝⎭D.11143234⎛⎫--+⎪⎝⎭【答案】C【完整解答】解:1111115 52527 23423412-+=+-++=;A、1111111117 3243243241 23423423412⎛⎫⎛⎫--+-=++-=+++--=⎪ ⎪⎝⎭⎝⎭;B、1111111111 3333337 23423423412⎛⎫--+=++=++++=⎪⎝⎭;C、1111115 2272277 23423412⎛⎫+-+=+--++=⎪⎝⎭;D、1111111 43438 23423412⎛⎫--+=++++=⎪⎝⎭,故答案为:C【思路引导】利用有理数的加减法的运算方法求解即可。

专题01 有理数及其运算六大题型(解析版)

专题01 有理数及其运算六大题型(解析版)

专题01 有理数及其运算六大题型
相反意义的量
【变式训练】
1.(广东省云浮市罗定第一中学2022~2023学年七年级下学期期末数学试题)中国是最早采用正负数表示相反意义的量,并进行负数运算的国家.若零上20℃记作20+℃,则零下10℃可记作( )A .10-℃
B .0℃
C .10℃
D .20-℃
【答案】A
【分析】根据正负数表示相反意义的量进行作答即可.
【详解】解:由题意可知,零下10℃可记作10-℃,
故选:A .
【点睛】本题考查了正负数表示相反意义的量.解题的关键在于理解题意.
求一个数的相反数、绝对值【变式训练】
科学记数法
【变式训练】
有理数比较大小
【变式训练】
【变式训练】
利用数轴比较大小
A .a b
>B .0a c ->【变式训练】
1.(2023上·广东东莞·七年级统考期末)有理数a ,b 在数轴上的对应点如图所示,则下列式子中错
①a b <;②a b >;③0
b a ->
A.2B.1
故选:A
【点睛】本题主要考查了有理数的乘方运算,绝对值的性质,熟练掌握有理数的乘方运算,绝对值的性质是解题的关键.
二、填空题
三、解答题。

专题01数与式的运算(解析版)-2021年初升高数学无忧衔接(人教A版2019)

专题01数与式的运算(解析版)-2021年初升高数学无忧衔接(人教A版2019)

专题01数与式的运算初中阶段“从分数到分式”,通过观察、分析、类比,找出分式的本质特征,及它们与分数的相同点和不同点,进而归纳得出分式的概念及运算性质,我们已经运用的这些思想方法是高中继续学习的法宝.二次根式是在学习了平方根、立方根等内容的基础上进行的,是对“实数”、“整式”等内容的延伸和补充,对数与式的认识更加完善.二次根式的化简对勾股定理的应用是很好的补充;二次根式的概念、性质、化简与运算是高中学习解三角形、一元二次方程、数列和二次函数的基础.二次根式是初中阶段学习数与式的最后一章,是式的变形的终结章.当两个二次根式的被开方数互为相反数时,可用“夹逼”的方法推出,两个被开方数同时为零.本专题内容蕴涵了许多重要的数学思想方法,如类比的思想(指数幂运算律的推广)、逼近的思想(有理数指数幂逼近无理数指数幂),掌握运算性质,能够区别n n a 与()nn a 的异同. 通过与初中所学的知识进行类比,理解分数指数幂的概念,进而学习指数幂的性质,掌握分数指数幂和根式之间的互化,掌握分数指数幂的运算性质.《初中课程要求》1、认识了实数及相关概念,如有理数、无理数;了解了实数具有顺序性,知道字母表示数的基本代数思想2、初中会比较简单实数的大小,初步接触作差法3、理解了多项式与多项式的乘法,熟悉了平方差、完全平方公式,掌握了不超过三步的数的混合运算4、掌握了平方根、立方根运算;了解了有理式和无理式的概念;了解了整数指数幂的含义 《高中课程要求》 1、高中必修一中常用数集都用了符号表示,同时为数系的扩充打基础,会运算字母代表数的式子2、掌握用作差法、作商法来比较实数大小,体会变形过程中的技巧3、在高中会常常用到立方和、立方差、三数和的平方的公式,两数和、差的立方公式.高中有很多混合运算都超过三步4、必须掌握分子分母有理化的技巧、二次根式的性质根式的大小比较,会把整数指数幂的运算及其性质推广到分数指数幂专题综述课程要求高中必备知识点1:绝对值 绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即:,0,||0,0,,0.a a a a a a >⎧⎪==⎨⎪-<⎩绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离.两个数的差的绝对值的几何意义:b a -表示在数轴上,数a 和数b 之间的距离.高中必备知识点2:乘法公式我们在初中已经学习过了下列一些乘法公式:(1)平方差公式22()()a b a b a b +-=-;(2)完全平方公式222()2a b a ab b ±=±+.我们还可以通过证明得到下列一些乘法公式:(1)立方和公式2233()()a b a ab b a b +-+=+;(2)立方差公式2233()()a b a ab b a b -++=-;(3)三数和平方公式2222()2()a b c a b c ab bc ac ++=+++++;(4)两数和立方公式33223()33a b a a b ab b +=+++;(5)两数差立方公式33223()33a b a a b ab b -=-+-.高中必备知识点3:二次根式一般地,形如(0)a a ≥的代数式叫做二次根式.根号下含有字母、且不能够开得尽方的式子称为无理式.例如232a a b b +++,22a b +等是无理式,而22212x x ++,222x xy y ++,2a 等是有理式.1.分母(子)有理化把分母(子)中的根号化去,叫做分母(子)有理化.为了进行分母(子)有理化,需要引入知识精讲有理化因式的概念.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为有理化因式,例如2与2,3a 与a ,36+与36-,2332-与2332+,等等.一般地,a x 与x ,a x b y +与a x b y -,a x b +与a x b -互为有理化因式.分母有理化的方法是分母和分子都乘以分母的有理化因式,化去分母中的根号的过程;而分子有理化则是分母和分子都乘以分母的有理化因式,化去分子中的根号的过程在二次根式的化简与运算过程中,二次根式的乘法可参照多项式乘法进行,运算中要运用公式(0,0)a b ab a b =≥≥;而对于二次根式的除法,通常先写成分式的形式,然后通过分母有理化进行运算;二次根式的加减法与多项式的加减法类似,应在化简的基础上去括号与合并同类二次根式.2.二次根式2a 的意义2a a ==,0,,0.a a a a ≥⎧⎨-<⎩高中必备知识点4:分式1.分式的意义形如A B 的式子,若B 中含有字母,且0B ≠,则称A B 为分式.当M ≠0时,分式A B具有下列性质: A A M B B M⨯=⨯; A A M B B M÷=÷. 上述性质被称为分式的基本性质.2.繁分式像a b c d+,2m n p m n p+++这样,分子或分母中又含有分式的分式叫做繁分式.高中必备知识点1:绝对值【典型例题】阅读下列材料:典例剖析我们知道x 的几何意义是在数轴上数x 对应的点与原点的距离,即x =0x -,也就是说,x 表示在数轴上数x 与数0对应的点之间的距离;这个结论可以推广为21x x -表示在数轴上数1x 与数2x 对应的点之间的距离;例1解方程|x |=2.因为在数轴上到原点的距离为2的点对应的数为2±,所以方程|x |=2的解为2±=x .例2解不等式|x -1|>2.在数轴上找出|x -1|=2的解(如图),因为在数轴上到1对应的点的距离等于2的点对应的数为-1或3,所以方程|x -1|=2的解为x =-1或x =3,因此不等式|x -1|>2的解集为x <-1或x >3.例3解方程|x -1|+|x +2|=5.由绝对值的几何意义知,该方程就是求在数轴上到1和-2对应的点的距离之和等于5的点对应的x 的值.因为在数轴上1和-2对应的点的距离为3(如图),满足方程的x 对应的点在1的右边或-2的左边.若x 对应的点在1的右边,可得x =2;若x 对应的点在-2的左边,可得x =-3,因此方程|x -1|+|x +2|=5的解是x =2或x =-3.参考阅读材料,解答下列问题:(1)方程|x +2|=3的解为 ;(2)解不等式:|x -2|<6;(3)解不等式:|x -3|+|x +4|≥9;(4)解方程: |x -2|+|x +2|+|x -5|=15.【答案】(1)1x =或x =-5;(2)-4<x <8;(3)x ≥4或x ≤-5;(4)103x =-或203x = . 【解析】(1)由已知可得x+2=3或x+2=-3解得1x =或x =-5.(2)在数轴上找出|x -2|=6的解.∵在数轴上到2对应的点的距离等于6的点对应的数为-4或8, ∴方程|x -2|=6的解为x =-4或x =8,∴不等式|x -2|<6的解集为-4<x <8.(3)在数轴上找出|x -3|+|x +4|=9的解.由绝对值的几何意义知,该方程就是求在数轴上到3和-4对应的点的距离之和等于15的点对应的x 的值. ∵在数轴上3和-4对应的点的距离为7,∴满足方程的x 对应的点在3的右边或-4的左边.若x对应的点在3的右边,可得x=4;若x对应的点在-4的左边,可得x=-5,∴方程|x-3|+|x+4|=9的解是x=4或x=-5,∴不等式|x-3|+|x+4|≥9的解集为x≥4或x≤-5.(4)在数轴上找出|x-2|+|x+2|+|x-5|=15的解.由绝对值的几何意义知,该方程就是求在数轴上到2和-2和5对应的点的距离之和等于9的点对应的x的值.∵在数轴上-2和5对应的点的距离为7,∴满足方程的x对应的点在-2的左边或5的右边.若x对应的点在5的右边,可得203x=;若x对应的点在-2的左边,可得103x=-,∴方程|x-2|+|x+2|+|x-5|=15的解是103x=-或203x=.【变式训练】实数a、b在数轴上所对应的点的位置如图所示:化简√a2+|a−b|−|b−a|.【答案】a-2b【解析】解:由数轴知:a<0,b>0,|a|>|b|,所以b-a>0,a-b<0原式=|a|-(b-a)-(b-a)=-a-b+a-b+a=a-2b【能力提升】已知方程组{x+y=5+a4x−y=10−6a的解x、y的值的符号相同.(1)求a的取值范围;(2)化简:|2a+2|−2|a−3|.【答案】(1) −1<a<3;(2)4a−4.【解析】(1){x+y=5+a①4x−y=10−6a②,①+②得:5x=15−5a,即x=3−a,代入①得:y =2+2a ,根据题意得:xy =(3−a )(2+2a )>0,解得−1<a <3;(2)∵−1<a <3,∴当−1<a <3时,|2a +2|−2|a −3|=2a +2−2(3−a )=2a +2−6+2a =4a −4. 高中必备知识点2:乘法公式【典型例题】(1)计算:203212016(2)(2)2-⎛⎫-++-÷- ⎪⎝⎭(2)化简:2(2)(2)(2)a b a b a b +--- 【答案】(1)3(2)4ab -8b 2【解析】解:(1)原式=4+1+(-8)÷4=5-2=3(2)原式=a 2-4b 2-(a 2-4ab+4b 2)=a 2-4b 2-a 2+4ab -4b 2=4ab -8b 2【变式训练】计算:(1)0221( 3.14)(4)()3π--+--(2)2(3)(2)(2)x x x --+-【答案】(1)8 (2)-6x+13【解析】(1)原式=1+16-9=8;(2)原式=x 2-6x+9-(x 2-4)=x 2-6x+9-x 2+4=-6x+13.【能力提升】已知10x =a ,5x =b ,求:(1)50x 的值;(2)2x 的值;(3)20x 的值.(结果用含a 、b 的代数式表示)【答案】(1)ab;(2)a b ;(3)2a b. 【解析】解:(1)50x =10x ×5x =ab ;(2)2x =xx x 1010a 55b ⎛⎫== ⎪⎝⎭; (3)20x =x x 2x x 1010a 101055b ⎛⎫⨯=⨯= ⎪⎝⎭. 高中必备知识点3:二次根式【典型例题】计算下面各题.(1)2163)1526(-⨯-;(2【答案】(1) 56-;(2)【解析】(1))×3﹣=﹣=﹣(2)x4﹣4x=2x4x2x.【变式训练】时,想起分配律,于是她按分配律完成了下列计算:==她的解法正确吗?若不正确,请给出正确的解答过程.【答案】不正确,见解析【解析】解:不正确,正确解答过程为:═.2【能力提升】先化简,再求值:(2a b a b -+-b a b -)÷a 2b a b-+,其中【答案】2a a b -. 【解析】解:(2a b a b -+-b a b -)÷a 2b a b-+ =()()()()()2a b a b b a b a b a b a b a 2b ---++⋅+-- =2222a 3ab b ab b 1a b a 2b-+--⋅-- =()2a a 2b 1a ba 2b -⋅-- =2a a b -, 当+3,-3时,原式22. 高中必备知识点4:分式【典型例题】先化简,再求值22122()121x x x x x x x x +++-÷--+,其中x 满足x 2+x ﹣1=0. 【答案】21x x-,1. 【解析】解:原式=()()()221-211121x x x x x x x x---=-+ 210x x +﹣=,21x x ∴=﹣,∴原式=1.【变式训练】 化简:22442x xy y x y -+-÷(4x 2-y 2) 【答案】yx +21 【解析】 22442x xy y x y-+-÷(4x 2-y 2) =2(2)12(2)(2)x y x y x y x y -⨯-+- =yx +21. 【能力提升】已知:112a b-=,则ab b a b ab a 7222+---的值等于多少? 【答案】43-. 【解析】解:∵112a b-=, ∴a -b=-2ab ,则2ab 2ab 44ab 7ab 3--=--+1.下列运算正确的是( ) A .2xy xy y -=-x x y B .3710+=C .3x 3﹣5x 3=﹣2D .8x 3÷4x =2x 3 【答案】A对点精练解:A ,2()xy xy x xy y y x y x y==--- ,正确.B ,不正确.C ,3x 3﹣5x 3=﹣2x 3,不正确.D ,8x 3÷4x =2x 2,不正确.故选:A .2.下列计算结果正确的是( )A .321222x x x +=---B .235()x x =C .5()xy -÷3()xy -=22x y -D .22352x y xy xy -=- 【答案】A ∵321222x x x +=---, ∴选项A 计算正确;∵236()x x =,∴选项B 计算错误;∵5()xy -÷3()xy -=22x y ,∴选项C 计算错误;∵223,5x y xy -不是同类项,无法计算,∴选项D 计算错误;故选A3.若式子1x x +有意义,则下列说法正确的是( ) A .1x >-且0x ≠B .1x >-C .1x ≠-D .0x ≠ 【答案】C解:由题意可知:10x +≠∴1x ≠-故选:C4.计算3311a a a ---的结果是( ) A .3 B .0 C .1a a - D .11a - 【答案】A 解:3311a a a --- =331a a -- =3(1)1a a -- =3.故选A .5.若||4=a ,||2b ,且+a b 的绝对值与相反数相等,则-a b 的值是( )A .2-B .6-C .2-或6-D .2或6【答案】C解:∵||4=a ,||2b ,∴4a =±,2b =±,∵+a b 的绝对值与相反数相等,∴+a b <0,∴4a =-,2b =±, 426a b -=--=-或422a b -=-+=-,故选:C .6.设有理数a 、b 、c 满足(0)a b c ac >><,且c b a <<,则222a b b c a c xx x ++++++﹣﹣的最小值是( )A .2a c -B .22a b c ++C .22a b c ++D .22a b c +- 【答案】C解:∵0ac <,∴a ,c 异号,∵a b c >>,∴0a >,0c <, 又∵c b a <<,∴0a b c c b a -<-<<<-<<, 又∵222a b b c a c xx x ++++++﹣﹣表示到2a b +,2b c +,2a c +-三点的距离的和, 当x 在2b c +时距离最小, 即222a b b c a c x x x ++++++﹣﹣最小,最小值是2a b +与2a c +-之间的距离,即22abc ++. 故选:C .7.如果a ,b ,c 是非零有理数,那么a b c abc a b c abc +++的所有可能的值为( ). A .4-,2-,0,2,4B .4-,2-,2,4C .0D .4-,0,4【答案】D①a 、b 、c 均是正数,原式=1111+++=4;②a 、b 、c 均是负数,原式=1111----=4-;③a 、b 、c 中有一个正数,两个负数,原式=1111--+=0;④a 、b 、c 中有两个正数,一个负数,原式=1111+--=0;故选D .8.如图是一个按某种规律排列的数阵:根据数阵排列的规律,第n (n 是整数,且n≥4)行从左向右数第(n -3)个数是(用含n 的代数式表示)( ).A B C D【答案】C由图中规律知,前(n -1)行的数据个数为2+4+6+…+2(n -1)=n (n -1),∴第n (n 是整数,且n≥4)行从左向右数第(n -3)个数的被开方数是:n (n -1)+n -3=n 2-3,∴第n (n 是整数,且n≥4)行从左向右数第(n -3故选:C .9最接近的整数是( )A .3B .4C .5D .6 【答案】B解:原式3,∵49<54<64,∴78<<,∵27.556.25=, ∴7547.5,7,3-最接近7-3即4,故选:B .10.设a b 21b a-的值为( )A 1+B 1+C 1D 1 【答案】B∴a ,∴b ,∴21b a -, 故选:B .11.若113-=a b ,则分式2322a ab b a ab b+-=--______﹒ 【答案】35解:113-=a b 两边都乘ab ,得: 3b a ab -=①2322a ab b a ab b+--- ()232a b ab a b ab-+=-- ()232a b ab a b ab-+=--② 将①代入②得:6333==3255ab ab ab ab ab ab -+---- 故答案为:35﹒12.若分式222x x x ---的值为零,则x 的值为_______. 【答案】1- 解:∵分式222x x x ---的值为零, ∴220x x --=且20x -≠,解方程得,11x =-,22x =; 解不等式得,2x ≠,∴1x =-故答案为:1-.13.已知整数a 满足13a ,则分式2214a a a ⎛⎫-⋅ ⎪-⎝⎭的值为________. 【答案】15 2214a a a ⎛⎫-⋅ ⎪-⎝⎭ =()()222a a a a a -⋅+- =12a +, 由题意0a ≠且240a -≠,所以0a ≠且2a ≠且2a ≠-,又∵整数a 满足13a, ∴3a =,当3a =时,原式=11325=+, 故答案为:15.14.计算2的结果等于_________.【答案】14-解:2222=-⨯122=-14=-故答案为:14-15.计算21)+=__.【答案】3解:原式21=+-3=.故答案为:3.16.化简:23a b=___________【答案】-解:要使该二次根式有意义,则有10 9ab->22033ab a b a b∴∴====-<故答案为:-17____.1解:原式===1=.1.18.若有理数x ,y ,z 满足(|x +1|+|x ﹣2|)(|y ﹣1|+|y ﹣3|)(|z ﹣3|+|z +3|)=36,则x +2y +3z 的最小值是_____.【答案】﹣8解:当x <﹣1时,|x +1|+|x ﹣2|=﹣(x +1)﹣(x ﹣2)=﹣2x +1>3,当﹣1≤x ≤2时,|x +1|+|x ﹣2|=x +1﹣(x ﹣2)=3,当x >2时,|x +1|+|x ﹣2|=x +1+x ﹣2=2x ﹣1>3,所以可知|x +1|+|x ﹣2|≥3,同理可得:|y ﹣1|+|y ﹣3|≥2,|z ﹣3|+|z +3|≥6,所以(|x +1|+|x ﹣2|)(|y ﹣1|+|y ﹣3|)(|z ﹣3|+|z +3|)≥3×2×6=36,所以|x +1|+|x ﹣2|=3,|y ﹣1|+|y ﹣3|=2,|z ﹣3|+|z +3|=6,所以﹣1≤x ≤2,1≤y ≤3,﹣3≤z ≤3,∴x +2y +3z 的最大值为:2+2×3+3×3=17,x +2y +3z 的最小值为:﹣1+2×1+3×(﹣3)=﹣8.故答案为:﹣8.19.已知|2||1|9x x ++-=,则x y +的最小值为__.【答案】3-.|2||1|9x x ++-=|2||1||1||5|9x x y y ∴++-+++-=,|2||1|x x ++-可理解为在数轴上,数x 的对应的点到2-和1两点的距离之和;|1||5|y y ++-可理解为在数轴上,数y 的对应的点到1-和5两点的距离之和,∴当21x -,|2||1|x x ++-的最小值为3;当15y -时,|1||5|y y ++-的最小值为6, x 的范围为21x -,y 的范围为15y -,当2x =-,1y =-时,x y +的值最小,最小值为3-.故答案为:3-.20.已知式子|x+1|+|x ﹣2|+|y+3|+|y ﹣4|=10,则x+y 的最小值是_____.【答案】4- 解:∴123410x x y y ++-+++-=,∴12x -≤≤,34y -≤≤,∴x y +的最小值为4-,故答案为:4-.21.(1)计算:1031(2)|2|(2)2-⎛⎫-+--- ⎪⎝⎭; (2)先化简,再求值:221224x x x x ⎛⎫+÷ ⎪+--⎝⎭,其中1x =-.【答案】(1)9;(2)24x +;5解:(1)原式1228=++9=-(2)原式()22422x x x x ⎛⎫=+- ⎪+-⎝⎭, (2)2(2)x x x =-++24x =+.当1x =-时,原式2(1)4=-+5=.221.【答案】3解:原式3= 33323=23.已知a ,b ,c 满足2|3|(5)0a c +-=,请回答下列问题:(1)直接写出a ,b ,c 的值.a =_______,b =_______,c =_______.并在数轴上表示.(2)a ,b ,c 所对应的点分别为A ,B ,C ,若点A 以每秒1个单位长度向右运动,点C 以每秒3个单位长度向左运动;①运动1.5秒后,A ,C 两点相距几个单位长度.②几秒后,A ,C 两点之间的距离为4个单位长度.【答案】(1)-3,1,5,数轴见解析;(2)①2;②1秒或3秒解:(1)∵2|3|(5)0a c +-=,∴a +3=0,b -1=0,c -5=0,∴a =-3,b =1,c =5,数轴表示如下:(2)①由题意可得:1.5秒后,点A 表示的数为:-3+1.5×1=-1.5,点C 表示的数为:5-3×1.5=0.5,0.5-(-1.5)=2,∴A ,C 两点相距2个单位长度;②设t 秒后,A ,C 两点之间的距离为4个单位长度,若点A 在点C 左侧,则-3+t +4=5-3t ,解得:t =1;若点A 在点C 右侧,则-3+t =5-3t +4,解得:t =3,综上:1秒或3秒后,A ,C 两点之间的距离为4个单位长度.24.同学们都知道,|4(2)|--表示4与2-的差的绝对值,实际上也可理解为4与2-两数在数轴上所对应的两点之间的距离:问理|3|x -也可理解为x 与3两数在数轴上所对应的两点之问的距离,试探索: (1)|4(2)|--=_______.(2)找出所有符合条件的整数x ,使|4||2|6x x -++=成立,并说明理由(3)由以上探索猜想,对于任何有理数x ,|3||6|x x -+-是否有最小值?如果有,写出最小值;如果没有,说明理由.【答案】(1)6;(2)-2,-1,0,1,2,3,4,理由见解析;(3)有最小值为3解:(1)原式=|4+2|=6,故答案为:6;(2)令x -4=0或x +2=0时,则x =4或x =-2,当x <-2时,∴-(x -4)-(x +2)=6,∴-x +4-x -2=6,∴x =-2(范围内不成立);当-2<x <4时,∴-(x -4)+(x +2)=6,∴-x +4+x +2=6,∴6=6,∴x =-1,0,1,2,3;当x >4时,∴(x -4)+(x +2)=6,∴x -4+x +2=6,∴x =4(范围内不成立),∴综上所述,符合条件的整数x 有:-2,-1,0,1,2,3,4;(3)|x -3|+|x -6|表示数轴上到3和6的距离之和,∴当x 在3和6之间时(包含3和6),|x -3|+|x -6|有最小值3.25.(1)已知250x x -=,求代数式2210x x -(2)化简:226993x x x x x ++---.【答案】(1(2)33x -.解:(1)由已知得:25x x -=,∴原式()225x x =-==(2)原式2(3)(3)(3)3+=-+--x x x x x 333+=---x x x x 33x =-.26.先化简,再求值:222111x x x x x x --⎛⎫-+÷ ⎪++⎝⎭,其中x =【答案】1x x-解:222111x x x x x x --⎛⎫-+÷ ⎪++⎝⎭ ()2122111x x x x x x -+-+=⨯+- ()()21111x x x x x -+=⨯+- 1x x-=.当x =55==. 27.如图,甲、乙两张卡片上均有一个系数为整数的多项式,其中乙中二次项系数因为被污染看不清楚.(1)嘉嘉认为污染的数为3-,计算“A B +”的结果;(2)若3a =+“A B -”的结果是整数,请你求出满足题意的被污染的这个数.【答案】(1)2223a a --+;(2)0.解:(1)()2246323A B a a a a +=++-+--2246323a a a a =+-+--2223a a =--+;(2)设污染的数字为m ,∴()()224623A B a a ma a -+-=+-- 224623a a ma a =+--+-2269a a ma =+--()223a ma =--∵3a =+∴()()223333a -=+=是整数 ∵A B -的结果是整数∴2ma 是整数∵(22312a =+=+m 是整数 ∴0m =即存在整数0满足题意.28.(1)计算:12022011|3|tan 30(2021)2-⎛⎫-+--+ ⎪⎝⎭︒π(2)先化简再求值:2344111x x x x x ++⎛⎫-+÷ ⎪++⎝⎭,其中2x =. 【答案】(1)2;(2)22x x -+,1 解:(1)12022011|3|tan 30(2021)2-⎛⎫-+--+ ⎪⎝⎭︒π13212=-++--+ 131212=-++--+2=(2)2344111x x x x x ++⎛⎫-+÷ ⎪++⎝⎭ 23(1)(1)111(2)x x x x x x +-+⎡⎤=-⋅⎢⎥+++⎣⎦=223(1)11(2)x x x x --+=⋅++ 2(2+)(2)11(2)x x x x x -+=⋅++ 22x x -=+,当2x =时,原式1==.29.已知2210a a +-=,求代数式242a a a a⎛⎫--÷ ⎪⎝⎭的值. 【答案】22a a +,1 解:242a a a a⎛⎫--÷ ⎪⎝⎭ 2242a a a a -=⨯- 2(2)(2)2a a a a a +-=⨯-22a a =+.∵2210a a +-=,∴221a a +=.∴原式221a a =+=.30.计算:(1)()()()345222a a a ⋅÷- (2)()3242(3)2a a a -⋅+-(3)34()()x y y x -⋅-(4)2201901(1)( 3.14)3π-⎛⎫-+-- ⎪⎝⎭ 【答案】(1)4a -;(2)6a ;(3)7()x y -;(4)9-.解:(1)()()()345222a a a ⋅÷-, = ()6810a a a⋅÷-,=6810a +--,=4a -; (2)()3242(3)2a a a -⋅+-,=24698a a a ⋅-,=6698a a -,=6a ; (3)34()()x y y x -⋅-,= 34()()x y x y -⋅-,(4)2 201901 (1)( 3.14)3π-⎛⎫-+-- ⎪⎝⎭,=119 -+-,=9-.。

专题01 数字规律(解析版)

专题01  数字规律(解析版)

专题01 数字规律1.如图所示的运算程序中,若开始输入的x 值为96,我们发现第一次输出的结果为48,第二次输出的结果为24,¼,则第2022次输出的结果为.【解答】解:第一次输出结果为196482´=,第二次输出结果为148242´=,第三次输出结果为124122´=,第四次输出结果为11262´=,第五次输出结果为1632´=,第六次输出结果为336+=,第七次输出结果为1632´=,¼,\从第4次开始,以6,3不断循环出现,(20223)21009......1-¸=Q ,依此类推,第2022次输出结果为6,故答案为:6.2.观察一列数:123456,,,,,2510172637---根据规律,则第n 个数是.【解答】解:Q 11211(1)211+=-+,21222(1)521+-=-+,31233(1)1031+=-+,¼,\第n 个数为:12(1)1n nn +-+,故答案为:12(1)1n nn +-+.3.例.求23200812222++++¼+的值.解:可设23200812222S =++++¼+,则2342009222222S =++++¼+因此2009221S S -=-,所以23200820091222221++++¼+=-.请仿照以上过程计算出:23202213333++++¼+= .【解答】解:设23202213333S =++++¼+,则23202333333S =+++¼+,2023331S S -=-,即2023231S =-,所以2023312S -=,即202323201831133332-++++¼+=.故答案为:2023312-.4.1261年,我国南宋数学家杨辉用图中的三角形解释二项和的乘方规律,我们把这个三角形称为“杨辉三角”,请观察图中的数字排列规律,求2a b c +-的值为.【解答】解:由图可得,156a =+=,51015b =+=,101020c =+=,262152016a b c \+-=+´-=,故答案为:16.5.观察下列各式:111(11323=-´,1111()35235=-´,¼,根据观察计算:1111133557(21)(21)n n +++¼+=´´´-+ .(n 为正整数)【解答】解:1111133557(21)(21)n n +++¼+´´´-+11111111111(1)()()(2323525722121n n =´-+´-+´-+¼+--+11111111(1)2335572121n n =´-+-+-+¼+--+11(1221n =´-+12221n n =´+21nn =+,故答案为:21nn +.6.观察下列等式:①3211=;②332123+=;③33321236++=;④33332123410+++=;根据此规律,33331237+++¼+的结果为 .【解答】解:Q ①3211=;②3322123(12)+==+;③333221236(123)++==++;④333322123410(1234)+++==+++;¼3333221237(1234567)28784\+++¼+=++++++==.故答案为:784.7.为了保密,许多情况下都要采用密码进行交流,这时就要有破译密码的“钥匙”.英语字母表中字母顺序是按以下顺序排列的:a b c d e f g h i j k l m n o p q r s t u v w x y z ,如果规定a 又接在z 的后面,使26个字母排成一个圈.代数式“2x +”代表把一个字母换成字母圈中从它开始逆时针移动2位的字母,例如:密码“k ”表示“i ”,翻译成汉语就是“我”,又如密码“rgp ”表示“pen ”,翻译成汉语就是“钢笔”,此时代数式“2x +”就是破译此密码的“钥匙”,如果密码“F xj x pqrabkq ”的钥匙是“3x -”,则此密码翻译成汉语就是.【解答】解:Q 密码的钥匙是“3x -”,\密码“F xj x pqrabkq ”应表示“I am a student ”,翻译成汉语就是:我是一位学生,故答案为:我是一位学生.8.如图是一个运算程序的示意图,若开始输入x 的值为50,我们发现第1次输出的结果为25,第2次输出的结果为32,¼,则第2022次输出的结果为.【解答】解:由设计的程序知,依次输出的结果是25,32,16,8,4,2,1,8,4,2,1¼,发现从第4个数开始,以8,4,2,1循环出现,则202232019-=,201945043¸=¼¼,故第2022次输出的结果是2.故答案为:2.9.若x 是不等于1的数.我们把11x -称为x 的差倒数.如2的差倒数是1112=--,1-的差倒数为111(1)2=--.现已知113x =-,2x 是1x 的差倒数,3x 是2x 的差倒数,4x 是3x 的差倒数,¼,以此类推,则2021x =.【解答】解:根据差倒数的定义可得出:113x =-,213141()3x ==--,314314x ==-,411143x ==--,513141()3x ==--,¼由此发现该组数每3个一循环.202136732¸=¼¼Q ,2021234x x \==.故答案为:34.10.观察下列多项式:23a b-,246a b +,389a b -,41612a b +,¼按此规律,则第n 个多项式是.【解答】解:Q 23a b-,246a b +,389a b -,41612a b +,¼\第n 个多项式为:2()3n na b n +-.故答案为:2()3n na b n+-.11.一个叫巴尔末的中学教师成功地从光谱数据95,1612,2521,3632,¼中得到巴尔末公式,从而打开了光谱奥秘的大门,请你按照这种规律,写出第6个数据是 .【解答】解:2293534=-,221641244=-,222552154=-,223663264=-,¼,\第n 个光谱数据可表示为22(2)(2)4n n ++-,\第6个数据是2222(62)86464(62)48464460+===+---,故答案为:6460.12.已知133=,239=,3327=,4381=,53243=,63729=,¼推测20223的个位数字是.【解答】解:133=Q ,239=,3327=,4381=,53243=,63729=,¼,3n \的个位数字按3,9,7,1四次一循环的规律出现,202245052¸=¼Q ,20223\的个位数字是9,故答案为:9.13.观察下列等式:①11112323-=´;②11114545-=´;③11116767-=´.计算:111111122334452019202020202021++++¼++´´´´´´的结果为 .【解答】解:111111122334452019202020202021++++¼++´´´´´´111111111111...22334452019202020202021=-+-+-+-++-+-112021=-20202021=,故答案为:20202021.14.杨辉三角形,又称贾宪三角形,帕斯卡三角形,是二项式系数在三角形中的一种几何排列.在我国南宋数学家杨超所著的《详解九章算术》(1261年)一书中用如图的三角形解释二项和的乘方规律,观察下列各式及其展开式:请你猜想9()a b +展开式的第三项的系数是.【解答】解:依据规律可得到:9()a n +的展开式的系数是杨辉三角第10行的数,第3行第三个数为1,第4行第三个数为312=+,第5行第三个数为6123=++,¼第10行第三个数为:8(81)1238362++++¼+==.故答案为:36.15.按一定规律排列的单项式:a ,2a -,3a ,4a -,5a ,6a -¼则第2021个单项式是.【解答】解:Q 一列单项式为:a ,2a -,3a ,4a -,5a ,6a -,¼,\第n 个单项式为1(1)n n a +-×,当2021n =时,这个单项式是2021120212021(1)a a +-×=,故答案为:2021a .16.将自然数按以下规律排列:表中数1在第一行,第一列,与有序数对(1,1)对应;数2在第二行,第一列,与有序数对(2,1)对应;数8与(3,2)对应;数9与(3,1)对应;数10与(4,1)对应;根据这一规律,数2021对应的有序数对为.【解答】解:设第n 行第一个数为(n a n 为正整数),观察发现规律:11a =,2393a ==,25255a ==,¼,221(21)n a n -\=-.Q 当2145n -=时,245452025a ==,向右依次减小,\数2021对应的有序数对为(45,4).故答案为:(45,4).17.按一定规律排列的单项式:a ,2a -,4a ,8a -,16a ,32a -,64a ,¼,第2021个单项式是.【解答】解:11(2)a a -=-Q ,212(2)a a --=-,314(2)a a -=-,418(2)a a --=-,5116(2)a a -=-,6132(2)a a --=-,¼由上规律可知,第n 个单项式为:1(2)n a --,2021\个单项式是202112020(2)2a a --=,故答案为20202a .18.观察以下等式:第1个等式:222123415(1311)´´´+==+´+,第2个等式:2222345111(2321)´´´+==+´+,第3个等式:2223456119(3331)´´´+==+´+,第4个等式:2224567129(4341)´´´+==+´+,¼¼按照以上规律,写出第n 个等式:.(用含n 的代数式表示)【解答】解:第1个等式:222123415(1311)´´´+==+´+,第2个等式:2222345111(2321)´´´+==+´+,第3个等式:2223456119(3331)´´´+==+´+,第4个等式:2224567129(4341)´´´+==+´+,¼¼第n 个等式:22(1)(2)(3)1(31)n n n n n n ++++=++;故答案为:22(1)(2)(3)1(31)n n n n n n ++++=++.19.黑色圆点按如图所示的规律进行排列,则各图中黑色圆点的个数形成一列数据,将其中所有能被3整除的数按从小到大的顺序重新排列成一列新数据,则新数据中的第40个数是.【解答】解:第1个图形中的黑色圆点的个数为:1,第2个图形中的黑色圆点的个数为:(12)232+´=,第3个图形中的黑色圆点的个数为:(13)362+´=,第4个图形中的黑色圆点的个数为:(14)4102+´=,¼第n个图形中的黑色圆点的个数为(1)2n n+,则这列数为1,3,6,10,15,21,28,36,45,55,66,78,91,¼,其中每3个数中,都有2个能被3整除,40220¸=,20360´=,则第40个被3整除的数为原数列中第60个数,即60(601)18302´+=,故答案为:1830.20.从大拇指®食指®中指®无名指®小指®无名指®中指®食指®大拇指®食指¼的顺序,依次数正整数1,2,3,4,5,¼以此类推,当第3次数到中指时,这个数是,当数到2022时,在指上.【解答】解:第一次数到中指时是3,第二次时是7341=+´,第三次是11342=+´,Q从1开始,每8个数为一个循环组依次循环,202282526\¸=¼¼,即数到2022时,在无名指上.故答案为:11;无名.。

专题01 Unit 1-2(解析版)

专题01 Unit 1-2(解析版)

专题01 Unit 1-2(满分:100分,考试时间:45分钟)一、单项选择(每小题2分,共20分)1. —Do you know the capital of_______?—Of course. It’s Tokyo. It’s a beautiful city in Asia.A.JapanB. FranceC. the UKD. the USA【答案】A【解析】本题需根据答句It’s Tokyo,东京是日本的首都,故本题选A。

2. —______is the library from here?—It is about two miles away.A.How longB. How farC. How manyD. How much【答案】B【解析】本题易错,How long 是对时间提问,对距离提问用How far,故本题选B。

3. Lily has a lot of friends because she always_________her things_______others.A. shares; withB. shares; toC. helps; withD. helps; to【答案】A【解析】本题考查的是固定结构share sth with sb 和某人分享某物的用法,故本题选A。

4. There are_____books on the desk and the________book is about the history of England.A.five; fiveB. fifth; fifthC. five; fifthD. fifth; five【答案】C【解析】本题考查基数词和序数词的用法,句意识桌上有五本书,数字几时基数词,第五本是序数词,故本题选C。

5. Jim’s mother was ill__________for three days.A.on the bedB. in bedC. in the bedD. on bed【答案】B【解析】本题易错,卧病在床应该用in不用on,故本题选B。

数列大题基础练-高考数学重点专题冲刺演练(原卷版)

数列大题基础练-高考数学重点专题冲刺演练(原卷版)

【一专三练】专题01数列大题基础练-新高考数学复习分层训练(新高考通用)1.(2022·浙江·模拟预测)已知数列{}n a 满足,12(1)nn n a a +=+⋅-.(1)若11a =,数列{}2n a 的通项公式;(2)若数列{}n a 为等比数列,求1a .2.(2022·海南省直辖县级单位·校联考一模)等差数列{}n a 的首项11a =,且满足2512a a +=,数列{}n b 满足2n a n b =.(1)求数列{}n a 的通项公式;(2)设数列{}n b 的前n 项和是n T ,求n T .3.(2023·黑龙江大庆·统考一模)设{}n a 是公差不为0的等差数列,12a =,3a 是1a ,11a 的等比中项.(1)求{}n a 的通项公式;(2)设13n n n b a a +=,求数列{}n b 的前n 项和n S .4.(2023·广东惠州·统考模拟预测)数列{}n a 中,12a =,121n n a a +=-.(1)求证:数列{}1n a -是等比数列;(2)若n n b a n =+,求数列{}n b 的前n 项和n T .5.(2023·广东江门·统考一模)已知数列{}n a (N n +∈)满足11a =,133n n n a a n ++=,且n n a b n =.(1)求数列{}n b 是通项公式;(2)求数列{}n a 的前n 项和n S .6.(2023·江苏·统考一模)已知等比数列{}n a 的各项均为正数,且23439a a a ++=,54323a a a =+.(1)求{}n a 的通项公式;(2)数列{}n b 满足n n n b a =,求{}n b 的前n 项和n T .7.(2023·重庆·统考二模)已知数列{}n a 的前n 项和为n S ,且满足()115n n na n a +-+=,且15a ≠-.(1)求证:数列5n a n +⎧⎫⎨⎬⎩⎭为常数列,并求{}n a 的通项公式;(2)若使不等式20n S >成立的最小整数为7,且1Z a ∈,求1a 和n S 的最小值.8.(2023·海南海口·校考模拟预测)已知数列{}n a 的前n 项和为n S ,14a =,12n n a n S n +=.(1)求数列{}n a 的通项公式;(2)记12n n na c =-,数列{}n c 的前n 项和为n T ,求12111n T T T ++⋅⋅⋅+的值.9.(2023·山东青岛·统考一模)已知等差数列{}n a 的前n 项和为n S ,公差0d ≠,2S ,4S ,54S +成等差数列,2a ,4a ,8a 成等比数列.(1)求n S ;(2)记数列{}n b 的前n 项和为n T ,22n n n n b T S +-=,证明数列1n n b S ⎧⎫-⎨⎬⎩⎭为等比数列,并求{}n b 的通项公式.10.(2023·山东济南·一模)已知数列{}n a 满足111,(1)1n n a na n a +=-+=.(1)若数列{}n b 满足1n n a b n+=,证明:{}n b 是常数数列;(2)若数列{}n c 满足πsin 22n a n n c a ⎛⎫=+ ⎪⎝⎭,求{}n c 的前2n 项和2n S .11.(2022·辽宁鞍山·统考一模)已知等差数列{}n a 满足首项为3331log 15log 10log 42-+的值,且3718a a +=.(1)求数列{}n a 的通项公式;(2)设11n n n b a a +=,求数列{}n b 的前n 项和n T .12.(2023·广东·统考一模)已知各项都是正数的数列{}n a ,前n 项和n S 满足()2*2n n n a S a n =-∈N .(1)求数列{}n a 的通项公式.(2)记n P 是数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和,n Q 是数列121n a -⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭的前n 项和.当2n ≥时,试比较n P 与n Q 的大小.13.(2022·吉林长春·东北师大附中校考模拟预测)从①12n a S n n ⎛⎫=+ ⎪⎝⎭;②23S a =,412a a a =;③12a =,4a 是2a ,8a 的等比中项这三个条件中任选一个,补充到下面横线上,并解答.已知等差数列{}n a 的前n 项和为n S ,公差d 不等于零,______.(1)求数列{}n a 的通项公式;(2)若122n n n b S S +=-,数列{}n b 的前n 项和为n W ,求n W .14.(2022·广东珠海·珠海市第三中学统考二模)已知数列{}n a ,{}n b 的前n 项和分别为n S ,n T ,1221n n n a b n -+=+-,221n n n T S n -=--.(1)求11,a b 及数列{}n a ,{}n b 的通项公式;(2)设()*21N 2n n n a n k c k b n k =-⎧=∈⎨=⎩,,,求数列{}n c 的前2n 项和2n P .15.(2022·云南大理·统考模拟预测)已知数列{}n a 的前n 项和为n S ,且满足1121,1n n S a a n+==-.(1)求数列{}n a 的通项公式;(2)若数列2,,23,,n n n C n n ⎧=⎨+⎩为奇数为偶数,求数列{}n C 的前2n 项和2n T .16.(2022·湖南永州·统考一模)已知数列{}{},n n a b 满足:111a b ==,且210n n n n a b a b ++-=.(1)若数列{}n a 为等比数列,公比为121,2q a a -=,求{}n b 的通项公式;(2)若数列{}n a 为等差数列,11n n a +-=,求{}n b 的前n 项和n T .17.(2022·广东韶关·统考一模)已知数列{}n a 的首项145a =,且满足143n n n a a a +=+,设11n nb a =-.(1)求证:数列{}n b 为等比数列;(2)若1231111140na a a a ++++> ,求满足条件的最小正整数n .18.(2022·河北·模拟预测)已知数列{}n a 的前n 项和为n S ,13a =,且1123n n n S S a +++=-.(1)求数列{}n a 的通项公式;(2)①3log n n n b a a =;②3321log log n n n b a a +=⋅;③3log n n n b a a =-.从上面三个条件中任选一个,求数列{}n b 的前n 项和n T .注:如果选择多个条件分别解答,按第一个解答计分.19.(2022·广东广州·统考一模)已知公差不为0的等差数列{}n a 中,11a =,4a 是2a 和8a 的等比中项.(1)求数列{}n a 的通项公式:(2)保持数列{}n a 中各项先后顺序不变,在k a 与1(1,2,)k a k += 之间插入2k ,使它们和原数列的项构成一个新的数列{}n b ,记{}n b 的前n 项和为n T ,求20T 的值.20.(2023·湖北·荆州中学校联考二模)已知数列{}n a ,若_________________.(1)求数列{}n a 的通项公式;(2)求数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和n T .从下列三个条件中任选一个补充在上面的横线上,然后对题目进行求解.①2123n a a a a n ++++= ;②11a =,47a =,()*112,2n n n a a a n n -+=+∈N ≥;③11a =,点(),n A n a ,()11,n B n a ++在斜率是2的直线上.21.(2023·江苏南通·二模)已知正项数列{}n a 的前n 项和为,且11a =,2218n n S S n +-=,*N n ∈.(1)求n S ;(2)在数列{}n a 的每相邻两项1k k a a +,之间依次插入12k a a a ⋯,,,,得到数列{}1121231234n b a a a a a a a a a a ⋯⋯:,,,,,,,,,,,求{}n b 的前100项和.22.(2023·江苏南通·海安高级中学校考一模)已知数列{}n a 满足()1122n n n a a a n -+=+≥,且12342,18a a a a =++=(1)求{}n a 的通项公式;(2)设1000n a n b =-,求数列{}n b 的前15项和15T (用具体数值作答).23.(2023·安徽·模拟预测)已知{}n a 为等差数列,{}n b 是公比为2的等比数列,且223344a b a b b a -=-=-.(1)证明:11a b =;(2)求集合{}1,1500k m k b a a m =+≤≤中元素个数.24.(2023·河北衡水·河北衡水中学校考三模)已知{}n a 为等差数列,1154,115n n a n a a n+-==+.(1)求{}n a 的通项公式;(2)若()()1,414n n n n b T a a =++为{}n b 的前n 项和,求n T .25.(2023·广东广州·统考二模)设数列{}n a 的前n 项和为n S ,且()22*n n S a n =-∈N .(1)求{}n a 的通项公式;(2)设2211log log n n n b a a +=⋅,记{}n b 的前n 项和为n T ,证明:1n T <.26.(2023·江苏泰州·统考一模)在①124,,S S S 成等比数列,②4222a a =+,③8472S S S =+-这三个条件中任选两个,补充在下面问题中,并完成解答.已知数列{}n a 是公差不为0的等差数列,其前n 项和为n S ,且满足__________,__________.(1)求{}n a 的通项公式;(2)求12233411111n n a a a a a a a a +++++ .注:如果选择多个方案分别解答,按第一个方案计分.27.(2023·黑龙江·黑龙江实验中学校考一模)已知数列{}n a ,前n 项和为n S ,且满足112n n n a a a +-=-,2n ≥,*N n ∈,1514a a +=,770S =,等比数列{}n b 中,1212b b +=,且12,6b b +,3b 成等差数列.(1)求数列{}n a 和{}n b 的通项公式;(2)记n c 为区间(]()*,N n n a b n ∈中的整数个数,求数列{}n c 的前n 项和n P .28.(2023·吉林·统考二模)已知数列{}n a 的前n 项和为n S ,13a =,数列n S n ⎧⎫⎨⎬⎩⎭是以2为公差的等差数列.(1)求{}n a 的通项公式;(2)设()()112n n n n n a b a a +-+=,求数列{}n b 的前2n 项和2n T .29.(2023·山西·校联考模拟预测)已知数列{}n a 满足0n a >,22112n n n n a a a a ++=+,且13a ,23a +,3a 成等差数列.(1)求{}n a 的通项公式;(2)若12,log ,n n n a n b a n ⎧⎪=⎨⎪⎩为奇数为偶数,求数列{}n b 的前2n 项和2n T .30.(2023·黑龙江哈尔滨·哈尔滨三中校考二模)已知数列{}n a 满足:15a =,134n n a a +=-,设2n n b a =-,*N n ∈.(1)求数列{}n b 的通项公式;(2)设3132312log log log n n nb b b T b b b =++⋅⋅⋅+,()*N n ∈,求证:34n T <.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二篇 数列专题01 等差数列的基本量的计算常见考点考点一 等差数列的基本量的计算典例1.记等差数列{}n a 的前n 项和为n S ,设312S =,且1232,,1a a a +成等比数列. 求 (1) a 1和d .(2)求数列{}n a 的前n 项和n S .【答案】(1)11a =,3d =,或18a =,4d =-,(2)23122n S n n =-或2210n S n n =-+【解析】 【分析】(1)由1232,,1a a a +成等比数列,可得22132(1)a a a =+,结合312S =,列出关于1,a d 的方程组,可求出a 1和d .(2)直接利用等差数列的前n 项和公式求解即可 【详解】解:(1)设等差数列{}n a 的公差为d ,因为1232,,1a a a +成等比数列,所以22132(1)a a a =+,即2111()2(21)a d a a d +=++,因为312S =,所以1323122a d ⨯+=,即14a d +=, 所以162(4)(421)d d d =--++,8(4)(5)d d =-+,解得3d =或4d =-, 当3d =时,11a =,当4d =-时,18a =, 所以11a =,3d =,或18a =,4d =-, (2)当11a =,3d =时,2(1)313222n n n S n n n -=+⨯=-, 当18a =,4d =-时,2(1)8(4)2102n n n S n n n -=+⨯-=-+ 【点睛】此题考查了等差数列的通项公式和前n 项和公式,考查计算能力,属于基础题 变式1-1.已知{}n a 是等差数列,其中131a =,公差8d =-, (1)求{}n a 的通项公式. (2)求数列{}n a 前n 项和.【答案】(1)398n a n =-;(2)2354n S n n =-.【解析】 【分析】(1)由等差数列的通项公式可以直接求出; (2)由等差数列的前n 项和公式可以直接求出. 【详解】 (1){}n a 是等差数列,且131a =,8d =-,3118398na n n ;(2)123139835422nn n a a n nS n n .【点睛】本题考查已知等差数列的首项和公差求数列的通项公式和前n 项和,属于基础题. 变式1-2.等差数列{}n a 中,53a =,31223a a +=. (1)求1a ;(2)求通项n a 和前n 项和n S . 【答案】(1)153=5a -;(2)17145n a n =-,2171231010n n n S =-. 【解析】 【分析】(1)解方程组即得1a ;(2)利用公式求解即可. 【详解】 (1)由题得111+435317,,2132355a d a d a d =⎧∴=-=⎨+=⎩.(2)由题得531717=(1)14555n a n n -+-=-.所以前n 项和2531717123(14)2551010n n n n n S =-+-=-. 【点睛】本题主要考查等差数列的通项的基本量的计算,考查等差数列通项的求法和前n 项和的求法,意在考查学生对这些知识的理解掌握水平.变式1-3.已知等差数列{}n a 的前n 项和为n S ,且513a =,535S =. (1)求数列{}n a 的通项公式n a ; (2)求数列{}n a 的前n 项和n S .【答案】(1)32n a n =-(2)23122n S n n =-【解析】 【分析】(1)将已知条件转化为1,a d 的形式,列方程组,解方程组求得1,a d 的值,进而求得数列的通项公式.(2)根据(1)的结论求得数列的前n 项和公式. 【详解】设{}n a 的公差为d ,则由题意得11413545352a d a d +=⎧⎪⎨⨯+=⎪⎩, 解得:11,3a d ==.(1){}n a 的通项公式为()()1113132n a a n d n n =+-=+-=-, 即32n a n =-.(2){}n a 的前n 项和为()()12132312222n n n a a n n S n n ++-===-. 【点睛】本小题主要考查利用基本元的思想求等差数列的基本量1,a d 、通项公式和前n 项和.基本元的思想是在等差数列中有5个基本量1,,,,n n a d a S n ,利用等差数列的通项公式或前n 项和公式,结合已知条件列出方程组,通过解方程组即可求得数列1,a d ,进而求得数列其它的一些量的值.考点二 等差数列前n 项和最值问题典例2.记n S 为等差数列{}n a 的前n 项和,已知17a =-,315S =-. (1)求公差d 及{}n a 的通项公式;(2)求n S ,并求n S 的最小值.【答案】(1)2d =,29n a n =-;(2)()2416n S n =--,最小值为16-.【解析】(1)设{}n a 的公差为d ,由题意得13315a d +=-,再由17a =-可得2d =,从而可求出{}n a 的通项公式;(2)由(1)得()228416n S n n n =-=--,从而可求出其最小值 【详解】(1)设{}n a 的公差为d ,由题意得13315a d +=-. 由17a =-得2d =.所以{}n a 的通项公式为29n a n =-. (2)由(1)得()228416n S n n n =-=--. 所以4n =时,n S 取得最小值,最小值为16-变式2-1.n S 为等差数列{}n a 的前n 项和,已知71a =,432S =-. (1)求数列{}n a 的通项公式; (2)求n S ,并求n S 的最小值.【答案】(1)213n a n =-;(2)212n n S n =-,6n =时,n S 的最小值为36-.【解析】(1)利用等差数列的通项公式以及前n 项和公式求出1a ,d ,代入通项公式即可求解. (2)利用等差数列的前n 项和公式可得n S ,配方即可求解. 【详解】(1)设{}n a 的公差为d , 由71a =,432S =-,即1161434322a d a d +=⎧⎪⎨⨯+=-⎪⎩,解得1112a d =-⎧⎨=⎩, 所以()11213n a a n d n =+-=-.(2)()221111122n n n S na d n n n n n -=+=-+-=-, ()2212636n S n n n =-=--,所以当6n =时,n S 的最小值为36-.变式2-2.数列{a n }是首项为23,公差为整数的等差数列,且第6项为正,第7项为负. (1)求数列的公差;(2)求前n 项和S n 的最大值. 【答案】(1)4d =-;(2)78 【解析】 【分析】(1)根据670,0a a ><可得d 的范围,再根据d 为整数得到d 的值. (2)根据项的符号特征可得6S 最大. 【详解】(1)由已知,得6152350a a d d =+=+>,7162360a a d d =+=+<.解得232356d -<<-. 又d Z ∈,∴4d =-.(2)∵0d <,∴数列{}n a 是递减数列. 又∵60a >,70a <,∴当6n =时, n S 取得最大值,为()6656234782S ⨯=⨯+⨯-=. 【点睛】一般地,等差数列的前n 项和n S 的最值可以通过等差数列的通项的符号来确定,如果{}n a 满足0m a <,10m a +>,则n S 有最小值且最小值为m S ;如果{}n a 满足0m a >,10m a +<,则n S 有最大值且最大值为m S .变式2-3.已知等差数列{}n a 的前n 项和为n S ,25a =-,612S =-.(1)求{}n a 的通项公式;(2)求n S ,并求当n 取何值时n S 有最小值.【答案】(1)29n a n =-;(2)4. 【解析】 【分析】(1)设{}n a 的公差为d ,构建关于基本量1,a d 的方程组,求出1,a d 的值后可求{}n a 的通项公式. (2)求出n S 的表达式,从而可求当n 取何值时n S 有最小值. 【详解】(1)设{}n a 的公差为d ,由题意得11561512a d a d +=-⎧⎨+=-⎩得17,2a d =-=,所以{}n a 的通项公式为29n a n =-. (2)由(1)得()1228(4)162n n n a a S n n n +==-=--,所以当4n =时,n S 取得最小值,最小值为16-. 【点睛】本题考查等差数列通项公式的求法以及前n 项和的最值,此类问题,可根据题设条件得到关于基本量1,a d 的方程组,求出基本量的值后可讨论与等差数列相关的问题,本题属于基础题.考点三 含绝对值型求和问题典例3.记数列{}n a 中,17a =-,26a =-,()1+1N ,R n n a ka n k +=+∈∈. (1)证明数列{}n a 为等差数列,并求通项公式n a ; (2)记123n n T a a a a =+++⋅⋅⋅+,求n T . 【答案】(1)证明见解析,8,N n a n n +=-∈;(2)2215,821556,82n n n n n n n T -≤-+⎧⎪=⎨>⎪⎪⎪⎩且n +∈N .【解析】 【分析】(1)由已知可得1k =,根据等差数列的定义可证等差数列,进而写出通项公式. (2)由(1)有80a =,讨论8n ≤、8n >分别求n T 即可.(1)∵()11,n n a ka n k ++=+∈∈N R ,17a =-,26a =-, ∴1k =,∴()11n n a a n ++-=∈N ,即数列{}n a 为等差数列,8n a n ∴=-.(2)由(1)知:80a =,8n ≤时,()2121215.2n n n n n T a a a a a a -=++⋯+=-++⋯+=,8n >时,212815..562n n n nT a a a a -=++⋯+⋯+=+.∴2215,821556,82n n n n n n n T -≤-+⎧⎪=⎨>⎪⎪⎪⎩且n +∈N .变式3-1.设等差数列{}n a 的前n 项和为46,16,12n S S S =-=-. (1)求{}n a 的通项公式n a ; (2)求数列{}n a 的前n 项和n T . 【答案】(1)29n a n =-;(2)2*2*8,14832,5n n n n n T n n n n ⎧-≤≤∈=⎨-+≥∈⎩N N 且且. 【解析】 【分析】(1)根据等差数列前n 项和求和公式求出首项和公差,进而求出通项公式;(2)结合(1)求出n S ,再令0n a ≥得出数列的正数项和负数项,进而结合等差数列求和公式求得答案. (1)设等差数列的首项和公差分别为1a 和d ,∴1111434162382254656122a d a d a d a d ⨯⎧+=-⎪+=-⎧⎪⇒⎨⎨+=-⨯⎩⎪+=-⎪⎩,解得:172a d =-⎧⎨=⎩ 所以()71229n a n n =-+-⨯=-. (2)29n a n =-,所以()()2171282n S n n n n n =-+-⨯=-.当02905n a n n ≥⇒-≥⇒≥;当02904n a n n <⇒-<⇒≤,当04n <≤,*n ∈N 时,()212128n n n T a a a a a a n n =++⋅⋅⋅+=-++⋅⋅⋅+=-, 当5n ≥时,()()()21245428216n n n T a a a a a S S n n =-++⋅⋅⋅+++⋅⋅⋅+=-=--⨯-2832n n =-+.综上:2*2*8,14832,5n n n n n T n n n n ⎧-≤≤∈=⎨-+≥∈⎩N N 且且. 变式3-2.已知n S 为数列{}n a 的前n 项和,且28n S n n =-+.(1)求证:数列{}n a 是等差数列;(2)记n n b a =,试求数列{}n b 的前n 项和n T . 【答案】(1)证明见解析;(2)228,4832,5n n n n T n n n ⎧-+≤=⎨-+≥⎩.【解析】 【分析】(1)利用,n n a S 的关系求通项公式,结合等差数列的定义证明结论. (2)由(1)得92,429,5n n n b n x -≤⎧=⎨-≥⎩,讨论n 的范围,应用等差数列前n 项和公式求n T .(1)当2n ≥时,()2218(1)8129n n n a S S n n n n n -⎡⎤=-=-+---+-=-+⎣⎦当1n =时,11187,a S ==-+=也适合上式,故29n a n =-+. 综上,()127292n n a a n n +-=-+--+=-,∴数列{}n a 是以7为首项,2-为公差的等差数列. (2)由(1)知:92,49229,5n n n n b a n n x -≤⎧==-=⎨-≥⎩,当4n ≤时,2128n n n T b b b S n n =++⋯+==-+;当5n ≥时,2212124564(282484)()n n n n T b b b a a a a a a S S n n =++⋯+=++⋯+-++⋯+=-+++-=-⨯2832n n =-+,∴228,4832,5n n n n T n n n ⎧-+≤=⎨-+≥⎩变式3-3.在①()1218,7,1*,n n a a a ka n N k R +=-=-=+∈∈②若{}n a 为等差数列,且376,2a a =-=-③设数列{}n a 的前n 项和为n S ,且()2117*22n nS n n N =-∈.这三个条件中任选一个,补充在下面问题中,并作答(1)求数列{}n a 的通项公式(2)求数列{}n a 的前n 项和为n S 的最小值及n 的值 (3)记123...n n T a a a a =++++,求20T 【答案】(1)9n a n =-(2)当8n =或9n =时,n S 取得最小值为36-. (3)102 【解析】 【分析】(1)选①结合等差数列的定义求得n a ;选②通过求1,a d 来求得n a ;选③利用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩求得n a .(2)由0n a ≤求得n S 的最小值以及对应n 的值. (3)结合等差数列前n 项和公式求得20T . (1)选①,()1218,7,1*,n n a a a ka n N k R +=-=-=+∈∈,211,781,1a ka k k =+-=-+=,111,1n n n n a a a a ++=+-=,所以数列{}n a 是以18a =-为首项,公差1d =的等差数列,所以9n a n =-. 选②,设等差数列{}n a 的首项为1a ,公差为d ,31171268,1962n a a d a d a n a a d =+=-⎧⇒=-=⇒=-⎨=+=-⎩. 选③,()2117*22n nS n n N =-∈, 当1n =时,18a =-,当2n ≥时,()()1221711171192222n n n a S S n n n n n -=-⎡⎤----⎣-=⎥⎦=-⎢, 当1n =时上式也符合,所以9n a n =-. (2)由90n a n =-≤得9n ≤,所以当8n =或9n =时,n S 最小,且最小值为()87881362⨯⨯-+⨯=-. (3)2011a =,结合(2)可知()2092092092T S S S S S =-+-=-()811202361022-+=⨯-⨯-=.巩固练习练习一 等差数列的基本量的计算1.在等差数列{}n a 中,已知2a ,5a 是一元二次方程219700x x -+=的两个根. (1)求2a ,5a ; (2)求{}n a 的通项公式.【答案】(1)25a =,514a =或214a =,55a = (2)31n a n =-或320n a n =-+ 【解析】【分析】(1)求出方程的根即可.(2)由(1)可解出等差数列的公差即可.(1)因为219700x x -+=,所以5x =或14,所以25a =,514a =;或214a =,55a =.(2)设公差为d ,若25a =,514a =,得52352a a d ,所以通项公式为()2231n a a n d n =+-=-;若214a =,55a =,则52352a a d -==--, 所以通项公式为()22320n a a n d n =+-=-+.故{}n a 的通项公式:31n a n =-或320n a n =-+.2.已知等差数列{}n a ,n S 为其前n 项和,且4152a =-,436S =-. (1)求数列{}n a 的通项公式;(2)若n n S b n =,n T 为数列{}n b 的前n 项和,求n T . 【答案】(1)232n a n =-,*n N ∈;(2)2434n n n T -=,*n N ∈. 【解析】【分析】(1)由已知,结合等差数列前n 项和及通项公式求1a 、d ,写出通项公式即可; (2)由(1)可得222n n b -=,再应用等差数列前n 项和公式求n T . 【详解】(1)由题意,1444()362a a S +==-,可得1212a =-,若公差为d , ∴411532a a d =+=-,故1d =, ∴{}n a 的通项公式123(1)2n a a n d n =+-=-.(2)由(1)得(22)2n n n S -=,则222n n S n b n -==, ∴212 (431124)n n n n T n +++-=-=. 3.已知等差数列{}n a 中,公差22,3d a ==.求:(1)35,a a 的值;(2)该数列的前5项和5S .【答案】(1)355,9a a ==;(2)525S =.【解析】【分析】(1)根据已知条件求得1a ,由此求得35,a a .(2)利用等差数列前n 项和公式求得5S .【详解】(1)依题意21131a a d a =+=⇒=,所以315125,49a a d a a d =+==+=.(2)5151052025S a d =+=+=.4.已知等差数列{}n a 中,11a =,321a a -=.(1)求数列{}n a 的通项公式;(2)求数列{}n a 的前n 项和n S .【答案】(1)n a n =;(2)()12n n n S +=. 【解析】(1)根据题中条件,先得出公差,进而可求出通项公式;(2)根据(1)的结果,由等差数列的求和公式,即可求出结果.【详解】(1)因为等差数列{}n a 中,首项为11a =,公差为321d a a =-=,所以其通项公式为()11n a n n =+-=;(2)由(1)可得,数列{}n a 的前n 项和()()1122n n n a a n n S ++==.练习二 等差数列前n 项和最值问题5.已知数列{}n a 中14n n a a +=-,且113a =.(1)求n a ;(2)求数列{n a }的前n 项和n S 的最大值.【答案】(1)n a =﹣4n +17;(2)28.【解析】【分析】(1)根据等差数列的定义判断{}n a 为等差数列即可求其通项公式;(2)根据等比数列前n 项和的性质即可求其最值.(1)由1n n a a +=﹣4,可知,1n a +﹣n a =﹣4,∴数列{n a }是以13为首项,以﹣4为公差的等差数列,∴n a =13﹣4(n ﹣1)=﹣4n +17;(2)由(1)可知,数列{n a }单调递减,且a 4>0,a 5<0,∴当n =4时,{n a }的前n 项和n S 取得最大值4S =13+9+5+1=28.6.已知数列{an }是一个等差数列,且a 2=11,S 5=45.(1)求{an }的通项an ;(2)求{an }的前n 项和为Sn 的最大值.【答案】(1)an =15-2n(2)49【解析】【分析】(1)由等差数列的性质知a 3=9,d =a 3-a 2=-2,从而写出通项公式;(2)由通项公式知a 7=1>0,a 8=-1<0,从而可求得Sn 的最大值.(1)∵数列{an }等差数列,S 5=45,∴S 5=5a 3=45,∴a 3=9,故d =a 3-a 2=9-11=-2,故an =a 2+(n -2)d =15-2n .(2)∵an =15-2n ,∴a 7=1>0,a 8=-1<0,故当n =7时,Sn 有最大值S 7=7a 4=7×(15-8)=49.7.已知等差数列{}n a 的前n 项和是n S ,210a =,540S =.(1)求10a ;(2)求n S 的最大值,并求对应的项数n .【答案】(1)106a =-;(2)6,7n =时,最大值42.【解析】【分析】(1)根据所给条件求得等差数列的通项公式142n a n =-,代入数值即可得解; (2)由通项公式142n a n =-可知17n ≤≤时,0n a ≥,8n ≥时,0n a <,即可得解.【详解】(1)根据题意设等差数列{}n a 的公差为d ,由53540S a ==,所以38a =,由210a =所以322d a a =-=-,所以112a =,所以1(1)142n a a n d n =+-=-,所以106a =-;(2)由(1)知142n a n =-,当16n ≤≤时,0n a >,特别的70a =,当8n ≥时,0n a <,所以当6,7n =时,()61126652422n S S =⨯+⨯⨯⨯-=,取最大值,最大值42.8.已知数列{}n a 为等差数列,且37a =,53a =.(1)求数列{}n a 的通项公式;(2)求数列{}n a 的前n 项和n S 的最大值.【答案】(1)132n a n =-;(2)36.【解析】【分析】(1)由已知求出公差,从而可求出数列的通项公式;(2)由(1)得212n S n n =-,然后配方利用二次函数的性质可得答案【详解】解:因为{}n a 为等差数列,令其公差为d ,则由题意得5324a a d -==-,得2d =-,故3(3)7(3)(2)n a a n d n =--⨯=--⨯-132n =-,即{}n a 的通项公式为132n a n =-.(2)由(1)知,111a =, 故21(1)122n n n d S na n n -=+=- 2(6)36n =--+,所以当6n =,n S 的最大值为636S =.练习三 含绝对值型求和问题9.设数列{}n a 的前n 项和为n S , 已知2103n S n n =-+.(1)求数列{}n a 的通项公式;(2)求数列{}n a 的前n 项的和n T .【答案】(1)6,1211,2n n a n n -=⎧=⎨-≥⎩(2)22103,51047,6n n n n T n n n ⎧-+-≤=⎨-+≥⎩【解析】【分析】(1)由11,1,2n nn S n a S S n -=⎧=⎨-≥⎩可求得数列{}n a 的通项公式; (2)化简n a 的表达式,分25n ≤≤、6n ≥两种情况求n T 的表达式,综合即可得解.(1)解:当1n =时,116a S ==-,当2n ≥时,()()()22110311013211n n n a S S n n n n n -⎡⎤=-=-+----+=-⎣⎦. 16a =-不满足211n a n =-,因此,6,1211,2n n a n n -=⎧=⎨-≥⎩. (2) 解:6,1112,25211,6n n a n n n n =⎧⎪=-≤≤⎨⎪-≥⎩. 当25n ≤≤时,()()27112161032n n n T n n +--=+=-+-, 16T =满足2103n T n n =-+-;当6n ≥时,()()()2251211552210472n n n T T n n n +--=+=-+=-+.综上所述,22103,51047,6n n n n T n n n ⎧-+-≤=⎨-+≥⎩. 10.已知数列{}n a 的前n 项和213n S n n =-.(1)求数列{}n a 的通项公式;(2)若n n b a =,求{}n b 的前n 项和n T .【答案】(1)()214n a n n *=-∈N ;(2)2213,71384,7n n n n T n n n ⎧-<=⎨-+⎩. 【解析】【分析】(1)根据题意,可求得当1n =时,1112a S ==-;当2n ≥时,利用1214n n n S S a n --==-,检验得1n =时也满足214n a n =-,从而可得出数列{}n a 的通项公式;(2)由(1)知当7n <时,0n a <,当7n ≥时,0n a ≥,则需要分类讨论,当7n <时,142n n n b a a n ==-=-,从而可知{}n b 是首项为12,公差为-2的等差数列,利用等差数列的前n 项和公式,即可求出n T ;当7n ≥时,化简得出()()1261622n n n T a a a a a T S =----+++=+,结合题意求出n T ;综合两种情况,从而得出{}n b 的前n 项和n T .【详解】(1)当n =1时,1112a S ==-;当2n ≥时,()22113(1)13(1)214n n n a S S n n n n n -⎡⎤=-=-----=-⎣⎦,显然1n =时也满足上式,所以()214n a n n *=-∈N .(2)由(1)知()214n a n n *=-∈N ,所以当7n <时,0n a <;当7n ≥时,0n a ≥,①当7n <时,142n n n b a a n ==-=-,则12n n b b +-=-,112b =,所以{}n b 是首项为12,公差为-2的等差数列,所以()12(12142)1322n n n b b n n T n n ++-===-; ②当7n ≥时,1267n n T b b b b b =++++++()()126712612n n n T a a a a a a a a a a =----+++=----+++226284131384n n T T S n n n n =+=+-=-+.综上可得:2213,71384,7n n n n T n n n ⎧-<=⎨-+≥⎩.11.已知等差数列{}n a 的前n 项和为n S ,且364a a +=,55S =-(1)求数列{}n a 的通项公式;(2)若123n n T a a a a =+++⋅⋅⋅+,求10T 的值.【答案】(1)27n a n =-(2)58【解析】【分析】(1)由等差数列的性质和基本量运算求得数列的首项和公差,然后可得通项公式; (2)确定数列项的正负,然后分组求和.(1)因为{}n a 是等差数列,所以15535()552a a S a +===-,31a =-, 又364a a +=,所以64(1)5a =--=,所以6335(1)6d a a =-=--=,2d =,从而1325a a d =-=-,5(1)227n a n n =-+-⨯=-,(2)由(1)3n ≤时,0n a <,4n ≥时,0n a >, 所以123n n T a a a a =+++⋅⋅⋅+(113)7(531)(13513)9582+⨯=+++++++=+=. 12.已知数列{}n a 是等差数列,125a =,12366a a a ++=.(1)求数列{}n a 的通项公式;(2)求数列{}n a 的前17项和17S .【答案】(1)283n a n =-;(2)217.【解析】【分析】(1)由已知条件,求出公差d 即可求解;(2)因为当9n ≤时,0n a ≥,当10n ≥时,0n a <,所以()17191017191017S a a a a a a a a =+++++=++-++,由等差数列求和公式即可求解.【详解】解:(1)因为数列{}n a 是等差数列,设公差为d , 因为12366a a a ++=,125a =, 所以111266a a d a d ++++=, 所以3d =-, 所以()()2513283n a n n =+-⨯-=-; (2)设等差数列{}n a 的前n 项和为n T , 令2830n a n =-≥,解得283n ≤, 所以当9n ≤时,0n a ≥,当10n ≥时,0n a <, 故()17191017191017S a a a a a a a a =+++++=++-++ ()()91792511725232221722T T +-=-=⨯-=.。

相关文档
最新文档