五年级奥数教程
小学数学奥数基础教程(五年级)--29

小学数学奥数基础教程(五年级)本教程共30讲抽屉原理(一)我们在四年级已经学过抽屉原理,并能够解答一些简单的抽屉原理问题。
这两讲先复习一下抽屉原理的概念,然后结合一些较复杂的抽屉原理问题,讨论如何构造抽屉。
抽屉原理1将多于n件物品任意放到n个抽屉中,那么至少有一个抽屉中的物品不少于2件。
抽屉原理2将多于m×n件物品任意放到到n个抽屉中,那么至少有一个抽屉中的物品不少于(m+1)件。
理解抽屉原理要注意几点:(1)抽屉原理是讨论物品与抽屉的关系,要求物品数比抽屉数或抽屉数的倍数多,至于多多少,这倒无妨。
(2)“任意放”的意思是不限制把物品放进抽屉里的方法,不规定每个抽屉中都要放物品,即有些抽屉可以是空的,也不限制每个抽屉放物品的个数。
(3)抽屉原理只能用来解决存在性问题,“至少有一个”的意思就是存在,满足要求的抽屉可能有多个,但这里只需保证存在一个达到要求的抽屉就够了。
(4)将a件物品放入n个抽屉中,如果a÷n= m……b,其中b是自然数,那么由抽屉原理2就可得到,至少有一个抽屉中的物品数不少于(m+1)件。
例1 五年级有47名学生参加一次数学竞赛,成绩都是整数,满分是100分。
已知3名学生的成绩在60分以下,其余学生的成绩均在75~95分之间。
问:至少有几名学生的成绩相同?分析与解:关键是构造合适的抽屉。
既然是问“至少有几名学生的成绩相同”,说明应以成绩为抽屉,学生为物品。
除3名成绩在60分以下的学生外,其余成绩均在75~95分之间,75~95共有21个不同分数,将这21个分数作为21个抽屉,把47-3=44(个)学生作为物品。
44÷21= 2……2,根据抽屉原理2,至少有1个抽屉至少有3件物品,即这47名学生中至少有3名学生的成绩是相同的。
例2 夏令营组织2000名营员活动,其中有爬山、参观博物馆和到海滩游玩三个项目。
规定每人必须参加一项或两项活动。
那么至少有几名营员参加的活动项目完全相同?分析与解:本题的抽屉不是那么明显,因为问的是“至少有几名营员参加的活动项目完全相同”,所以应该把活动项目当成抽屉,营员当成物品。
五年级奥数培训教材

目录第一章数与计算…………………………………………第一讲估值问题……………………………………第二章趣题与智巧…………………………………………第一讲算式谜…………………………………………第三章实践与应用(一)………………………………第一讲行程问题(一)………………………………第二讲行程问题(二)………………………………第三讲行程问题(三)………………………………第四讲行程问题(四)………………………………第四章数论与整除…………………………………………第一讲数字趣题…………………………………………第二讲分解质因数(一)………………………………第三讲分解质因数(二)………………………………第四讲最大公因数………………………………第五讲最小公倍数(一)………………………………第六讲最小公倍数(二)………………………………第五章实践与应用(二)………………………………第一讲盈亏问题……………………………………第三讲作图法解题……………………………………第四讲火车行程问题………………………………第五讲杂题…………………………………………第六章组合与推理……………………………………第一讲包含与排除………………………………第二讲置换问题……………………………………第三讲简单列举……………………………………第四讲最大最小问题………………………………第五讲推理问题……………………………………第一章数与计算第一讲估值问题【专题导引】在日常生活中,某些量往往只需要作一个大致的估计,如对某厂下一年生产的总产值的估计就只能是一个大概数。
很难也没有必要精确到几元几角几分。
估算就是对一些量的粗略运算,不仅现在,就是今后科学技术相当发达了,这类计算仍然十分必要。
如果我们的计算结果与粗略估计大相径庭,就说明我们的计算过程必然有错。
估算常采用的方法是:1、省略尾数取近似值;2、用放大或缩小的方法来确定某个数或整个算式的取值范围进行估算。
小学数学奥数基础教程(五年级)--30.doc

小学数学奥数基础教程(五年级)本教程.共30讲抽屉原理(二)例1把一个长方形画成3行9列共27个小方格,然后用红、蓝铅笔任意将每个小方格涂上红色或蓝色。
是否一定有两列小方格涂色的方式相同?分析与解:将9列小方格看成9件物品,每列小方格不同的涂色方式看成不同的抽屉。
如果涂色方式少于9种,那么就可以得到肯定的答案。
涂色方式共有下面8种:红红9件物品放入8个抽屉,必有一个抽屉的物品数不少于2件,即一定有两列小方格涂色的方式相同。
例2在任意的四个自然数中,是否总能找到两个数,它们的差是3 的倍数?分析与解:这道题可以将4个自然数看成4件物品,可是却没有明显的抽屉,这就需要根据题目构造合适的抽屉。
因为题目要求两个数的差是3的倍数,当两个数除以3的余数相同时, 这两个数的差一定是3的倍数,所以将自然数按除以3的余数分类,可以分为整除、余1、余2三类,将这三类看成3个抽屉。
4件物品放入3个抽屉,必有一个抽屉中至少有2件物品,即4个自然数中至少有2个数除以3的余数相同,它们的差是3的倍数。
所以,任意的四个自然数中,总能找到两个数,它们的差是3的倍数。
例3从1, 3, 5, 7,…,47, 49这25个奇数中至少任意取出多少个数,才能保证有两个数的和是52。
分析与解:首先要根据题意构造合适的抽屉。
在这25个奇数中,两两之和是52的有12种搭配:{3, 49} , (5, 47} ,(7, 45} , (9, 43},{11,41} , (13, 39) , (15, 37) , (17, 35),{19, 33} , {21, 31} , {23, 29} , {25, 27} o将这12种搭配看成12个抽屉,每个抽屉中有两个数,还剩下一个数1,单独作为一个抽屉。
这样就把25个奇数分别放在13个抽屉中了。
因为一共有13个抽屉,所以任意取出14个数,无论怎样取,至少有一个抽屉被取出2个数,这两个数的和是52。
所以本题的答案是取出14个数。
小学奥数教程:周期问题_全国通用(含答案)

1. 掌握各种周期问题的求解方法.2. 培养学生观察、分析和逻辑推理能力。
知识点说明: 周期问题:周期现象:事物在运动变化过程中,某些特征有规律循环出现;周期:我们把连续两次出现所经过的时间叫周期;解决有关周期性问题的关键是确定循环周期.分类:1.图形中的周期问题; 2.数列中的周期问题;3.年月日中的周期问题. 周期性问题的基本解题思路是:首先要正确理解题意,从中找准变化的规律,利用这些规律作为解题的依据;其次要确定解题的突破口。
主要方法有观察法、逆推法、经验法等。
主要问题有年月日、星期几问题等。
⑴观察、逆推等方法找规律,找出周期.确定周期后,用总量除以周期,如果正好有整数个周期,结果就为周期里的最后一个; 例如:1,2,1,2,1,2,…那么第18个数是多少?这个数列的周期是2,1829¸=,所以第18个数是2.⑵如果比整数个周期多n 个,那么为下个周期里的第n 个;例如:1,2,3,1,2,3,1,2,3,…那么第16个数是多少?这个数列的周期是3,16351¸=×××,所以第16个数是1.⑶如果不是从第一个开始循环,可以从总量里减掉不是循环的个数后,再继续算.例如:1,2,3,2,3,2,3,…那么第16个数是多少?这个数列从第二个数开始循环,周期是2,(161)271-¸=×××,所以第16个数是2.板块一、图形中的周期问题 【例 1】 小兔和小松鼠做游戏,他们把黑、白两色小球按下面的规律排列: ●●○●●○●●○… 你知道它们所排列的这些小球中,第90个是什么球?第100个又是什么球呢?【考点】周期问题 【难度】2星 【题型】解答【解析】 仔细观察图中球的排列,不难发现球的排列规律是:2个黑球,1个白球;2个黑球,1个白球;……也就是按“2个黑球,1个白球”的顺序循环出现,因此,这道题的周期为3(2个黑球,1个白球).再看看90、100里包含有几个这样的周期,若正好有整数个周期,结果为周期里的最后一个,若是有整数个周期多几个,结果就为下一个周期里的第几个.因为90330¸=,正好有30个周期,第90个是白球.100333¸=…1,有33个周期还多1个,所以,第100个是黑球.【答案】第90个是白球,第100个是黑球【巩固】 美美有黑珠、白珠共102个,她想把它们做成一个链子挂在自己的床头上,她是按下面的顺序排列的: 例题精讲知识精讲教学目标 周期问题○●○○○●○○○●○○○……那么你知道这串珠子中,最后一个珠子应是什么颜色吗?美美怕这种颜色的珠子数量不够,你能帮她算出这种颜色在这串珠子中共有多少个吗?【考点】周期问题 【难度】2星 【题型】解答【解析】 观察可以发现,这串珠子是按“一白、一黑、二白”4个珠子组成一组,并且不断重复出现的.我们先算出102个珠子可以这样排列成多少组,还余多少.我们可以根据排列周期判断出最后一个珠子的颜色,还可以求出有多少个这样的珠子.因为102425¸=…2,所以最后一个珠子是第26个周期中的第二个,即为黑色.在每一个周期中只有1个黑珠子,所以黑色珠子在这串珠子中共有25126+=(个)【答案】最后一个珠子是黑色的,黑色珠子在这串珠子中共有26个【巩固】 黑珠、白珠共101颗,穿成一串,排列如下图。
小学数学奥数基础教程(五年级)目30讲全190410

求解此类小数除法竖式题,应先 将其化为整数除法竖式,如果被除数 的末尾出现 n个 0,则在除数和商中, 一个含有因子 2n(不含因子 5),另 一个含有因子 5n(不含因子 2),以 此为突破口即可求解。 例 5 一个五位数被一个一位数除 得到下页的竖式(1),这个五位数被 另一个一位数除得到下页的竖式(2), 求这个五位数。 的
小学奥数基础教程(五年级) 分析与解:按新运算的定义,符 号“⊙”表示求两个数的平均数。 分析与解:1!=1, 2!=1×2=2, 3!=1×2×3=6, 4!=1×2×3×4=24, 5!=1×2×3×4×5=120, 6!=1×2×3×4×5×6=720, 四则运算中的意义相同,即先进 行小括号中的运算,再进行小括号外 面的运算。 …… 8!,…,100!的末位数字都是 0。 所以,要求1!+2!+3!+…+100! 的个位数字,只要把 1!至 4!的个位 数字相加便可求得:1+2+6+4=13。所 求的个位数字是 3。 例 7 如果 m,n表示两个数,那么 规定:m¤n=4n-(m+n)÷2。 求 3¤(4¤6)¤12的值。 解:3¤(4¤6)¤12 按通常的规则从左至右进行运算。 =3¤[4×6-(4+6)÷2]¤12 =3¤19¤12 =[4×19-(3+19)÷2]¤12 =65¤12 =4×12-(65+12)÷2 =9.5。 练习 3 1.对于任意的两个数 a和 b,规定 a*b=3×a-b÷3。求 8*9的值。 2.已知 a 乘以 b,求 13 3.已知 a 4的值。 第 4讲 定义新运算(二)
的倍数,求这个六位数。 分析与解:因为未知的数码在中 间,所以我们采用两边做除法的方法 求解。 先从右边做除法。由被除数的个 位是 4,推知商的个位是 6;由左下式 知,十位相减后的差是 1,所以商的十 位是 9。这时,虽然 89×96=8544,但 不能认为六位数中间的两个□内是85, 因为还没有考虑前面两位数。
小学五年级奥数讲义(教师版)30讲全

⼩学五年级奥数讲义(教师版)30讲全⼩学奥数基础教程(五年级)第1讲数字迷(⼀)第16讲巧算24第2讲数字谜(⼆) 第17讲位置原则第3讲定义新运算(⼀) 第18讲最⼤最⼩第4讲定义新运算(⼆) 第19讲图形的分割与拼接第5讲数的整除性(⼀) 第20讲多边形的⾯积第6讲数的整除性(⼆) 第21讲⽤等量代换求⾯积第7讲奇偶性(⼀)第22讲⽤割补法求⾯积第8讲奇偶性(⼆)第23讲列⽅程解应⽤题第9讲奇偶性(三)第24讲⾏程问题(⼀)第10讲质数与合数第25讲⾏程问题(⼆)第11讲分解质因数第26讲⾏程问题(三)第12讲最⼤公约数与最⼩公倍数(⼀)第27讲逻辑问题(⼀)第13讲最⼤公约数与最⼩公倍数(⼆)第28讲逻辑问题(⼆)第14讲余数问题第29讲抽屉原理(⼀)第15讲孙⼦问题与逐步约束法第30讲抽屉原理(⼆)第1讲数字谜(⼀)数字谜的内容在三年级和四年级都讲过,同学们已经掌握了不少⽅法。
例如⽤猜想、拼凑、排除、枚举等⽅法解题。
数字谜涉及的知识多,思考性强,所以很能锻炼我们的思维。
这两讲除了复习巩固学过的知识外,还要讲述数字谜的代数解法及⼩数的除法竖式问题。
例1 把+,-,×,÷四个运算符号,分别填⼊下⾯等式的○内,使等式成⽴(每个运算符号只准使⽤⼀次):(5○13○7)○(17○9)=12。
分析与解:因为运算结果是整数,在四则运算中只有除法运算可能出现分数,所以应⾸先确定“÷”的位置。
当“÷”在第⼀个○内时,因为除数是13,要想得到整数,只有第⼆个括号内是13的倍数,此时只有下⾯⼀种填法,不合题意。
(5÷13-7)×(17+9)。
当“÷”在第⼆或第四个○内时,运算结果不可能是整数。
当“÷”在第三个○内时,可得下⾯的填法:(5+13×7)÷(17-9)=12。
例2 将1~9这九个数字分别填⼊下式中的□中,使等式成⽴:□□□×□□=□□×□□=5568。
(完整版)五年级奥数教材举一反三课程40讲全整理

(完整版)五年级奥数教材举一反三课程40讲全整理修改整理加入目录,方便查用,五年级奥数举一反三目录平均数(一) (2)练习一 (2)练习二 (3)平均数(二) (6)第3周长方形、正方形的周长 (10)第4周长方形、正方形的面积 (17)第5周分类数图形 (22)第6周尾数和余数 (28)第7周一般应用题(一) (33)第8周一般应用题(二) (37)第9周一般应用题(三) (42)第10周数阵 (46)第11周周期问题 (54)第12周盈亏问题 (59)第13周长方体和正方体(一) (65)第十四周长方体和正方体(二) (71)第十五周长方体和正方体(三) (76)第16周倍数问题(一) (81)第17周倍数问题(二) (87)第18周组合图形面积(一) (91)第十九周组合图形的面积 (98)第二十周数字趣题 (106)第二十一讲假设法解题 (111)第二十二周作图法解题 (116)第二十三周分解质因数 (122)第二十四周分解质因数(二) (127)第25周最大公约数 (131)第二十六周最小公倍数(一) (136)第二十七周最小公倍数(二) (141)第28周行程问题(一) (146)第二十九周行程问题(二) (152)第三十周行程问题(三) (157)第三十一周行程问题(四) (163)第三十二周算式谜 (169)第33周包含与排除(容斥原理) (174)第34周置换问题 (179)第35周估值问题 (184)第36周火车行程问题 (190)第37周简单列举 (194)第三十八周最大最小问题 (199)第三十九周推理问题 (205)第40周杂题 (212)练习五 (216)平均数(一)专题简析:把几个不相等的数,在总数不变的条件下,通过移多补少,使它们完全相等,求得的相等的数就是平均数。
如何灵活运用平均数的数量关系解答一些稍复杂的问题呢?下面的数量关系必须牢记:平均数=总数量÷总份数总数量=平均数×总份数总份数=总数量×平均数例1 有4箱水果,已知苹果、梨、橘子平均每箱42个,梨、橘子、桃平均每箱36个,苹果和桃平均每箱37个。
五年级奥数培训教材(上)

莱特1+1思维教育辅导讲义28×3=84;已知后三个数的平均数,可以求出后三个数的总和:35×3=105;前三个数的总和加上后三个数的总和,中间的那个数算了两次,这样就比五个数的总和多,多出的部分就是所求的中间的那个数。
例4 小明前5次数学测试的平均分是92分,第六次数学测试的成绩比六次测试的平均分高5分,他第六次测试的成绩是多少?分析他第六次数学测试的成绩比六次测试的平均分高5分,把这5分平均分给前5次,就可先求出六次测试的平均成绩:92+5÷5=93分,再用六次测试的平均分加上第六次测试多出的5分,就可得出第六次的测试成绩。
例5 一次考试中,小花语文得了86分,英语得了90分,现在还要考数学,他想争取三科平均成绩至少为90分,那么他的数学至少要得多少分?练习:1、五(1)班有学生40人,期中数学测试,有2名同学因病缺考,这时班级平均成绩是89分。
缺考的同学补考各得99分,这个班期中测试平均分是多少?2、在一次登山活动中,山路长120米,张三上山时每分钟走40米,下山时按原路返回,每分钟走60米,求张三上山和下山平均每分钟走多少米?3、甲、乙、丙三人的平均年龄为22岁,如果甲、乙的平均年龄是18岁,乙、丙的平均年龄是25岁,那么乙的年龄是多少岁?4、某小组加工一批零件,7天中平均每天加工32个。
已知他们前4天平均每天加工34个,后4天平均每天加工31个。
求:第4天加工零件多少个?5、十名参赛者的平均得分是82分,前6人的平均分是83分,后6人的平均分是80分,那么第5人和第6人的平均分是多少分?6、一个技术工带5个普通工人完成了一项任务,每个普通工人各得120元,这位技工的收入比他们6人的平均收入还多20元,问这位技术工得多少元?莱特1+1思维教育辅导讲义6、用2、4、5、8、0五个数字,组成没有重复数字的四位数,共可以组成多少个?7、从甲地到乙地有2条路,从乙地到丁地有3条路,从丁地到丙地有2条路,从丙地到甲地有1条路.问:从甲地到丁地有多少种不同的走法?8、如图:A、B、C、D、E五个区域分别用红、黄、蓝、白、黑五种颜色中的某一种染色,要使相邻的区域染不同的颜色,共有多少种不同的染色方法?莱特1+1思维教育辅导讲义莱特1+1思维教育辅导讲义分析:为了保证不漏数而又不重复,我们可以分类来数三角形,然后再把数出的各类三角形的个数相加例3数出下图中所有三角的个数分析:同位置的三角形一起数,例如:AFG.BGM.CIM.DIJ.JEF是同类例4如下图,平面上有12个点,可任意取其中四个点围成一个正方形,这样的正方形有多少个?分析:把相邻的两点连接起来,即可得到图形例5数一数,下图中共有多少个三角形分析:分类数三角法?练习:1.下图共有多少个正方形2.下图中共有多少个正方形,多少个三角形?3.下面图中共有多少个三角4.数一数,图中共有多少个三角5、数出下面图中分别有多少个三角6.图中共有()个三角7.图中共有()个三角形莱特1+1思维教育辅导讲义分析:可将图补充完整,再计算分析:根据题意,可分析出最大长方形的宽就是正方形的边长练习:)(图)(图)、求下列图形的周长(图2(单位:厘米)厘米的长方形和两个正方形正好拼成下图长方形(图3),求所拼长方形的周长。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五年级奥数教程
五年级是做奥数的黄金时期,是理解各种数学概念和技巧的关键时期。
在这个年龄,孩子们已经掌握了基本的数学知识,可以通过增加难度和深度来扩展他们的知识和技能。
以下是一些有用的五年级奥数教程,帮助孩子们提高数学技能。
1. 基本数学技能
在进入更深入的数学概念之前,孩子们需要打好基础,掌握基本的数学技能。
这包括加、减、乘、除、比较大小、分数、小数、百分数等等。
家长可以与孩子一起通过做课堂练习或游戏等方式练习这些基本技能,并帮助孩子发现这些技能在日常生活中的应用。
2. 几何学
几何学是五年级数学的重要部分。
在这一部分中,孩子们需要学习如何计算周长、面积和体积。
他们还需要熟悉各种形状的属性,如正方形、长方形、三角形和圆形。
家长可以通过使用基本的几何工具,如尺子、圆规和直尺帮助孩子完成这些任务。
3. 数学思维
数学思维是五年级数学的另一个重要部分。
通过培养数学思维,孩子可以学会理解并解决各种数学问题。
这可以通过多种方式实现,例如推理、归纳、贪心、逆推、分类等。
家长可以通过让孩子探索各种难题、游戏和电影等方式激发孩子的数学思维能力。
4. 逻辑思维
逻辑思维是帮助孩子解决数学问题的重要方法。
逻辑思维可以帮助孩子快速理清各种复杂的问题,并找到解决方法。
家长可以通过培养孩子的逻辑思维来帮助他们学习数学。
这可以通过一些逻辑游戏和谜题来达到。
5. 数据分析
数据分析是五年级数学的最后一个部分。
学生需要学会收集、整理和分析各种数据。
这可以通过各种科学实验、抽样调查和统计问题来实现。
家长可以通过让孩子解决实际问题来帮助他们掌握数据分析的技能。
总结
五年级奥数教程是一个充满挑战和机会的阶段。
通过打好基础技能、学习几何学、培养数学和逻辑思维、以及数据分析,孩子们可以更好地理解和应用数学。
家长可以通过在日常生活中培养孩子的数学能力和知识,为孩子们的未来成功发展奠定基础。