线性代数复习资料
线性代数复习要点

2
2、初等变换的性质 (1) 对调变换使得行列式的值反号; (2) 倍乘变换只是放大或缩小行列式的值; (3) 倍加变换不改变行列式的值. 3、加法原理:若行列式的某一行(或列)的元都是两数之和,则此行列式等于两个行列式的和. 4、乘积法则:对任何 n 阶矩阵 A 和 B ,均有 | AB | | Α | | B | . 5、转置运算不改变行列式的值. 三、行列式的计算 1、典型方法:三角化方法、降阶法、归纳法、递推法、分拆法、升阶法. 2、设 A 为 n 阶矩阵, k 为任意数,则 kA k A .
1 * * 1 * T T *
4、 ( A ) ( A ) , ( A ) ( A ) , ( A ) ( A ) .
T 1
AT A 5、 B
T
, T B B
1
A T A
T
BT ;
A1 A 当 A, B 可逆时,有 B
一、行列式的概念
n 阶行列式 A 或 det A 是 n 阶矩阵 A [aij ] 按下述运算法则得到的一个算式: 当 n 1 时, A a11 a11 ; 当 n 2 时,
A a11 A11 a12 A12
这里 A1 j (1)
三、分块矩阵的求逆公式 当 A, B 可逆时,有
, 1 B B
A 1 A
1
B 1 .
A 1 A C 0 B 0
四、重要结论
1
A1 A1CB 1 A 0 , 1 1 B 1 C B B CA
(5) rank
A 0 0 rankA rankB , rank 0 B B
线性代数复习提纲

线性代数复习提纲第一章 行列式1、行列式的定义:总项数、每一项构成、符号确定方法(附带:逆序、逆序数、奇排列)。
2、行列式性质:P9—P11六个性质两个推论,按某一行(列)的降阶展开(附带: 余子式、代数余子式)。
3、行列式计算: 一般方法 --化成三角形、降阶展开。
特殊计算:分块三角形--例10)、范德蒙—例12。
4、克拉默法则公式—P22第二章 矩阵及其运算1、概念:矩阵的型(阶)、相等、线性变换。
特殊矩阵:零矩阵、负矩阵、单位矩阵、纯量矩阵、对角矩阵、对称矩阵、逆矩阵、矩阵的行列式、伴随矩阵、奇异矩阵、分块对角矩阵。
2、运算:加法、数乘、转置、矩阵相乘、求伴随矩阵、解矩阵方程。
3、重要定理公式:⑴矩阵乘法:不满足交换律、两个非零矩阵乘积可能为零矩阵、两个对角矩阵的乘积等于以主对角线对应元素乘积为相应元素的对角矩阵。
⑵转置:T T T T T T T T T T A B AB A A B A B A A A ==+=+=)(,)(,)(,)(λλ,O A A O A T =⇔= ⑶方阵的行列式:B A AB A A BA AB A An T ====,,,λλ,A A A A n 111*==--, ⑷伴随矩阵:E A A A AA ==**,*11*)()(--=A A⑸逆矩阵基本公式:*11 0A AA A A =≠⇔-此时有,可逆方阵 ⑹逆矩阵运算公式:T T A A AB AB A A A A )()()(,1)(,)(111111111---------====λλ ⑺二阶方阵逆矩阵公式:⎪⎪⎭⎫ ⎝⎛---=-a c b d bc ad d c ba 1)(1 ⑻分块对角矩阵的逆等于每一块分别取逆。
特别的,对角矩阵的逆等于主对角线每个元素取倒数。
⑼一元矩阵多项式)(A f 可以象字母多项式)(x f 那样分解为因式的乘积,并且各因式顺序可以交换。
第三章 矩阵的初等变换1、概念:三种初等行变换(列变换)的定义和相应记号、对应的三种初等矩阵。
线性代数复习题带参考答案(一)

线性代数考试题库及答案第三章 向量一、单项选择题1. 321,,ααα, 21,ββ都是四维列向量,且四阶行列式m =1321βααα,n =2321ααβα,则行列式)(21321=+ββαααn m a +)( n m b -)( n m c +-)( n m d --)(2. 设A 为n 阶方阵,且0=A ,则( )。
成比例中两行(列)对应元素A a )( 线性组合中任意一行为其它行的A )b ( 零中至少有一行元素全为A c )( 线性组合中必有一行为其它行的A )d (3. 设A 为n 阶方阵,n r A r <=)(,则在A 的n 个行向量中( )。
个行向量线性无关必有r a )( 个行向量线性无关任意r )b (性无关组个行向量都构成极大线任意r c )(个行向量线性表示其它任意一个行向量都能被r )d (4. n 阶方阵A 可逆的充分必要条件是( )n r A r a <=)()(n A b 的列秩为)(零向量的每一个行向量都是非)(A c 的伴随矩阵存在)(A d5. n 维向量组s ααα,,,21 线性无关的充分条件是( ))(a s ααα,,,21 都不是零向量)(b s ααα,,,21 中任一向量均不能由其它向量线性表示 )(c s ααα,,,21 中任意两个向量都不成比例 )(d s ααα,,,21 中有一个部分组线性无关6. n 维向量组)2(,,,21≥s s ααα 线性相关的充要条件是( ))(a s ααα,,,21 中至少有一个零向量 s b ααα,,,)(21 中至少有两个向量成比例 s c ααα,,,)(21 中任意两个向量不成比例s d ααα,,,)(21 中至少有一向量可由其它向量线性表示7. n 维向量组)3(,,,21n s s ≤≤ααα 线性无关的充要条件是( )s k k k a ,,,)(21 存在一组不全为零的数使得02211≠++s s k k k ααα s b ααα,,,)(21 中任意两个向量都线性无关s c ααα,,,)(21 中存在一个向量,它不能被其余向量线性表示 s d ααα,,,)(21 中任一部分组线性无关8. 设向量组s ααα,,,21 的秩为r ,则( )s a ααα,,,)(21 中至少有一个由r 个向量组成的部分组线性无关 s b ααα,,,)(21 中存在由1+r 个向量组成的部分组线性无关 s c ααα,,,)(21 中由r 个向量组成的部分组都线性无关 s d ααα,,,)(21 中个数小于r 的任意部分组都线性无关9. 设s ααα,,,21 均为n 维向量,那么下列结论正确的是( ))(a 若02211=++s s k k k ααα ,则s ααα,,,21 线性相关 )(b 若对于任意一组不全为零的数s k k k ,,,21 ,都有02211≠++s s k k k ααα ,则s ααα,,,21 线性无关)(c 若s ααα,,,21 线性相关,则对任意不全为零的数s k k k ,,,21 ,都有02211=++s s k k k ααα)(d 若000021=++s ααα ,则s ααα,,,21 线性无关10. 已知向量组4321,,,αααα线性无关,则向量组( )14433221,,,)(αααααααα++++a 线性无关 14433221,,,)(αααααααα----b 线性无关 14433221,,,)(αααααααα-+++c 线性无关 14433221,,,)(αααααααα--++d 线性无关11. 若向量β可被向量组s ααα,,,21 线性表示,则( ))(a 存在一组不全为零的数s k k k ,,,21 使得s s k k k αααβ ++=2211 )(b 存在一组全为零的数s k k k ,,,21 使得s s k k k αααβ ++=2211 )(c 存在一组数s k k k ,,,21 使得s s k k k αααβ ++=2211 )(d 对β的表达式唯一12. 下列说法正确的是( ))(a 若有不全为零的数s k k k ,,,21 ,使得02211=++s s k k k ααα ,则s ααα,,,21 线性无关)(b 若有不全为零的数s k k k ,,,21 ,使得02211≠++s s k k k ααα ,则s ααα,,,21 线性无关)(c 若s ααα,,,21 线性相关,则其中每个向量均可由其余向量线性表示 )(d 任何1+n 个n 维向量必线性相关13. 设β是向量组T )0,0,1(1=α,T )0,1,0(2=α的线性组合,则β=( )T a )0,3,0)(( T b )1,0,2)(( T c )1,0,0)(( T d )1,2,0)((14. 设有向量组()T4,2,1,11-=α,()T2,1,3,02=α,()T 14,7,0,33=α,()T0,2,2,14-=α,()T 10,5,1,25=α,则该向量组的极大线性无关组为( )321,,)(αααa 421,,)(αααb 521,,)(αααc 5421,,,)(ααααd15. 设T a a a ),,(321=α,T b b b ),,(321=β,T a a ),(211=α,T b b ),(211=β,下列正确的是( );,,)(11也线性相关线性相关,则若βαβαa 也线性无关;线性无关,则若11,,)(βαβαb 也线性相关;线性相关,则若βαβα,,)(11c 以上都不对)(d二、填空题1. 若T )1,1,1(1=α,T )3,2,1(2=α,T t ),3,1(3=α线性相关,则t=▁▁▁▁。
复旦大学精品课程《线性代数》课件,线性变换课件复习资料

x
L x
图5.2: 镜像变换
∴ y1 + y2 = σ (x1 ) + σ (x2 ) = σ (x1 + x2 ) ∈ Im (σ ) (3). 数乘封闭性, 对∀c ∈ F ∀x ∈ Ker (σ ) , ∀y ∈ Im (σ ) , σ (cx) = cσ (x) = c0 = 0 ⇒ cx ∈ Ker (σ ) ∃x ∈ V 使得y = σ (x) , 则cy = cσ (x) = σ (cx) ∈ Im (σ )
由此左分配律成立,即 σ · (τ + π ) = σ · τ + σ · π . 同理可证明右分配律成立. 对∀c ∈ F, σ, τ ∈ L(V ), 有 [(cσ ) · τ ] (•) = (cσ ) (τ (•)) = cσ (τ (•)) = c (σ · τ ) (•) 从而, (cσ ) · τ = c (σ · τ )成立. 同理可证 σ · (cτ ) = c (σ ·). 综上所述, L(V )是F 上的代数. 例 7. 设σ, τ 为R2 空间上的线性变换, 分别定义如下: ∀ 求α= −3 2
第五章
线性变换
上 一 章 中 介 绍 了 线 性 空 间 的 概 念, 本 章 将 讨 论 线 性 空 间 之 间 的 联 系. 它 们 之 间 的 联 系 主 要 反 映 为 线 性 空 间 之间的映射, 所以研究定义域和值域都是线性(子)空间的映射是数学分析的基本目标之一, 其中最简单和最基 本的一类映射是线性变换(Linear Transformation). 它也是线性代数中一个主要研究对象.
证: 验证L(V )上关于线性变换的乘法满足定义5.4中的三个条件: (1) 对 ∀σ, τ, π ∈ L(V ), 有 (σ · τ ) · π = (σ · τ ) (π (•)) = σ (τ (π (•))) = σ ((τ · π ) (•)) = σ · (τ · π ) (2) L(V )中元素V 上的恒等变换“1V ”即为e, 且对∀σ ∈ V , 满足 1V · σ = σ · 1V = σ , 因此恒等变换 是L(V )的恒等元. (3) 对∀σ, τ, π ∈ L(V ), 有 [σ · (τ + π )] (•) = σ ((τ + π ) (•)) = σ (τ (•) + π (•)) = σ (τ (•)) + σ (π (•)) = (σ · τ ) (•) + (σ · π ) (•)
线性代数期末复习提纲

★ 线性代数基本内容、方法及要求第一部分 行列式【主要内容】1、行列式的定义、性质、展开定理、及其应用——克莱姆法则2、排列与逆序3、方阵的行列式4、几个重要公式:(1)TAA =; (2)AA11=-; (3)A kkA n=;(4)1*-=n AA ; (5)B A AB =; (6)B A BA BA ==**0;(7)⎩⎨⎧≠==∑=j i j i A A a ni ijij ,,01; (8)⎩⎨⎧≠==∑=j i j i A A a nj ij ij ,,01(其中B A ,为n 阶方阵,k 为常数)5、行列式的常见计算方法:(1)利用性质化行列式为上(下)三角形;(2)利用行列式的展开定理降阶; (3)根据行列式的特点借助特殊行列式的值【要求】1、了解行列式的定义,熟记几个特殊行列式的值。
2、掌握排列与逆序的定义,会求一个排列的逆序数。
3、能熟练应用行列式的性质、展开法则准确计算3-5阶行列式的值。
4、会计算简单的n阶行列式。
5、知道并会用克莱姆法则。
第二部分矩阵【主要内容】1、矩阵的概念、运算性质、特殊矩阵及其性质。
2、方阵的行列式3、可逆矩阵的定义、性质、求法(公式法、初等变换法、分块对角阵求逆)。
4、n阶矩阵A可逆⇔0A⇔A为非奇异(非退化)的矩阵。
≠⇔n)(⇔A为满秩矩阵。
R=A⇔0AX只有零解=⇔bAX=有唯一解⇔A的行(列)向量组线性无关⇔A的特征值全不为零。
⇔A可以经过初等变换化为单位矩阵。
⇔A可以表示成一系列初等矩阵的乘积。
5、矩阵的初等变换与初等矩阵的定义、性质及其二者之间的关系。
6、矩阵秩的概念及其求法((1)定义法;(2)初等变换法)。
7、矩阵的分块,分块矩阵的运算:加法,数乘,乘法以及分块矩阵求逆。
【要求】1、 了解矩阵的定义,熟悉几类特殊矩阵(单位矩阵,对角矩阵,上、下三角形矩阵,对称矩阵,可逆矩阵,伴随矩阵,正交矩阵)的特殊性质。
2、熟悉矩阵的加法,数乘,乘法,转置等运算法则,会求方阵的行列式。
《线性代数》复习提纲

《线性代数》复习提纲第一部分:基本要求(计算方面)四阶行列式的计算;N阶特殊行列式的计算(如有行和、列和相等);矩阵的运算(包括加、减、数乘、乘法、转置、逆等的混合运算);求矩阵的秩、逆(两种方法);解矩阵方程;含参数的线性方程组解的情况的讨论;齐次、非齐次线性方程组的求解(包括唯一、无穷多解);讨论一个向量能否用和向量组线性表示;讨论或证明向量组的相关性;求向量组的极大无关组,并将多余向量用极大无关组线性表示;将无关组正交化、单位化;求方阵的特征值和特征向量;讨论方阵能否对角化,如能,要能写出相似变换的矩阵及对角阵;通过正交相似变换(正交矩阵)将对称矩阵对角化;写出二次型的矩阵,并将二次型标准化,写出变换矩阵;判定二次型或对称矩阵的正定性。
第二部分:基本知识一、行列式1.行列式的定义用n^2个元素aij组成的记号称为n阶行列式。
(1)它表示所有可能的取自不同行不同列的n个元素乘积的代数和;(2)展开式共有n!项,其中符号正负各半;2.行列式的计算一阶|α|=α行列式,二、三阶行列式有对角线法则;N阶(n>=3)行列式的计算:降阶法定理:n阶行列式的值等于它的任意一行(列)的各元素与其对应的代数余子式乘积的和。
方法:选取比较简单的一行(列),保保留一个非零元素,其余元素化为0,利用定理展开降阶。
特殊情况上、下三角形行列式、对角形行列式的值等于主对角线上元素的乘积;(2)行列式值为0的几种情况:Ⅰ行列式某行(列)元素全为0;Ⅱ行列式某行(列)的对应元素相同;Ⅲ行列式某行(列)的元素对应成比例;Ⅳ奇数阶的反对称行列式。
二.矩阵1.矩阵的基本概念(表示符号、一些特殊矩阵――如单位矩阵、对角、对称矩阵等);2.矩阵的运算(1)加减、数乘、乘法运算的条件、结果;(2)关于乘法的几个结论:①矩阵乘法一般不满足交换律(若AB=BA,称A、B是可交换矩阵);②矩阵乘法一般不满足消去律、零因式不存在;③若A、B为同阶方阵,则|AB|=|A|*|B|;④|kA|=k^n|A|3.矩阵的秩(1)定义非零子式的最大阶数称为矩阵的秩;(2)秩的求法一般不用定义求,而用下面结论:矩阵的初等变换不改变矩阵的秩;阶梯形矩阵的秩等于非零行的个数(每行的第一个非零元所在列,从此元开始往下全为0的矩阵称为行阶梯阵)。
《线性代数》复习题

《线性代数》复习题一、单项选择题1、行列式2 35 4中元素12a 的代数余子式是( )A .5 B.-5 C.3 D.-3 2、设矩阵2332,33,B AC ⨯⨯⨯,则下列运算可行的是( ) A 、CAB B 、 ACB C 、 CBAD 、BAC3、已知B =1 35 4⎛⎫⎪⎝⎭,则伴随矩阵*B =( ) A .1 53 4⎛⎫ ⎪⎝⎭ B.1 -3-5 4⎛⎫ ⎪⎝⎭ C. 4 -3-5 1⎛⎫ ⎪⎝⎭ D. 4 35 1⎛⎫ ⎪⎝⎭4、如果12(,,...),s r r s ααα=<则下列结论正确的是:( )A 、12,,...s ααα线性无关B 、若A=(12,,...s ααα),则r(A)=sC 、12,,...s ααα线性相关D 、以上答案都不对5、n 元齐次线性方程组AX=0由m 个方程组成,当m <n 时,AX=0( )A 、无解B 、有唯一非零解C 、有唯一零解D 、有无穷多个非零解二、填空题6、若行列式111221222a a a a =,则11122111221222a a a a a a =-- .7、已知A=1234⎛⎫⎪⎝⎭,则A 1-= . 8、n 元齐次线性方程组AX=0有非零解,且r(A)= r ,则基础解系所含向量的个数为 . 9、若向量β可由向量组12,,...s ααα线性表示,则向量组β,12,,...s ααα线性 . 10、若A 是可逆矩阵,0λ为A 的特征值,则1λ为 的特征值.三、判断题11、如果P 为n 阶初等矩阵,A 为n 阶矩阵,则r(AP)≠ r(A). ( )12、如果AB=AC ,且A ≠0,则B=C. ( )13、A 、B 均为n 阶反对称矩阵,则A +B 为反对称矩阵. ( )14、已知三阶矩阵的行列式A =()123,,A A A =1,则231det(,2,)A A A =2. ( )15、n R 中的一组基一定是线性无关的. ( )四、计算题16、计算行列式4-001-307322-321.17、求矩阵方程3541212301X -⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭.18、已知A=2310,1202B ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭且1-=ABA C ,求2C .19、已知向量组T ),(7,1-2=1α,T ),(11,41=2α,T),(3,6-3=3α,讨论其线性相关性. 20、用配方法化二次型32212221321623),,(x x x x x x x x x f ---=为标准形,并写出非退化的线性替换五、解答题21、设A=111 023 001-⎛⎫ ⎪ ⎪ ⎪⎝⎭(1)求A的特征值与特征向量(2)A是否可对角化?为什么?(3)求TA的特征值.22、讨论线性方程组123123123211x x pxx px xpx x x++=-⎧⎪++=⎨⎪++=⎩解的情况,并在有无穷多解时,用基础解系表示其全部解.六、证明题23、证明:设A是n阶矩阵,则A与TA有相同的特征值.。
线性代数综合复习资料

《线性代数》综合练习资料第一章 n 阶行列式一、判断题1.如果n (n>1)阶行列式的值等于零,则行列式中必有两行成比例。
( × ) 2.如果n (n>1)阶行列式的值等于零,则行列式中必有一行全为零。
( × ) 3.交换一个行列式的两行(或两列),则行列式值改变符号 ( √ ). 4. 已知n 阶矩阵A 各列元素之和为0,则A =0 ( √ ) 5.ij ijA a D ,33⨯=为ij a 的代数余子式,则0231322122111=++A a A a A a . ( √ )6、齐次线性方程组有非零解,则系数行列式的值一定为零。
( √ )7、1122121233443434a b a b a a b b a b a b a a b b ++=+++ ( × )二.填空题:1.多项式=)(x P 333322221111x c b a x c b a xcb a (其中a,b,c 是互不相同的数)的根是 ,,x a x b x c === .2.. 三阶行列式 D =333222111435214352143521a a k a a a k a a a k a +++++++++ = 0 。
3、(),____1________.nn ij ij D a a D a a ===-=-若则4.设A 为m 阶方阵,B 为n 阶方阵,且|A |=3,|B|=2,C=00A B⎛⎫⎪⎝⎭,则|C |=______()16nm-⋅_____. 5、设四阶行列式3214214314324321,ij A 是其()j i ,元的代数余子式,则_______3331=+A A ,_______3432=+A A .根据定义求即可 6 .已知4阶行列式D 的第一行元素分别是-1,1,0,2;第四行元素对应的余子式依次为5,x ,7,4,则x = 3-7、已知n 阶行列式100110111 =D ,则D 的所有元素的代数余子式之和等于 n .三.选择题1、设)(则B a a a a a a a a a a a a D a a a a a a a a a D =---===333231312322212113121111333231232221131211324324324,1 (A)0 ; (B)―12 ; (C )12 ; (D )12.已知四阶行列式D 中第三列元素依次为-1,2,0,1,它们的余子式依次分别为5,3,-7,4, 则D= ( A )(A ) -15 (B ) -5 (C ) 5 (D ) 1 3、已知四阶行列式A 的值为2,将A 的第三行元素乘以―1加到第四行的对应元素上去,则现行列式的值( A )(A ) 2 ; (B ) 0 ; (C ) ―1 ; (D ) ―24、n 阶行列式D 不为零的充分必要条件是( D )(A )D 中至少有n n -2个元素不为零 (B )D 中所以元素都不为零(C )D 的任意两列元素之间不成比例 (D )以D 为系数行列式的非齐次线性方程组有唯一解5.如果行列式02002000110011=kk k ,则( A )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一部分、复习纲要
1、行列式:掌握行列式的计算:①利用行列式的性质②按行(列)展开③利用已知特征值.
2、矩阵及其运算:熟练掌握矩阵的运算(线性运算及矩阵乘法),会用伴随矩阵求逆阵,知道矩阵分块的运算律.
3、矩阵的初等变换与线性方程组:熟练掌握用矩阵的初等行变换把矩阵化成行阶梯形和行最简形;掌握用初等变换求可逆矩阵的逆矩阵的方法(包括求B A 1-);熟练掌握用矩阵的初等变换求解线性方程组的方法;会讨论带参数的方程组的解的情况.
4、向量组的线性相关性:熟悉一个向量能由一个向量组线性表示这一概念与线性方程组的联系;知道两向量组等价的概念;熟悉向量驵线性相关、线性无关的概念与齐次线性方程组的联系;会用初等变换求向量组的秩和最大无关组;掌握齐次方程组的秩与解空间的维数之间的关系,熟悉基础解系的求法;会求向量组生成的向量空间的维数,会求从旧基到新基的过渡矩阵及向量的一个基下的坐标.
5、相似矩阵及二次型:了解内积、长度、正交、规范正交基、正交阵、特征值与特征向量的概念;掌握特征值与特征向量的求法,熟悉特征值的性质;知道矩阵相似、合同的概念及性质,熟悉二次型及其矩阵表示,掌握用正交变换把二次型化为标准型的方法;知道对称阵的性质、可对角化的条件,二次型的正定性及判别法等.
第二部分、典型题型
一、填空题
1、设4阶矩阵A 的秩()2R A =,S 是齐次线性方程组0Ax =的解空间,则S 的维数为__2_____,A 的伴随矩阵*
A 的秩是______0_______.
2、 已知3阶方阵A 的特征值为1,2,-3,则A 的迹t r A =___0_____,det A =___-6_____,
*|32|A A E ++=_____25________,
3、n 阶矩阵A 可对角化的充分必要条件是_____A 有n 个线性无关的特征向量_________________.
对称阵A 为正定的充分必要条件是________ A 合同于单位矩阵E
__________.
4、向量组123451122102151,,,,.2031311041ααααα⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥
-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=====⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦
它的秩是__3_______,一个最大无关组是
_____321,,ααα_______________________.
5、 实二次型222
12312133924f x x x x x x x =++-+的秩r = ,
正惯性指数p = ,它是 定的. 6、设1
2002
50000250
038
A ⎛⎫ ⎪
⎪= ⎪ ⎪⎝⎭,则||A = 1 ,1A -= ⎪⎪⎪⎪
⎪⎭
⎫ ⎝⎛----23005
800001200
25 . 7、设n 元线性方程组Ax b =的系数矩阵A 的秩为r ,若此方程组有解,则当 r =n 时,方程组
有惟一解;当 r <n 时方程组有无穷多解. 8、矩阵00A C B ⎛⎫=
⎪⎝⎭的伴随矩阵*
C =___⎪⎪⎭
⎫
⎝⎛A B 0
0___________. 9、向量123α⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,321β⎡⎤
⎢⎥=⎢⎥⎢⎥⎣⎦
,矩阵T A αβ=,则6A =___A 5
10___________.
10、设A 为n 阶矩阵(n ≥2),*
A 为A 的伴随阵,则当()R A n =时,)
(*A R = n ___;当()1R A n =-
时,)(*A R = _1 _ ;当()1R A n <- 时,)(*A R = 0 .
11、设3阶矩阵A 的特征值为2,1,3-,*2B E A =-(其中*
A 是A 的伴随矩阵),则
B 的行列式
||B =__-385____.
12、设12243311A t
-⎛⎫
⎪
=- ⎪ ⎪-⎝⎭
,并且A 的列向量组线性相关,则t = 3 . 13、已知4维列向量组123451122102151,,,,.2031311041ααααα⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤
⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥
-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=====⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦
所生成的向量空间为V ,则V
的维数dim V = _3____.
二、解答题
1、设3
112
5134
201115
3
3
D ---=
---,D 的(,)i j 元的代数余子式记作ij A ,求31323334322A A A A +-+. 2、计算n 阶行列式
12121
2
333
n
n n n x x x x x x D x x x ++=
+
4、设112201102P ⎛⎫ ⎪=- ⎪ ⎪⎝⎭,500010005-⎛⎫ ⎪Λ= ⎪ ⎪⎝⎭,并且AP P =Λ,求100
A .
5、设202010001P ⎛⎫ ⎪= ⎪ ⎪⎝⎭, 200010002⎛⎫ ⎪Λ= ⎪ ⎪⎝⎭
,并且AP P =Λ,求100
A .
6、非齐次线性方程组123123212322,
2,2.
x x x x x x x x x λλ-++=-⎧⎪
-+=⎨⎪+-=⎩当λ取何值时有解?并求出它的通解.
7、非齐次线性方程组1312312
3,421,642 3.
x x x x x x x x λλλ+=⎧
⎪
++=+⎨⎪++=+⎩当λ取何值时有解?并求出它的通解.
8、设方阵A 满足:2
20A A E --=,证明A 及2A E +都可逆,并求1
A -及1
(2)A E -+
9、设n 阶矩阵A 和B 满足AB A B =+,
(i )证明A E -为可逆矩阵;(ii )若350120002A ⎛⎫ ⎪
= ⎪ ⎪⎝⎭
,求B .
10、已知向量
11010α⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,2222a α⎡⎤
⎢⎥
⎢⎥=⎢⎥
⎢⎥
⎣⎦
,
,33111α⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,416b β⎡⎤⎢⎥-⎢⎥=⎢⎥⎢⎥⎣⎦, (a )问a ,b 取何值时,β不能由向量组123,,ααα线性表示?
(b )问a ,b 取何值时,β能由向量组123,,ααα线性表示?并且写出其一般表示式.
、D 、之和的值求第四行各元素余子式设行列式
223500702222
04033--=
11、求向量组1133α⎛⎫ ⎪= ⎪ ⎪⎝⎭,2121α⎛⎫ ⎪= ⎪ ⎪⎝⎭,3112α⎛⎫ ⎪=- ⎪ ⎪⎝⎭,4213α⎛⎫ ⎪
= ⎪ ⎪⎝⎭
的一个最大无关组与秩,并把其余向量用最
大无关组线性表示.
12、已知二次型为 222
123232334f x x x x x =+++
(1)写出二次型f 的矩阵表达式;
(2)求一个正交变换x Py =,把二次型f 化为标准形,并写出该标准形.
.、ax x x x b x x a x x x x x x x x b a 、通解并在有无穷多解时求其无解或有无穷多解
有惟一解线性方程组为何值时问?.
123,2)3(,122,
0,,1343214324324
321⎪
⎪⎩⎪⎪
⎨
⎧-=+++=--+-=++=+++.
AP P P ,a a A 、Λ=Λ⎪⎪
⎪⎭
⎫ ⎝⎛=-1,,6002802214使并求可逆矩阵的值试求常数相似于对角阵若矩阵。