初三数学圆的知识点和公式总结

合集下载

九年级下册数学圆相关知识点总结

九年级下册数学圆相关知识点总结

九年级下册数学圆相关知识点总结数学是一门抽象的学科,其中的圆是一个非常重要的几何概念。

我们通过学习九年级下册数学,可以掌握许多关于圆的知识点。

本文将对这些知识点进行总结,帮助大家更好地理解圆的性质和应用。

一、圆的基本概念圆是由平面上任意一点到定点的距离都相等的点的集合。

其中,定点称为圆心,距离称为半径。

圆用圆心O和半径r表示为Γ(O, r)。

二、圆的性质1. 圆的直径和半径之间的关系:圆的直径是通过圆心的任意两点的线段。

直径的长度等于半径的长度的两倍,即d = 2r。

2. 圆心角和弧度制:圆心角是指以圆心为顶点的两条半径所夹的角。

圆心角的大小等于它所对应的弧长所占据的圆周的比例。

我们常用弧度制来度量圆心角,其中一个圆心角所对应的弧长等于圆的半径。

3. 弧和弧长:弧是圆上任意两点之间的一段弧线。

弧长是弧上的一段弧线的长度。

弧长的计算公式是l = rθ,其中l代表弧长,r代表半径,θ代表圆心角的弧度制表示。

4. 圆的周长和面积:圆的周长是圆周上的一段完整的弧线的长度,用C表示。

圆的周长计算公式是C = 2πr,其中π约等于3.14。

圆的面积是圆内部所有点与圆心之间的距离和,用A表示。

圆的面积计算公式是A = πr²。

三、弦和切线的性质1. 弦的性质:弦是连接圆上任意两点的线段。

圆上的弦的中点连线垂直于弦。

同样长度的弦,离圆心越远弧度越大。

2. 切线的性质:切线是与圆相切于圆上一点的直线。

切线与半径的夹角是90°。

同一条切线两点到圆心的距离相等。

圆的半径与切线相交的点,与半径所对应的弧角度相等。

四、圆与多边形的关系1. 正多边形和圆的关系:正多边形是指所有边和角都相等的多边形。

规则的正多边形能够内接于一个圆,且正多边形的边数越多,内接圆的半径越大。

2. 圆与正多边形的周长和面积:圆与正多边形的周长之间满足的关系式是:n ×弦长 = C,其中n代表正多边形的边数。

圆与正多边形的面积之间满足的关系式是:n ×弦长 × r/2 = A。

九年级数学圆的知识点总结大全

九年级数学圆的知识点总结大全

圆是数学中的一个基本几何概念,九年级数学中关于圆的知识点如下:一、圆的定义和要素:1.圆的定义:由平面上离一个确定点(圆心)的距离相等的点的全体,构成一个平面图形,称为圆。

2.圆的要素:圆心、半径、直径、弧、弦、切线、割线、扇形、弓形等。

二、圆的性质:1.圆的任意两点之间的距离相等。

2.圆的半径是圆上任意一点到圆心的距离。

3.圆的直径是通过圆心的一条线段,直径的长度等于半径的两倍。

4.圆的弧是圆上两点之间的一段曲线,圆的圆心角对应的弧长是圆的周长的一部分。

5.圆的弦是圆上的两点间的线段。

6.圆的切线是与圆只有一个交点的直线。

7.圆的割线是与圆有两个交点的直线。

8.圆的相似圆是指具有相同圆心,半径成比例的圆。

9.圆与其他几何图形的关系,如圆与直线、圆与多边形等。

三、圆的图形和公式:1.圆的标准方程:(x-a)²+(y-b)²=r²,其中(a,b)为圆心坐标,r为半径。

2.圆的一般方程:x²+y²+Dx+Ey+F=0,对应一般方程的圆心坐标为(-D/2,-E/2),半径为√((D²+E²)/4-F)。

3.圆的表示方法:各种符号和字母的含义及表示。

四、圆的计算题:1.圆的周长:C=2πr,其中C为周长,r为半径。

2.圆的面积:A=πr²,其中A为面积,r为半径。

3.圆的弧长公式:L=2πr(θ/360°),其中L为弧长,r为半径,θ为圆心角的度数。

4.扇形的面积公式:A=(θ/360°)πr²,其中A为扇形的面积,r为半径,θ为圆心角的度数。

5. 弓形的面积公式:A=(θ/360°)πr²-hr,其中A为弓形的面积,r为半径,θ为弧对应的圆心角的度数,h为弓形的高。

五、圆的证明题:1.圆上的弦垂直于直径。

2.圆上的垂直于弦的直径。

3.圆的半径与切线垂直。

六、圆的应用:1.圆的模拟应用,如钟表等。

九年级圆数学知识点

九年级圆数学知识点

九年级圆数学知识点【九年级圆数学知识点】一、定义和性质在几何学中,圆是由平面上距离给定点(圆心)的所有点的集合所形成的图形。

以下是九年级学生需要了解的圆的相关知识点:1. 圆的定义:圆是平面上距离圆心相等的点的集合。

2. 圆心:圆的中心点,通常用字母O表示。

3. 半径:从圆心到圆上任意一点的距离,通常用字母r表示。

4. 直径:通过圆心的两个点之间的距离,是圆的最长线段,等于半径的两倍。

5. 弦:在圆上任意两点间的线段。

6. 弧:在圆上两点间的曲线部分。

二、圆的相关公式九年级学生需要了解和掌握以下与圆相关的公式:1. 圆的周长公式:C = 2πr,其中C表示圆的周长,r表示半径。

2. 圆的面积公式:A = πr²,其中A表示圆的面积,r表示半径。

3. 弧长公式:L = 2πr(θ/360°),其中L表示弧长,r表示半径,θ表示圆心角的度数。

4. 扇形面积公式:S = (θ/360°)πr²,其中S表示扇形的面积,r表示半径,θ表示圆心角的度数。

5. 弓形面积公式:S = (θ/360°)πr² - (1/2)bh,其中S表示弓形的面积,r表示半径,θ表示圆心角的度数,h表示弓形的高度。

三、圆的性质和定理九年级学生需要了解和掌握以下与圆相关的性质和定理:1. 弧度制:圆心角的度数可以用弧度来表示,1弧度对应的角度为180/π度。

2. 切线和半径垂直定理:切线和通过切点的半径垂直相交。

3. 切线定理:切线和半径的关系是垂直关系,切点在圆上。

4. 弦弧定理:如果两条弦在圆上的弧上所对应的角相等,则这两条弦相等。

5. 弧角定理:位于同一圆周上的两条弧所对应的圆心角相等。

四、习题示例以下是几个九年级圆相关习题的示例,供学生参考和练习:1. 若一个圆的周长为24π cm,则该圆的半径是多少?2. 一个圆的直径为14 cm,求其面积和周长。

3. 圆的半径为6 cm,弦的长度为8 cm,求该弦所对应的圆心角的度数。

九年级数学圆的知识点和公式总结

九年级数学圆的知识点和公式总结

九年级数学圆的知识点和公式总结圆是我们数学学习中一个非常重要的概念,它有着丰富的性质和应用。

在九年级数学中,我们学习了很多关于圆的知识点和公式。

本文将对这些内容进行总结和归纳。

1. 圆的定义和性质圆是由平面上任意一点到定点的距离都相等的所有点的集合。

圆的性质有很多,其中一些重要的包括:圆上任意两点之间的直线段为弦,圆心到弦的垂线恰好平分弦,圆上任意一点到圆心的距离为半径,等等。

2. 圆的元素圆的重要元素有圆心、半径和直径。

圆心是圆的中心点,通常用字母O表示。

半径是圆心到圆上任意一点的距离,通常用字母r 表示。

直径是两个在圆上相对的点之间的线段,它等于两倍的半径。

3. 弧的定义和性质弧是圆上的一段弯曲部分,它由圆上两个点之间的弧度所确定。

弧有弧长和弧度两个重要的性质。

弧长是圆的一部分的长度,它可以通过圆的周长和圆心角的比例来计算。

弧度是圆的一部分所对应的圆心角所占据的弧长比例,它等于角度除以360°再乘以2π。

4. 圆的周长和面积公式圆的周长是圆上一周的长度,它等于直径乘以π。

周长公式可以表示为:C = πd 或C = 2πr,其中C是周长,d是直径,r是半径。

圆的面积是圆内部的所有点的集合的大小,它等于半径平方乘以π。

面积公式可以表示为:A = πr²,其中A是面积。

5. 弧长和扇形面积公式弧长是圆的一部分的长度,它可以通过弧度和半径的乘积来计算,即L = rθ。

扇形是由圆心、两个弧上的点和弧组成的区域,它的面积可以通过弧度和半径的平方乘积再除以2来计算,即A =½r²θ。

6. 切线和切点切线是与圆相切于一点的直线,它垂直于半径。

切点是切线和圆的交点,它位于切线与圆的交点处。

在九年级数学中,我们还学习了切线与半径的性质,例如切线长等于半径和切点与圆心连线所夹的角为直角。

7. 圆与其他几何图形的关系圆与其他几何图形之间存在着许多有趣的关系。

例如,圆与直线的关系可以分为相交、相离和相切三种情况。

九年级圆知识点总结

九年级圆知识点总结

九年级圆知识点总结在数学中,圆是一个重要的几何概念,也是九年级数学课程中的重点内容之一。

掌握圆的基本性质和相关定理对于学好数学非常重要。

本文将对九年级圆的知识点进行总结和归纳,希望能够帮助同学们更好地理解和掌握圆。

一、圆的性质1. 定义:圆是由平面内所有离定点相等距离的点组成的集合。

这个定点叫做圆心,相等的距离叫做圆的半径。

2. 圆的要素:圆心、半径、直径、弦、弧、切线、相切等。

3. 圆的基本性质:在同一个圆或等圆中,以下性质成立。

- 圆心角相等:具有相同圆心的弧所对的圆心角相等。

- 弧长比:在同一圆或等圆中,弧长是半径的倍数。

- 弦长比:在同一圆或等圆中,弦长相等的弦所对的两条弧相等。

- 圆内任何一点到圆心的距离相等。

二、圆的重要定理和公式1. 弧度制:弧度是角度的补充单位,它是圆心角所对圆弧长度等于半径的角。

弧度与角度之间的换算关系是:弧度 = 角度× π / 180。

2. 圆周长:圆周长等于直径与π的乘积,即C = πd。

其中d为圆的直径。

3. 扇形面积:扇形面积等于圆心角所对弧所在圆的面积的比例,即S = (θ/360°) × πr²。

其中θ为圆心角的度数。

4. 弧长公式:弧长等于圆心角所对弧的弧度乘以半径,即L = θr。

5. 切线的性质:切线与半径的关系是垂直。

并且半径和切线在切点处相互垂直(T ⊥ R)。

6. 切线长:切线长等于半径与相切点到圆心的距离的乘积,即L = r × d。

三、圆的相关定理1. 内切圆定理:如果一个圆与一个三角形的三条边相切,则这个圆的圆心是这个三角形的内心。

2. 外切圆定理:如果一个圆与一个三角形的每一边都相切,则这个圆的圆心是这个三角形的外心。

3. 正切线定理:如果一条直线与一个圆相切,则这条直线垂直于半径,并且相切点处的切线与直线为垂直关系。

4. 弦弧定理:在同一个圆中,两条相交弦所对的弧相等。

综上所述,九年级圆的知识点包括圆的性质、圆的重要定理和公式,以及圆的相关定理。

九年级数学圆的知识点详解

九年级数学圆的知识点详解

九年级数学圆的知识点详解圆是数学中的一个基本几何形状,学习圆的知识点对九年级的数学学习至关重要。

本文将详细解释九年级数学中涉及的圆的知识点,包括圆的定义、性质、常见公式等。

希望通过本文的解析,能够帮助九年级的学生更好地掌握圆的相关概念和方法。

1. 圆的定义圆是由平面上与一个确定点的距离恒定的所有点组成的图形。

这个确定点称为圆心,距离称为半径。

圆可以用符号“⭕”表示,例如,圆O的圆心为O,半径为r,则该圆可以表示为⭕O(r)。

2. 圆的性质(1)圆上任意两点之间的距离等于圆心到这两点的距离,设圆心为O,圆上两点A和B,OA = OB。

(2)圆上的任意一点与圆心的距离等于半径的长度,即OA = r。

(3)圆的直径是通过圆心的一条线段,且它的两个端点都在圆上。

直径的长度等于半径的两倍,即d = 2r。

(4)圆的周长是圆上任意一点到它的相邻点的距离的总和,也就是圆上的任意一条线段的长度。

周长的公式为C = 2πr,其中π取3.14或3.14159。

(5)圆的面积是圆内部的所有点构成的图形的总面积。

面积的公式为A = πr²。

3. 圆的相关公式(1)圆的周长公式:C = 2πr。

其中,C代表圆的周长,r代表半径。

(2)圆的面积公式:A = πr²。

其中,A代表圆的面积,r代表半径。

(3)圆的直径与周长之间的关系:C = πd。

其中,C代表圆的周长,d代表直径。

(4)圆的直径与面积之间的关系:A = π(d/2)² = (π/4)d²。

其中,A代表圆的面积,d代表直径。

(5)圆的弧长与圆心角之间的关系:弧长L = rθ。

其中,L代表弧长,r代表半径,θ代表圆心角的弧度数。

4. 圆的应用圆的知识点不仅仅限于几何图形的计算,还涉及到很多实际应用。

比如,在工程中,通过计算圆的面积可以求得圆形的物体的表面积,从而方便设计和制造。

在日常生活中,圆的知识也可应用于制作蛋糕、制作圆形饼干等等,这些都需要对圆的周长和面积进行精确计算。

数学九年级下册圆的知识点

数学九年级下册圆的知识点

数学九年级下册圆的知识点圆是数学几何中的一个重要概念,广泛应用于各个领域。

在九年级的数学学习中,我们将更加深入地学习圆的相关知识。

本文将围绕圆的定义、性质、公式和应用等方面展开详细介绍。

一、圆的定义在数学中,圆是由平面上到一个固定点距离相等的所有点组成的图形。

其中,距离固定点最远的点称为圆的半径,固定点称为圆心。

圆心与圆上任意一点之间的线段称为半径。

二、圆的性质1. 圆的半径相等性质:圆上任意两点间的线段都是半径,且长度相等。

2. 圆的直径性质:圆的直径是圆上任意两点的连线,且长度是半径的两倍。

3. 圆的弦性质:圆上的弦分为等弦和不等弦两种。

等弦对应的弦长相等,而不等弦对应的弦长不相等。

4. 圆的切线性质:过圆上一点可以作无数条切线,这些切线与以该点为顶点的两条切线相等,且相互垂直。

三、圆的公式1. 圆的周长公式:圆的周长称为圆周长,通常用C表示,公式为C = 2πr,其中r为圆的半径,π取近似值3.14。

2. 圆的面积公式:圆的面积称为圆面积,通常用A表示,公式为A = πr²,其中r为圆的半径,π取近似值3.14。

四、圆的应用1. 圆的运动学应用:在物理学中,圆的运动学应用非常广泛,例如机械运动中的回转运动、行星围绕太阳的椭圆轨道等。

2. 圆的建筑应用:在建筑学中,圆被广泛应用于设计和构建中,例如建筑物中的圆形窗户、圆形拱门等。

3. 圆的电子应用:在电子工程中,圆被广泛应用于电路板设计、天线设计等领域。

4. 圆的地理应用:在地理学中,圆被用于表示地球的形状,地球是近似于一个球体。

总结:在数学九年级下册中,我们系统学习了圆的定义、性质、公式和应用等知识点。

掌握了这些知识,我们能够更好地理解圆的特性,应用于各种实际问题中。

通过灵活运用圆的相关知识,我们可以提高解决问题的能力和思维能力,为今后的数学学习打下坚实的基础。

(完整版)九年级数学圆的知识点总结大全

(完整版)九年级数学圆的知识点总结大全

第四章:《圆》一、知识回顾圆的周长:C=2πr或C=πd、圆的面积:S=πr²圆环面积计算方法:S=πR²-πr²或S=π(R²-r²)(R是大圆半径,r是小圆半径)二、知识要点一、圆的概念集合形式的概念:1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;固定的端点O为圆心。

连接圆上任意两点的线段叫做弦,经过圆心的弦叫直径。

圆上任意两点之间的部分叫做圆弧,简称弧。

2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线;3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。

二、点与圆的位置关系1、点在圆内⇒d r<⇒点C在圆内;2、点在圆上⇒d r=⇒点B在圆上;3、点在圆外⇒d r>⇒点A在圆外;三、直线与圆的位置关系1、直线与圆相离⇒d r>⇒无交点;A2、直线与圆相切 ⇒ d r = ⇒ 有一个交点;3、直线与圆相交 ⇒ d r < ⇒ 有两个交点;四、圆与圆的位置关系外离(图1)⇒ 无交点 ⇒ d R r >+; 外切(图2)⇒ 有一个交点 ⇒ d R r =+; 相交(图3)⇒ 有两个交点 ⇒ R r d R r -<<+; 内切(图4)⇒ 有一个交点 ⇒ d R r =-; 内含(图5)⇒ 无交点 ⇒ d R r <-;五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。

推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;图4图5(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初三数学圆的知识点和公式总结
即将参加中考的同学们,掌握好有关于圆的知识内容,对于后面接触弧、扇形、椭圆等相关知识复习都有一定的帮助。

下面是小编给大家整理的初中数学圆知识点总结,一起来看看吧!
初中数学圆知识点总结【一】
1.不在同一直线上的三点确定一个圆
2.垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧
推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
推论2 圆的两条平行弦所夹的弧相等
3.圆是以圆心为对称中心的中心对称图形
4.圆是定点的距离等于定长的点的集合
5.圆的内部可以看作是圆心的距离小于半径的点的集合
6.圆的外部可以看作是圆心的距离大于半径的点的集合
7.同圆或等圆的半径相等
8.到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
9.定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等
10.推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。

11定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角
12.①直线L和⊙O相交 d
②直线L和⊙O相切 d=r
③直线L和⊙O相离 d>r
13.切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线
14.切线的性质定理圆的切线垂直于经过切点的半径
15.推论1 经过圆心且垂直于切线的直线必经过切点
16.推论2 经过切点且垂直于切线的直线必经过圆心
17.切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角
18.圆的外切四边形的两组对边的和相等外角等于内对角
19.如果两个圆相切,那么切点一定在连心线上
20.①两圆外离d>R+r ②两圆外切 d=R+r
③.两圆相交 R-rr)
④.两圆内切 d=R-r(R>r) ⑤两圆内含dr)
21.定理相交两圆的连心线垂直平分两圆的公共弦
22.定理把圆分成n(n≥3):
⑴依次连结各分点所得的多边形是这个圆的内接正n边形
⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形
23.定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
24.正n边形的每个内角都等于(n-2)×180°/n
25.定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
26.正n边形的面积Sn=pnrn/2 p表示正n边形的周长
27.正三角形面积√3a/4 a表示边长
28.如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
29.弧长计算公式:L=n兀R/180
30.扇形面积公式:S扇形=n兀R^2/360=LR/2
31.内公切线长= d-(R-r) 外公切线长= d-(R+r)
32.定理一条弧所对的圆周角等于它所对的圆心角的一半
33.推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
34.推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径
35.弧长公式 l=a_ a是圆心角的弧度数r >0 扇形面积公式 s=1/2__
初中数学圆知识点总结【二】
一、圆
1、圆的有关性质
在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫圆,固定的端点O叫圆心,线段OA 叫半径。

由圆的意义可知:
圆上各点到定点(圆心O)的距离等于定长的点都在圆上。

就是说:圆是到定点的距离等于定长的点的集合,圆的内部可以看作是到圆。

心的距离小于半径的点的集合。

圆的外部可以看作是到圆心的距离大于半径的点的集合。

连结圆上任意两点的线段叫做弦,经过圆心的弦叫直径。

圆上任意两点间的部分叫圆弧,简称弧。

圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫半圆,大于半圆的弧叫优弧;小于半圆的弧叫劣弧。

由弦及其所对的弧组成的圆形叫弓形。

圆心相同,半径不相等的两个圆叫同心圆。

能够重合的两个圆叫等圆。

同圆或等圆的半径相等。

在同圆或等圆中,能够互相重合的弧叫等弧。

二、过三点的圆
l、过三点的圆
过三点的圆的作法:利用中垂线找圆心
定理不在同一直线上的三个点确定一个圆。

经过三角形各顶点的圆叫三角形的外接圆,外接圆的圆心叫外心,
这个三角形叫圆的内接三角形。

2、反证法
反证法的三个步骤:
①假设命题的结论不成立;
②从这个假设出发,经过推理论证,得出矛盾;
③由矛盾得出假设不正确,从而肯定命题的结论正确。

例如:求证三角形中最多只有一个角是钝角。

证明:设有两个以上是钝角
则两个钝角之和>180°
与三角形内角和等于180°矛盾。

不可能有二个以上是钝角。

即最多只能有一个是钝角。

三、垂直于弦的直径
圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。

垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。

推理1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对两条弧。

弦的垂直平分线经过圆心,并且平分弦所对的两条弧。

平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一个条弧。

推理2:圆两条平行弦所夹的弧相等。

四、圆心角、弧、弦、弦心距之间的关系
圆是以圆心为对称中心的中心对称图形。

实际上,圆绕圆心旋转任意一个角度,都能够与原来的图形重合。

顶点是圆心的角叫圆心角,从圆心到弦的距离叫弦心距。

定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距相等。

推理:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中,有一组量相等,那么它们所对应的其余各组量都分
别相等。

五、圆周角
顶点在圆上,并且两边都和圆相交的角叫圆周角。

推理1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。

推理2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。

推理3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

初中数学圆知识点总结【三】
1、对称性:
a:圆的对称性,虽然其它一些图形也是有,但圆有无数条对称轴这个特性其它图形所没有的,垂径定理,切线长定理,及正n边形的计算都应用到了这个特性。

b:旋转不变性,圆心角、弧、弦、弦心距关系,遇到有关圆习题,要抓住这个特性充分利用,许多问题可以找到解题思路。

2、三个角:圆心角、圆周角,以及圆内接四边形的外角(对角)这是在有关圆的问题中,找角相等必不可少的方法。

3、三个垂直:垂径定理,直径所对的圆周角,切线的性质它可以有效的把许多问题转化到直角三角形中,使问题得以解决。

4、四大关系:点与圆的位置关系,直线与圆的`位置关系,圆与圆的位置关系,圆与正多边形的关系,掌握切线的判定和性质以及有关计算是重点。

5、有关计算问题:有关线段的计算,正多边形的计算,有关扇形及阴影面积的计算,以及圆柱、圆锥侧面展开图的计算。

6、圆中添辅助线一般方法:添与垂径定理相关的辅助线,添与切线有关的辅助线(创造直角的辅助线),添与圆内接四边形相关的辅助线;两圆相交时作公共弦,两圆相切时作分切线,总之添辅助线时,要构造和完善基本图形,切忌破坏图形的完整性。

相关文档
最新文档