高中数学必修一公式整理
高中数学必修一二公式

高中数学必修一二公式
【实用版】
目录
1.函数与导数
2.几何与测量
3.代数与方程
4.概率与统计
5.高中数学学习的重要性
正文
高中数学必修一二公式涵盖了函数与导数、几何与测量、代数与方程、概率与统计等各个方面。
这些公式是高中数学学习的基础,掌握这些公式对于解决各种数学问题具有重要意义。
首先,函数与导数是高中数学的重要组成部分。
函数是数学中描述一种特定关系的方法,而导数则是描述函数在某一点变化率的概念。
掌握这些公式有助于更好地理解函数的性质,同时也为解决实际问题提供了有力的工具。
其次,几何与测量是高中数学的另一个重要领域。
几何学研究的是空间中点、线、面的性质和关系,而测量学则关注的是空间中物体的大小、形状和位置。
这些公式对于解决实际生活中的问题,如计算面积、体积和角度等,具有重要作用。
代数与方程是高中数学的另一个重要组成部分。
代数研究的是数和数之间的关系,方程则是代数中表示未知数的一种方法。
通过掌握代数与方程的相关公式,可以更好地解决实际问题,并培养逻辑思维和分析问题的能力。
最后,概率与统计是高中数学学习的另一个重要方面。
概率是描述随
机事件发生可能性的数值,而统计则是对一组数据进行分析和整理的方法。
掌握概率与统计的相关公式,有助于更好地理解随机事件和数据分析,为解决实际问题提供依据。
总之,高中数学必修一二公式对于学生的学习具有重要意义。
通过掌握这些公式,学生可以更好地理解数学概念,提高解题能力,并培养逻辑思维和分析问题的能力。
高一必修一数学知识点梳理

高一必修一数学知识点梳理高中数学是我国中学阶段的一门主要学科,对于培养学生的逻辑思维能力、分析问题的能力和解决问题的能力起着重要作用。
高一必修一数学是高中数学的起点,它主要包括了数列与函数、不等式与线性规划、平面向量和解析几何等内容。
本文将对高一必修一数学的各个知识点进行详细介绍。
一、数列与函数数列是由一定顺序排列的数所组成的序列,是数学中的基本概念之一。
高一必修一数学中主要涉及到等差数列和等比数列。
1. 等差数列等差数列是指数列中相邻两项之差都相等的数列。
其通项公式为:an=a1+(n-1)d,其中an表示第n项,a1表示首项,d表示公差。
等差数列的前n项和公式为:Sn = (a1+an)×n/2 或 Sn = n[2a1+(n-1)d]/2。
等差数列的性质有:等差中项、首项与末项的关系、公差的计算和改变顺序不变公差等。
2. 等比数列等比数列是指数列中相邻两项之比都相等的数列。
其通项公式为:an=a1×q^(n-1),其中an表示第n项,a1表示首项,q表示公比。
等比数列的前n项和公式为:Sn = a1(1-q^n)/(1-q)。
等比数列的性质有:任意项与末项的关系、公比的计算、倒数数列等。
函数是自变量和因变量之间的一种对应关系。
高一必修一数学主要涉及到一次函数、二次函数和反比例函数。
1. 一次函数一次函数是指函数表达式为y = kx+b的函数,其中k和b为常数,k称为斜率,b称为截距。
一次函数的性质有:图象的斜率、过点的一般式方程、函数的单调性和最值等。
2. 二次函数二次函数是指函数表达式为y=ax^2+bx+c的函数,其中a、b、c为常数,且a≠0。
二次函数的图象为抛物线,其开口方向由系数a的正负决定。
二次函数的性质有:判别式与根的关系、顶点坐标、对称轴、零点、单调性和最值等。
3. 反比例函数反比例函数是指函数表达式为y=a/x的函数,其中a为常数。
反比例函数的图象为一条过原点的开口朝右上或右下的双曲线。
人教版高中数学必修1至必修5公式

必修二:
直线与方程
1)直线的倾斜角
3
人教版高中数学必修一至必修五公式(必会)
定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与 x 轴平行或重合时,我们规定它的倾
斜角为 0 度。因此,倾斜角的取值范围是 0°≤α<180°
(2)直线的斜率
①定义:倾斜角不是 90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用 k 表示。即 k tan 。斜
log a m n log am b n
n log a m
n m
log a
b
(a、b、m
0,n
R, 且a
1)
,
log a
b
log c log c
b a
(a、b、c
0, 且a、c
1)
(换底公式)
函数图像(必须熟)
表1
y ax a 0, a 1
指数函数
定义域 值域
xR
y 0,
对数数函数 y log a x a 0, a 1
○1 在任一直线上任取一点,再转化为点到直线的距离进行求解。
d C1 C2 ( A、B都相等)
○2 设直线 l1 Ax By C1 0, l2 Ax By C2 ; 则两点间的距离为
A2 B2
二、圆的方程
1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。
(a b c)2 a 2 b2 c 2 2ab 2bc 2ac ; (a b c)2 a 2 b2 c 2 2ab 2bc 2ac (a b c)2 a 2 b2 c 2 2ab 2bc 2ac ; (a b c)2 a 2 b2 c 2 2ab 2bc 2ac
高中必修数学公式及知识点精品教案

高中必修数学知识点大全必修与选修部分 一、函数、导数1、函数的单调性(1)设2121],,[x x b a x x <∈、那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数; ],[)(0)()(21b a x f x f x f 在⇔>-上是减函数.(2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数;若0)(<'x f ,则)(x f 为减函数.2、函数的奇偶性对于定义域内任意的x ,都有)()(x f x f =-,则)(x f 是偶函数; 对于定义域内任意的x ,都有)()(x f x f -=-,则)(x f 是奇函数。
奇函数的图象关于原点对称,偶函数的图象关于y 轴对称。
3、函数)(x f y =在点0x 处的导数的几何意义函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-.*二次函数: (1)顶点坐标为24(,)24b ac b a a --;(2)焦点的坐标为241(,)24b ac b a a-+- 4、几种常见函数的导数①'C 0=;②1')(-=n n nx x ; ③x x cos )(sin '=;④x x sin )(cos '-=;⑤a a a x x ln )('=;⑥x x e e =')(; ⑦a x x a ln 1)(log '=;⑧xx 1)(ln '= 5、导数的运算法则(1)'''()u v u v ±=±. (2)'''()uv u v uv =+. (3)'''2()(0)u u v uv v v v-=≠. 6、会用导数求单调区间、极值、最值7、求函数()y f x =的极值的方法是:解方程()0f x '=.当()00f x '=时: (1) 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; (2) 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值. 指数函数、对数函数分数指数幂(1)m na =0,,a m n N *>∈,且1n >).(2)1m nm naa-==0,,a m n N *>∈,且1n >).根式的性质(1)当na =;当n(1) r sa a⋅=(2) ()r s rsa a=(3)()r rab a b=注:若a>0,指数幂都适用..(0,1,0)a a N>≠>..1a≠,0m>,且1m≠,0N>).对数恒等式:).推论log m nab).常见的函数图象822sin cosθθ+9απ±kα看成锐角时该函数的符号;αππ±+2kα看成锐角时该函数的符号。
高中数学必修一知识点整理【史上最全】---人教版

高中数学必修一知识点整理【史上最全】
---人教版
1. 数的性质与运算
- 自然数、整数、有理数、实数、复数的定义和性质
- 加法、减法、乘法、除法的运算法则及性质
- 乘方、开方、指数运算的基本概念和性质
2. 一元一次方程与一元一次不等式
- 一元一次方程的定义、解的概念及解法
- 一元一次不等式的定义、解的概念及解法
- 一元一次方程与一元一次不等式的应用
3. 二次根式与二次方程
- 二次根式的概念、性质及化简
- 二次方程的定义、解的概念及解法
- 二次方程与二次根式的应用
4. 几何图形的认识与性质
- 点、线、面的基本概念及性质
- 一些常见几何图形的性质,如线段、角、三角形、四边形等5. 平面向量
- 向量的定义、线性运算及性质
- 平面向量坐标与位移、相等、共线的判定
- 平面向量的加减乘法及其应用
6. 相交与平行
- 相交直线的判定
- 平行线的判定和性质
- 平行四边形的性质及判定
7. 图形的相似性和尺度
- 图形的相似性的定义和性质
- 相似三角形的判定及性质
- 尺度的概念及应用
8. 三角函数与周期性
- 三角函数的定义及常用公式
- 三角函数的图像和性质
- 三角函数的周期性和简单应用
9. 数据处理与统计
- 统计调查的基本概念和方法
- 平均数、中位数、众数的计算及应用
- 统计图的绘制和数据的分析
以上是高中数学必修一的知识点整理,希望对您有所帮助。
*以上信息为简要总结,具体内容请参考教材或课本。
高一数学必修一常用公式及常用结论

高中数学必修一、二常用公式及常用结论1. 元素与集合的关系U x A x C A ∈⇔∉,U x C A x A ∈⇔∉.2.包含关系A B A A B B =⇔=U U A B C B C A ⇔⊆⇔⊆ U A C B ⇔=ΦU C A B R ⇔=3.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1个;非空的真子集有2n –2个. 4.二次函数的解析式的三种形式(1)一般式2()(0)f x ax bx c a =++≠; (2)顶点式2()()(0)f x a x h k a =-+≠; (3)零点式12()()()(0)f x a x x x x a =--≠.5.闭区间上的二次函数的最值二次函数)0()(2≠++=a c bx ax x f 在闭区间[]q p ,上的最值只能在abx 2-=处及区间的两端点处取得,具体如下:(1)当a>0时,假设[]q p abx ,2∈-=,则{}min max max ()(),()(),()2bf x f f x f p f q a=-=; []q p abx ,2∉-=,{}max max ()(),()f x f p f q =,{}min min ()(),()f x f p f q =.(2)当a<0时,假设[]q p abx ,2∈-=,则{}min ()min (),()f x f p f q =,假设[]q p abx ,2∉-=,则{}max ()max (),()f x f p f q =,{}min ()min (),()f x f p f q =. 6.一元二次方程的实根分布〔画抛物线帮助理解〕依据:假设()()0f m f n <,则方程0)(=x f 在区间(,)m n 内至少有一个实根 . 设q px x x f ++=2)(,则〔1〕方程0)(=x f 在区间),(+∞m 内有根的充要条件为0)(=m f 或2402p q p m ⎧-≥⎪⎨->⎪⎩;〔2〕方程0)(=x f 在区间(,)m n 内有根的充要条件为()()0f m f n <或2()0()0402f m f n p q p m n >⎧⎪>⎪⎪⎨-≥⎪⎪<-<⎪⎩或()0()0f m af n =⎧⎨>⎩或()0()0f n af m =⎧⎨>⎩;〔3〕方程0)(=x f 在区间(,)n -∞内有根的充要条件为()0f m <或2402p q p m ⎧-≥⎪⎨-<⎪⎩ .7.定区间上含参数的二次不等式恒成立的条件依据(1)在给定区间),(+∞-∞的子区间L 〔形如[]βα,,(]β,∞-,[)+∞,α不同〕上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是min (,)0()f x t x L ≥∉.(2)在给定区间),(+∞-∞的子区间上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是(,)0()man f x t x L ≤∉.8.函数的单调性(1)设[]2121,,x x b a x x ≠∈⋅那么[]1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数;[]1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数. 9.如果函数)(x f 和)(x g 都是减函数,则在公共定义域内,和函数)()(x g x f +也是减函数; 如果函数)(u f y =和)(x g u =在其对应的定义域上都是减函数,则复合函数)]([x g f y =是增函数. 10.奇偶函数的图象特征奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数.11.对于函数)(x f y =(R x ∈),)()(x b f a x f -=+恒成立,则函数)(x f 的对称轴是函数2ba x +=; 12.多项式函数110()n n n n P x a x a x a --=+++的奇偶性多项式函数()P x 是奇函数⇔()P x 的偶次项(即奇数项)的系数全为零. 多项式函数()P x 是偶函数⇔()P x 的奇次项(即偶数项)的系数全为零.13.两个函数图象的对称性(1)函数()y f x =与函数()y f x =-的图象关于直线0x =(即y 轴)对称. (2)函数)(x f y =和它的反函数)(1x fy -=的图象关于直线y=x 对称.14.几个常见的函数方程(1)正比例函数()f x cx =,()()(),(1)f x y f x f y f c +=+=.(2)指数函数()x f x a =,()()(),(1)0f x y f x f y f a +==≠.(3)对数函数()log a f x x =,()()(),()1(0,1)f xy f x f y f a a a =+=>≠.(4)幂函数()f x xα=,'()()(),(1)f xy f x f y f α==.15.分数指数幂(1)1m na =〔0,,a m n N *>∈,且1n >〕.(2)1m nm na a-=〔0,,a m n N *>∈,且1n >〕.16.根式的性质〔1〕n a =. 〔2〕当n为奇数时,a =;当n为偶数时,,0||,0a a a a a ≥⎧==⎨-<⎩.17.有理指数幂的运算性质(1) (0,,)rs r s aa a a r s Q +⋅=>∈.(2) ()(0,,)rs rs aa a r s Q =>∈.(3)()(0,0,)r r rab a b a b r Q =>>∈. 注: 假设a >0,p 是一个无理数,则a p表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用.18.指数式与对数式的互化式log b a N b a N =⇔=(0,1,0)a a N >≠>.19.对数的换底公式log log log m a m NN a= (0a >,且1a ≠,0m >,且1m ≠,0N >).20.对数的四则运算法则假设a >0,a ≠1,M >0,N >0,则 (1)log ()log log a a a MN M N=+;(2) log log log aa a MM N N=-; (3)log log ()naa M n M n R =∈. 推论log log m na a nb bm=(0a >,且1a >,,0m n >,且1m ≠,1n ≠,0N >).21.设函数)0)((log )(2≠++=a c bx axx f m ,记ac b 42-=∆.假设)(x f 的定义域为R ,则0>a ,且0<∆;假设)(x f 的值域为R ,则0>a ,且0≥∆.对于0=a 的情形,需要单独检验. 32. 平均增长率的问题如果原来产值的基础数为N ,平均增长率为p ,则对于时间x 的总产值y ,有(1)x y N p =+.33.一元二次不等式20(0)ax bx c ++><或的解的步骤:求两根,画草图,确定解集。
高中数学必修一知识点总结归纳

高中数学必修一知识点总结归纳引言高中数学必修一通常涵盖了代数、函数、几何等多个基础数学领域,为学生进一步学习数学打下坚实的基础。
一、代数基础1.1 集合论概念:集合的表示、子集、并集、交集、补集。
1.2 逻辑用语逻辑连接词:与、或、非、蕴含、当且仅当。
1.3 不等式解法:一元一次不等式、一元二次不等式的解法。
二、函数2.1 函数的概念定义:函数的定义、定义域、值域。
2.2 函数的性质性质:单调性、奇偶性、周期性、有界性。
2.3 反函数概念:反函数的定义、性质及求法。
2.4 复合函数运算:复合函数的定义、运算法则。
2.5 函数图像绘制:函数图像的绘制方法和变换规律。
三、解析几何3.1 坐标系统介绍:直角坐标系、极坐标系的基本概念。
3.2 直线的方程形式:直线的点斜式、斜截式、一般式。
3.3 圆的方程形式:圆的标准方程、一般方程。
3.4 圆锥曲线类型:椭圆、双曲线、抛物线的方程和性质。
四、算法初步4.1 算法的概念定义:算法的定义、特征。
4.2 程序框图绘制:程序框图的绘制方法,如顺序结构、条件结构、循环结构。
4.3 算法案例分析:常见算法问题的解决步骤,如排序、查找。
五、统计5.1 随机事件与概率概念:随机事件的定义、概率的计算方法。
5.2 概率的性质总结:概率的基本性质,如非负性、规范性、加法法则。
5.3 统计初步指标:均值、中位数、众数、方差、标准差的计算与意义。
5.4 统计图类型:条形图、直方图、饼图的绘制与解读。
六、数列6.1 等差数列公式:等差数列的通项公式、求和公式。
6.2 等比数列公式:等比数列的通项公式、求和公式。
6.3 数列的极限概念:数列极限的定义、无穷等比数列的极限。
6.4 数列的应用案例:数列在实际问题中的应用,如分期付款、人口增长模型。
七、推理与证明7.1 推理的概念定义:推理的定义、日常生活中的推理应用。
7.2 证明的方法步骤:直接证明、间接证明、反证法的一般步骤。
7.3 证明的策略技巧:构造法、归纳法、演绎法在证明中的应用。
高中必修数学知识点总结及公式大全

高中必修数学知识点总结及公式大全1.二次函数的标准形式为y=ax^2+bx+c。
The standard form of a quadratic function is y=ax^2+bx+c.2.一次函数的标准形式为y=kx+b。
The standard form of a linear function is y=kx+b.3.三角函数sin、cos、tan分别表示正弦、余弦、正切。
The trigonometric functions sin, cos, tan represent sine, cosine, tangent respectively.4.三角函数的周期性是它们的重要特征之一。
The periodicity of trigonometric functions is one oftheir important characteristics.5.平行四边形的面积公式为S=底×高。
The formula for the area of a parallelogram isS=base×height.6.直角三角形的勾股定理为a^2 + b^2 = c^2。
The Pythagorean theorem for a right-angled triangle isa^2 + b^2 = c^2.7.两点间距离公式为d=sqrt[(x2-x1)^2 + (y2-y1)^2]。
The distance formula between two points is d=sqrt[(x2-x1)^2 + (y2-y1)^2].8.二次方程的解法包括用公式法和配方法。
The methods for solving quadratic equations include using the formula and completing the square.9.函数奇偶性的判定方法是f(-x) = f(x)或f(-x) = -f(x)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学必修一公式整理
一、几何公式
1、直线:
(1) 直线的方程是y=kx+b,其中k为斜率,b为y轴截距;
(2) 直线的斜率的计算公式:斜率K=(点1的纵坐标减去点2的纵坐标)除以(点1的横坐标减去点2的横坐标)。
2、平面图形
(1) 三角形三边关系:任意一边长加上另外两边长,总长度要大于第三边。
(2) 三角形面积公式:面积 = (底边×高)÷2
(3) 矩形的面积公式:面积 = 长×宽
(4) 圆的面积公式:面积= π × 半径×半径
二、代数公式
1、平方差
(1) 一元二次方程的解法:ax²+bx+c=0,解法为:x={-b±√(b²-4ac) }/2a
(2) 二元二次方程的解法:ax²+bxy+cy²+dx+ey+f=0,解法为:x=(-
be+√(b²-4ac)(-de+√(d²-4af))/(2a);y=(2a(-be+√(b²-4ac))/(-de+√(d²-
4af))。
2、二次函数
(1) 二次函数公式:y=ax²+bx+c,其中a不等于0
(2) 二次函数的对称轴:x轴的方程为: x= -b/2a
(3) 二次函数的极值的计算:极值的 x 值为: -b/2a , 极值的 y 值为:
y=a(-b/2a)²+b(-b/2a)+c
三、数列公式
1、等差数列公式
(1) 求和公式:Sn=n(a1+an)/2,其中n为项数,a1为首项,an为末项;
(2) 首项公式:a1=Sn/n-(n-1)d,其中n为项数,Sn为该数列的前n项和,d为公差;
(3) 末项公式:an=a1+(n-1)d,其中a1为首项,n为项数,d为公差;
(4) 公差公式:d=(an-a1)/(n-1),其中an为末项,a1首项,n为项数;
2、等比数列的公式
(1) 求和公式:Sn=a1(1-qn)/(1-q),其中a1为首项,q为公比,n
为项数;
(2) 首项公式:a1=Sn(1-q)/(1-qn),其中Sn为该数列的前n项和,q为公比,n为项数;
(3) 末项公式:an=a1q(n-1),其中a1为首项,q为公比,n为项数;
(4) 公比公式:q=(an/a1)^(1/(n-1)),其中an为末项,a1首项,n
为项数;。