最新定积分知识总结

最新定积分知识总结
最新定积分知识总结

定积分知识总结

一、基本概念和性质

(1)定义

b n n

f (x) dx的定义:lim ' S = lim ' f ()化一人二)

a n「4 " =n「

①把a,b区间分成n个小区间,a =X°V X1V...V X n二b 要求当n T血时,max" —x」R 0

②记在h上的代数面积为S i,在h上用矩形代替S i,在h上任取一点\,

S :" f ( i ) * X i —Xi」

n

③求和:S = 7 f( 1) (X i -X」)

i 4

n

④求极限:即lim a f ( J (人-x^)

n厂7

((2)定积分的桂质

b

① 1 =b _a

a

b b b

②线性运算性质:1 :;- f (x) : g(x) 1 dx 二:f(x) dx 亠.i g(x) dx

a a a

b a

f (x) dx 二- f (x) dx

a b

a

f (x) dx =0

a

b c b

③区间的可加性:.f (x) dx二f(x) dx亠I f (x) dx

a a c

(其中,包含a,b,c的区间可积即可,不一定要求c (a,b))

b

④f(x )在a,b 上可积且f(x)_ 0,贝U f(x) dx_0

a

b b

⑤若f (x), g(x)在la,b 止可积且f(x)_g(x),则f(x) dx_ g(x) dx

a a

b

⑥若f(x)在a,b止连续,f(x)_0, f(x)不恒等于0,贝U f (x) dx>0

a

f(x)=0:可能个别点上等于0,也可能整个区间均为0; f(x) = 0:则是指在整个区间上都等于0

推论:若f(x),g(x)在区间a,b上连续,f(x)_g(x),且f (x )不恒等于g(x),则:

b b

f(x) dx> g(x) dx

a a

⑦若f (x)在a,b止可积,则

b

f f(x) dx

a

m, M均为常数,贝V:

⑧若f(X)在a,b上可积,

b

m(b -a)乞f (x) dx 乞M (b -a)

a

⑨(积分中值定理)

若f(x)在闭区间a,b 上连续,则至少存在一点a,b,使得:

b

f (x) dx =f ( ) (b — a)

a

二、微积分基本公式

1、积分上限函数及其导数

定义:设函数f (x)在区间[a,b]上连续,对于任意X- [a, b], f(x)在区间[a,x]上也连续,所以函数f(x)在[a,x]上也可积.显然对于[a,b]上的每一个x的取值,

x x

都有唯一对应的定积分f(t)dt和x对应,因此f(t)dt是定义在[a,b]上的函数.

L a * a

记为

x

::J(x) f (t)dt, x[a, b].

a

称:?:』(x)叫做变上限定积分,有时又称为变上限积分函数.

X

定理1:如果函数f(x)在区间[a,b]上连续,则:?:』(x) f(t)dt在[a,b]上可导,

弋a

d x

且门(X)二一f(t)dt = f(x) (a_x_b)

dx、a

定理2、3:如果f(x)在区间[a,b]上连续,则它的原函数一定存在,且其中的一个

原函数为

x

G(x)二f (t)dt.

* a

2、牛顿——莱布尼茨公式

定理4 (微积分基本公式)如果函数f(x)在区间[a,b]上连续,且F(x)是f(x)的任意一个原函数,那么

b

f(x)dx = F(b) - F(a).

a

x

证由定理5.2知,讥x)二f(t)dt是f(x)在区间[a,b]的一个原函数,贝U

-a

G(x)与F(x)相差一个常数C,即

x

f (t)dt 二F(x) C .

a

a

又因为0二f(t)d^ F(a) C,所以C - -F(a).于是有

■ a

x

]f(t)dt=F(x)—F(a).

b

所以f(x)dx = F(b)- F(a)成立.

a

为方便起见,通常把F(b)-F(a)简记为F(x)|:或[F(x)]:,所以公式可改写为

b b

J a f(x)dx = F(x):=F(b)-F(a)

三、定积分的积分法

1、定积分的换元积分法

定理1设函数f(x)在区间[a,b]上连续,并且满足下列条件:

(1)x = (t),且 a = ( ),b=();

(2)(t)在区间[:?,订上单调且有连续的导数"(t);

(3)当t从〉变到]时,:(t)从a单调地变到b .

则有

b p

f (x)dx 二f[ (t)b: (t)dt

a-:-

上述公式称为定积分的换元积分公式.在应用该公式计算定积分时需要注意以下两点:

①从左到右应用公式,相当于不定积分的第二换元法?计算时,用把原积分变量换成新变量,积分限也必须由原来的积分限和相应地换为新变量的积分限和,而不必代回原来的变量,这与不定积分的第二换元法是完全不同的?

②从右到左应用公式,相当于不定积分的第一换元法(即凑微分法) ?一般不用设出新的积分变量,这时,原积分的上、下限不需改变,只要求出被积函数的一个原函数,就可以直接应用牛顿一莱布尼兹公式求出定积分的值.

2、定积分的分部积分法

设函数u =u(x)和v =v(x)在区间[a,b]上有连续的导数,则有

b . b

f u(x)dv(x) =[u(x)v(x)]a —f v(x)du(x).

a ' a

上述公式称为定积分的分部积分公式.选取u(x)的方式、方法与不定积分的分部积分法完全一样?

四、定积分的应用

1、定积分应用的微元法

为了说明定积分的微元法,我们先回顾求曲边梯形面积A的方法和步骤:

(1) 将区间[a,b]分成n个小区间,相应得到n个小曲边梯形,小曲边梯形的

面积记为A i (i =1,2/ n);

(2) 计算「A 的近似值,即A f ( i)3i(其中:Xi =X i -X i_i, i [x—X i]);

n

(3) 求和得A的近似值,即A八f( J%;

n b

⑷对和取极限得 A=limv f ( J.:x i 二"f (x )dx .

0 i 4

a

下面对上述四个步骤进行具体分析:

第⑴ 步指明了所求量(面积A )具有的特性:即A 在区间[a,b ]上具有可分 割性和可加性?

第(2)步是关键,这一步确定的-A^ ■ f ("-圳是被积表达式f (x)dx 的雏形. 这可以从以下过程来理解:由于分割的任意性,在实际应用中,为了简便起见, 对二A i :' f ( \ \ -:x i 省略下标,得:A : f ( y x ,用[x,x dx ]表示[a, b ]内的任一小 区间,并取小区间的左端点x 为',则厶A 的近似值就是以dx 为底,

f(x)为咼的小矩形的面积(如图5.7 阴影部分),即

A : f (x)dx .

通常称f(x)dx 为面积元素,记为

dA 二 f(x)dx.

b

积 A.即 A f (x)dx .

一般说来,用定积分解决实际问题时,通常按以下步骤来进行: (1)确定积分变量x ,并求出相应的积分区间[a,b ];

(2) 在区间[a,b ]上任取一个小区间[x,x ? dx ],并在小区间上找出所求量F 的微元 dF 二 f (x)dx ;

(3)

写出所求量F 的积分表达式F 二b

f (x)dx ,然后计算它的值. a

利用定积分按上述步骤解决实际问题的方法叫做 定积分的微元法. 注 能够用微元法求出结果的量F —般应满足以下两个条件: ①F 是与变量x 的变化范围[a,b ]有关的量;

a x x+dx

b x

将(3),(4)两步合并,即将这些面积元素在

[a,b ]上“无限累加”,就得到面

定积分的方法总结

定积分的方法总结 定积分是新课标的新增内容,其中定积分的计算是重点考查的考点之一,下面例析定积分计算的几种常用方法. 一、定义法 例1、求 s i n b a x d x ? , (b a <) 解:因为函数s i n x 在],[b a 上连续,所以函数sin x 在],[b a 上可积,采用特殊的 方法作积分和.取h = n a b -,将],[b a 等分成n 个小区间, 分点坐标依次为 ?=+<<+<+

专题13定积分与微积分基本定理知识点

专题13定积分与微积分基 本定理知识点 标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DQQTY-

考点13 定积分与微积分基本定理 一、定积分 1.曲边梯形的面积 (1)曲边梯形:由直线x =a 、x =b (a ≠b )、y =0和曲线()y f x =所围成的图形称为曲边梯形(如图①). (2)求曲边梯形面积的方法与步骤: ①分割:把区间[a ,b ]分成许多小区间,进而把曲边梯形拆分为一些小曲边梯形(如图②); ②近似代替:对每个小曲边梯形“以值代曲”,即用矩形的面积近似代替小曲边梯形的面积,得到每个小曲边梯形面积的近似值(如图②); ③求和:把以近似代替得到的每个小曲边梯形面积的近似值求和; ④取极限:当小曲边梯形的个数趋向无穷时,各小曲边梯形的面积之和趋向一个定值,即为曲边梯形的面积. 2.求变速直线运动的路程 3.定积分的定义和相关概念 (1)如果函数f (x )在区间[a ,b ]上连续,用分点a =x 0

七大积分总结

七大积分总结 一. 定积分 1. 定积分的定义:设函数f(x)在[a,b]上有界,在区间[a,b]中任意插入n -1个分点: a=x 0

? ??==b a b a b a du u f dt t f dx x f )()()(。 (2) 定义中区间的分法与ξi 的取法是任意的。 (3) 定义中涉及的极限过程中要求λ→0,表示对区间[a,b]无限细分的过程,随λ →0必有n →∞,反之n →∞并不能保证λ→0,定积分的实质是求某种特殊合式的极限: 例:∑?=∞→=n i n n i f dx x f 1 1 0n 1 )()(lim (此特殊合式在计算中可以作为公式使用) 2. 定积分的存在定理 定理一 若函数f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。 定理二 若函数f(x)在区间[a,b]上有界,且只有有限个间断点,则f(x)在区间上可积。 3. 定积分的几何意义 对于定义在区间[a,b]上连续函数f(x),当f(x)≥0时,定积分 ? b a dx x f )(在几何上表示由曲线y=f(x),x=a,x=b 及x 轴所围成的曲边梯形的面积;当f(x) 小于0时,围成的曲边梯形位于x 轴下方,定积分?b a dx x f )(在几何意义上表示曲边梯形面积的负值。若f(x)在区间上既取得正值又取得负值时,定积分的几何意义是:它是介于x 轴,曲线y=f(x),x=a,x=b 之间的各部分曲边梯形的代数和。 4.定积分的性质 线性性质(性质一、性质二)

高中数学定积分知识点

数学选修2-2知识点总结 一、导数 1.函数的平均变化率为 =??=??x f x y x x f x x f x x x f x f ?-?+=--)()()()(111212 注1:其中x ?是自变量的改变量,可正,可负,可零。 注2:函数的平均变化率可以看作是物体运动的平均速度。 2、导函数的概念:函数)(x f y =在0x x =处的瞬时变化率是x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或 0|'x x y =,即)(0'x f =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000. 3.函数的平均变化率的几何意义是割线的斜率; 函数的导数的几何意义是切线的斜率。 4导数的背景(1)切线的斜率;(2)瞬时速度;

6、常见的导数和定积分运算公式:若() g x均可导(可积),则有: f x,() 用导数求函数单调区间的步骤: ①求函数f(x)的导数'() f x ②令'() f x>0,解不等式,得x的范围就是递增区间. ③令'() f x<0,解不等式,得x的范围,就是递减区间; [注]:求单调区间之前一定要先看原函数的定义域。 7.求可导函数f(x)的极值的步骤: (1)确定函数的定义域。 (2) 求函数f(x)的导数'() f x (3)求方程'() f x=0的根 (4) 用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格,检查/() f x在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如

定积分知识点总结

定积分知识点总结 北京航空航天大学 李权州 一、定积分定义与基本性质 1.定积分定义 设有一函数f(x)给定在某一区间[a,b]上. 我们在a 与b 之间插入一些分点b x x x x a n =<<<<=...210. 而将该区间任意分为若干段. 以||||π表示差数 )1,...,1,0(1-=-=?+n i x x x i i i 中最大者. 在每个分区间],[1+i i x x 中各取一个任意的点i x ξ=. )1,...,1,0(1-=≤≤+n i x x i i i ξ 而做成总和 ∑-=?=1 0)(n i i i x f ξσ 然后建立这个总和的极限概念: σπ0 ||||lim →=I 另用""δε-语言进行定义: 0>?ε,0>?δ,在||||πδ<时,恒有 εσ<-||I 则称该总和σ在0→λ时有极限I . 总和σ在0→λ时的极限即f(x)在区间a 到b 上的定积分,符号表示为 ?=b a dx x f I )( 2.性质 设f(x),g(x)在[a,b]上可积,则有下列性质 (1) 积分的保序性 如果任意)(),(],,[x g x f b a x ∈,则??≥b a b a dx x g dx x f ,)()(

特别地,如果任意,0)(],,[≥∈x f b a x 则?≥b a dx x f 0)( (2) 积分的线性性质 ???±=±b a b a b a dx x g dx x f dx x g x f )()())()((βαβα 特别地,有??=b a b a x f c dx x cf )()(. 设f(x)在[a,b]上可积,且连续, (1)设c 为[a,b]区间中的一个常数,则满足 ???+=b c c a b a dx x f dx x f dx x f )()()( 实际上,将a,b,c 三点互换位置,等式仍然成立. (4)存在],[b a ∈θ,使得 )()()(θf a b dx x f b a -=? 二、达布定理 1.达布和 分别以i m 和i M 表示函数f(x)在区间],[1+i i x x 里的下确界及上确界并且做总和 ∑∑=+=+-=-=n i i i i n i i i i x x m f S x x M f S 1 11 1)(),(,)(),(ππ ),(f S π称为f(x)相应于分割π的达布上和,),(f S π称为f(x)相应于分割π的达布下 和 特别地,当f(x)连续时,这些和就直接是相应于任意分割法的积分和的最小者和最大者,因为在这种情形下f(x)在没一个区间上都可以达到其上下确界. 回到一般情况,有上下界定义知道 i i i M f m ≤≤)(ξ 将这些不等式逐项各乘以i x ?(i x ?是正数)并依i 求其总和,可以得到

定积分知识点总结

定积分知识点总结 航空航天大学 权州 一、定积分定义与基本性质 1.定积分定义 设有一函数f(x)给定在某一区间[a,b]上. 我们在a 与b 之间插入一些分点b x x x x a n =<<<<=...210. 而将该区间任意分为若干段. 以||||π表示差数 )1,...,1,0(1-=-=?+n i x x x i i i 中最大者. 在每个分区间],[1+i i x x 中各取一个任意的点i x ξ=. )1,...,1,0(1-=≤≤+n i x x i i i ξ 而做成总和 ∑-=?=1 0)(n i i i x f ξσ 然后建立这个总和的极限概念: σπ0 ||||lim →=I 另用""δε-语言进行定义: 0>?ε,0>?δ,在||||πδ<时,恒有 εσ<-||I 则称该总和σ在0→λ时有极限I . 总和σ在0→λ时的极限即f(x)在区间a 到b 上的定积分,符号表示为 ?=b a dx x f I )( 2.性质 设f(x),g(x)在[a,b]上可积,则有下列性质 (1) 积分的保序性

如果任意)(),(],,[x g x f b a x ∈,则??≥b a b a dx x g dx x f ,)()( 特别地,如果任意,0)(],,[≥∈x f b a x 则?≥b a dx x f 0)( (2) 积分的线性性质 ???±=±b a b a b a dx x g dx x f dx x g x f )()())()((βαβα 特别地,有??=b a b a x f c dx x cf )()(. 设f(x)在[a,b]上可积,且连续, (1)设c 为[a,b]区间中的一个常数,则满足 ???+=b c c a b a dx x f dx x f dx x f )()()( 实际上,将a,b,c 三点互换位置,等式仍然成立. (4)存在],[b a ∈θ,使得 )()()(θf a b dx x f b a -=? 二、达布定理 1.达布和 分别以i m 和i M 表示函数f(x)在区间],[1+i i x x 里的下确界及上确界并且做总和 ∑∑=+=+-=-=n i i i i n i i i i x x m f S x x M f S 1 11 1)(),(,)(),(ππ ),(f S π称为f(x)相应于分割π的达布上和,),(f S π称为f(x)相应于分割π的达布下和 特别地,当f(x)连续时,这些和就直接是相应于任意分割法的积分和的最小者和最大者,因为在这种情形下f(x)在没一个区间上都可以达到其上下确界. 回到一般情况,有上下界定义知道

定积分计算方法总结

定积分计算方法总结 Final revision by standardization team on December 10, 2020.

定积分计算方法总结 一、不定积分计算方法 1.凑微分法 2.裂项法 3.变量代换法 1)三角代换 2)根幂代换 3)倒代换 4.配方后积分 5.有理化 6.和差化积法 7.分部积分法(反、对、幂、指、三) 8.降幂法 二、定积分的计算方法 1.利用函数奇偶性 2.利用函数周期性 3.参考不定积分计算方法 三、定积分与极限 1.积和式极限 2.利用积分中值定理或微分中值定理求极限 3.洛必达法则 4.等价无穷小

四、 定积分的估值及其不等式的应用 1. 不计算积分,比较积分值的大小 1) 比较定理:若在同一区间[a,b]上,总有 f(x)>=g(x),则∫f (f )ff f f >=∫f (f )f f dx 2) 利用被积函数所满足的不等式比较之 a) 当0

3)常数变易法 4)利用泰勒公式展开法 五、变限积分的导数方法

第六章 定积分的应用总结

第六章 定积分的应用 总结 一、定积分的元素法 1.用定积分表示量U 的条件 如果量U 满足: (1) ; (2) ; (3) ,那么就可考虑用定积分表示这个量U . 2.写出量U 的积分表达式的步骤: (1) ; (2) ; (3) . 二、平面图形的面积 1.若平面图形由连续曲线))()()((),(x g x f x g y x f y ≥==及直线)(,b a b x a x <==所围成,则其面积为=A . 2.若平面图形由连续曲线))()()((),(y y y x y x ψ?ψ?≥==及直线)(,d c d y c y <==所围成,则其面积为=A . 3.由连续曲线0)(),(≥=θ?θ?ρ及两射线βθαθ==,围成的曲边扇形的面积为=A . 三、体积 1.旋转体的体积 (1)由连续曲线0)(≥=x f y ,直线)(,b a b x a x <==及x 轴所围成的平面图形绕x 轴旋转一周而成的旋转体的体积为=x V . (2)由连续曲线0)(≥=y x ?,直线)(,d c d y c y <==及y 轴所围成的平面图形绕y 轴

旋转一周而成的旋转体的体积为=V . 2.平行截面面积为已知的立体的体积 适当建立x 轴,使立体在过点)(,b a b x a x <==且垂直于x 轴的两平面之间,)(x A 为该立体过点x 且垂直于x 轴截面的面积,于是该立体的体积为=V . 四、平面曲线的弧长 1.曲线可求长的充分条件: . 2.求光滑曲线弧的长度的公式:(设L 为平面光滑曲线弧) 如果已知L 的参数方程:)(),(), (βαψ?≤≤???==t t y t x ,其中)(t ?和)(t ψ在],[βα上有连续导数, 且0)()(22≠'+'t t ψ?,则L 的长度为=s . 如果已知L 的直角坐标方程:)()(b x a x f y ≤≤=,其中)(x f 在],[b a 上有一阶连续导数,则L 的长度为=s . 如果已知L 的极坐标方程:)()(βθαθρρ≤≤=,其中)(θρ在],[βα上有一阶连续导数,则L 的长度为=s . 四、定积分在物理学上的应用 1.变速直线运动的路程 某物体作直线运动,已知速度)(t v 是时间t 的连续函数,且0)(≥t v ,则该物体从时刻1t 到时刻2t (21t t ≤)的运动路程为=s . 2.变力沿直线作功 如果力F 的方向不变(与x 轴同向)且大小为)(x F ,物体在力F 的作用下由x 轴上的点a 移动到点b ,则力F 对物体作的功为=W . 3.水压力 一般使用定积分的 法得到水压力的定积分表示式,再计算其值. 4.引力 求引力时通常分别求引力在两个坐标轴上的分力,使用定积分的 法.要注意充分利用对称性.

不定积分知识点总结

三一文库(https://www.360docs.net/doc/fe355219.html,)/总结 〔不定积分知识点总结〕 引导语:不定积分一直是很多人都掌握不好的一个知识点,那么不定积分要怎么学好呢?接下来是小编为你带来收集整理的不定积分知识点总结,欢迎阅读! ▲不定积分 1、原函数存在定理 定理如果函数f(x)在区间I上连续,那么在区间I上存在可导函数F (x),使对任一x∈l都有F (x) =f(x);简单的说连续函数一定有原函数。 分部积分法 如果被积函数是幂函数和正余弦或幂函数和指数函数 的乘积,就可以考虑用分部积分法,并设幂函数和指数函数为u,这样用一次分部积分法就可以使幂函数的幂降低一次。如果被积函数是幂函数和对数函数或幂函数和反三角函数 的乘积,就可设对数和反三角函数为u。 2、对于初等函数来说,在其定义区间上,它的原函数一定存在,但原函数不一定都是初等函数。 ▲定积分 1、定积分解决的典型问题

(1)曲边梯形的面积(2 )变速直线运动的路程 2、函数可积的充分条件 定理设f(x)在区间[a上]上连续,则f(x)在区间[a,b]上可积,即连续=可积。 定理设f(x)在区间[a,b]上有界,且只有有限个间断点,则f(x)在区间[a,b]上可积 3、定积分的若干重要性质 性质如果在区间[a,b]上f(x)≥0则∫abf(x)dx≥0。 推论如果在区间[a,b]上f(x)≤g(x)则∫abf(x)dx≤∫abg(x)dx 推论| ∫abf(x)dx|≤∫ab|f(x)|dx 性质设及分别是函数f(x)在区间[a,b]上的最大值和最小值,则 ( b-a ) ≤∫abf(x)≤dx≤ ( b-a ),该性质说明由被积函数在积分区间上的最大值及最小值可以估计积分 值的大致范围。 性质(定积分中值定理)如果函数f(x)在区间[a,b]上连续,则在积分区间[a,b]上至少存在点ξ。使下式成立:∫abf(x)dx=f(ξ)( b-a )。 4、关于广义积分 设函数f(x)在区刚[a,b]上除点 ( ab )外连续,而在点的邻域内无界,如果两个广义积分∫af(x)dx与∫bf(x)dx 都收敛,则定义∫af(x)dx=∫bf(x)dx ,否则 (只要其中一

定积分总结

定积分讲义总结 内容一 定积分概念 一般地,设函数()f x 在区间[,]a b 上连续,用分点0121i i n a x x x x x x b -=<<<<<<<=L L 将区间[,]a b 等分成n 个小区间,每个小区间长度为x ?(b a x n -?= ),在每个小区间[]1,i i x x -上取一点()1,2,,i i n ξ=L ,作和式:1 1 ()()n n n i i i i b a S f x f n ξξ==-=?=∑∑ 如果x ?无限接近于0(亦即n →+∞)时,上述和式n S 无限趋近于常数S ,那么称该常数S 为函数()f x 在区间[,]a b 上的定积分。记为:()b a S f x dx = ? 其中()f x 成为被积函数,x 叫做积分变量,[,]a b 为积分区间,b 积分上限,a 积分下限。 说明:(1)定积分 ()b a f x dx ? 是一个常数,即n S 无限趋近的常数S (n →+∞时)称为()b a f x dx ?,而不是n S . (2)用定义求定积分的一般方法是:①分割:n 等分区间[],a b ;②近似代替:取点[]1,i i i x x ξ-∈;③求和: 1()n i i b a f n ξ=-∑;④取极限:()1()lim n b i a n i b a f x dx f n ξ→∞=-=∑? 例1.弹簧在拉伸的过程中,力与伸长量成正比,即力()F x kx =(k 为常数,x 是伸长量),求弹簧从平衡位置拉长b 所作的功. 分析:利用“以不变代变”的思想,采用分割、近似代替、求和、取极限的方法求解. 解: 将物体用常力F 沿力的方向移动距离x ,则所作的功为W F x =?. 1.分割 在区间[]0,b 上等间隔地插入1n -个点,将区间[]0,1等分成n 个小区间: 0,b n ??????,2,b b n n ?? ????,…,()1,n b b n -?????? 记第i 个区间为()1,(1,2,,)i b i b i n n n -???=? ? ??L ,其长度为()1i b i b b x n n n -??=-= 把在分段0, b n ? ???? ?,2,b b n n ?? ????,…,()1,n b b n -?????? 上所作的功分别记作:1W ?,2W ?,…,n W ? (2)近似代替 有条件知:()()11i i b i b b W F x k n n n --???=??=?? ? ?? (1,2,,)i n =L (3)求和 ()1 1 1n n n i i i i b b W W k n n ==-=?=??∑∑ =()()22222 110121122n n kb kb kb n n n n -?? ++++-==-?? ?? ??? L

定积分知识点汇总(新、选)

定积分 一.定积分的几何意义 ① ()0f x >时,()b a f x dx S =? ()0f x <时, ()b a f x dx S =-? ()f x 有正有负时, 1(), b a f x dx S =?2(), c b f x dx S =-? 3()d c f x dx S =? 面积和123()()()b c d a b c S S S f x dx f x dx f x dx ++=-+? ?? [()()]b a f x g x dx S -=? 二.定积分基本性质 ①当a b =时,()0b a f x dx =? . ②()()b b a a kf x dx k f x dx =? ? ③1212[()()()]()()()b b b b n n a a a a f x f x f x dx f x dx f x dx f x dx ±±???±=±±÷??±? ??? ④ 12 1 ()()()()n b c c b a a c c f x dx f x dx f x dx f x dx =++???+? ??? ⑤若奇函数()y f x =在[,]a a -上连续不断,则()0a a f x dx -=? ⑥若偶函数()y f x =在[,]a a -上连续不断,则0()2()a a a f x dx f x dx -=? ? 123()()()().d b c d a a b c f x dx f x dx f x dx f x dx S S S =++=-+? ? ??

微分基本定理:如果()f x 是区间[,]a b 上的连续函数,且'()()F x f x =,则 ()() ()()b b a a f x dx F x F b F a ==-? (牛顿—莱布尼兹公式) 1.直线0,,0x x y π===与曲线sin y x =所围成图形的面积用定积分表示为 2.用定积分表示抛物线2 23y x x =-+与直线3y x =+所围成图形的面积为 3.曲线2 1,2,0,0y x x x y =-===围成的阴影部分的面积用定积分表示为 4.由曲线24,4,0,0y x x x y =-===和x 轴围成的封闭图形的面积是( ) 4 2 .(4)A x dx -? 4 20 .|(4)|B x dx -? 420 .|4|C x dx -? 24 2202 .(4)(4)D x dx x dx -+-?? 5.计算下列定积分 (1)3 23 9x dx --? (2)1 21 44x dx --?

导数及定积分知识点的总结及练习(经典)

导数的应用及定积分 (一)导数及其应用 1.函数y =f (x )在x =x 0处的瞬时变化率是lim Δx →0 Δy Δx =lim Δx → f (x 0+Δx )-f (x 0)Δx .我们称它为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=lim Δx →0 Δy Δx =lim Δx → f (x 0+Δx )-f (x 0)Δx 。 2.导数的几何意义 函数y =f (x )在x =x 0处的导数,就是曲线y =f (x )在x =x 0处的切线的斜率 ,即k =f ′(x 0)=lim Δx →0 f (x 0+Δx )-f (x 0) Δx . 3.函数的导数 对于函数y =f (x ),当x =x 0时,f ′(x 0)是一个确定的数.当x 变化时,f ′(x )便是一个关于x 的函数,我们称它为函数y =f (x )的导函数(简称为导数),即f ′(x )=y ′=lim Δx →0 f (x 0+Δx )-f (x 0) Δx . 4.函数y =f(x)在点x 0处的导数f ′(x 0)就是导函数f ′(x)在点x =x 0处的函数值,即f ′(x 0)=f ′(x)|x =x 0。 5.常见函数的导数 (x n )′=__________.(1 x )′=__________.(sin x )′=__________.(cos x )′=__________. (a x )′=__________.(e x )′=__________.(log a x )′=__________.(ln x )′=__________. (1)设函数f (x )、g (x )是可导函数,则: (f (x )±g (x ))′=________________;(f (x )·g (x ))′=_________________. (2)设函数f (x )、g (x )是可导函数,且g (x )≠0,?? ?? f (x ) g (x )′=___________________. (3)复合函数y =f(g(x))的导数和函数y =f(u),u =g(x)的导数间的关系为yx ′=y u ′·u x ′.即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积. 6.函数的单调性 设函数y =f(x)在区间(a ,b)内可导, (1)如果在区间(a ,b)内,f ′(x)>0,则f(x)在此区间单调__________; (2)如果在区间(a ,b)内,f ′(x)<0,则f(x)在此区间内单调__________. (2)如果一个函数在某一范围内导数的绝对值较大,那么这个函数在这个范围内变化较__________,其图象比较__________. 7.函数的极值

不定积分总结

不定积分

一、原函数 定义1 如果对任一I x ∈,都有 )()(x f x F =' 或 dx x f x dF )()(= 则称)(x F 为)(x f 在区间I 上的原函数。 例如:x x cos )(sin =',即x sin 是x cos 的原函数。 2 211)1ln([x x x +='++,即)1ln(2x x ++是 2 11x +的原函数。 原函数存在定理:如果函数)(x f 在区间I 上连续,则)(x f 在区间I 上一定有原函数,即存在区间I 上的可导函数)(x F ,使得对任一I x ∈,有)()(x f x F ='。 注1:如果)(x f 有一个原函数,则)(x f 就有无穷多个原函数。 设)(x F 是)(x f 的原函数,则)(])([x f C x F ='+,即C x F +)(也为)(x f 的原函数,其中C 为任意常数。 注2:如果)(x F 与)(x G 都为)(x f 在区间I 上的原函数,则)(x F 与)(x G 之差为常数,即C x G x F =-)()((C 为常数) 注3:如果)(x F 为)(x f 在区间I 上的一个原函数,则C x F +)((C 为任意常数)可表达)(x f 的任意一个原函数。 二、不定积分 定义2 在区间I 上,)(x f 的带有任意常数项的原函数,成为)(x f 在区间I 上的不定积分,记为?dx x f )(。 如果)(x F 为)(x f 的一个原函数,则 C x F dx x f +=?)()(,(C 为任意常数)

x y o )(x F y = C x F y +=)( 三、不定积分的几何意义 不定积分的几何意义如图5—1所示: 图 5—1 设)(x F 是)(x f 的一个原函数,则)(x F y =在平面上表示一条曲线,称它为 )(x f 的一条积分曲线.于是)(x f 的不定积分表示一族积分曲线,它们是由) (x f 的某一条积分曲线沿着y 轴方向作任意平行移动而产生的所有积分曲线组成的.显然,族中的每一条积分曲线在具有同一横坐标x 的点处有互相平行的切线,其斜率都等于)(x f . 在求原函数的具体问题中,往往先求出原函数的一般表达式C x F y +=)(,再从中确定一个满足条件 00)(y x y = (称为初始条件)的原函数)(x y y =.从几何上讲,就是从积分曲线族中找出一条通过点),(00y x 的积分曲线. 四、不定积分的性质(线性性质) [()()]()()f x g x dx f x dx g x dx ±=±??? ()() kf x dx k f x dx =??k ( 为非零常数)

浅谈定积分的应用

浅谈定积分的应用 **** **** (天津商业大学经济学院,中国天津 300134) 摘要:定积分在我们日常生活和学习中有很多的用处,本文阐述了定积分的定义和几何意义,并通过举例分析了定积分在高等数学、物理学、经济学等领域的应用条件及其应用场合,通过分析可以看出利用定积分求解一些实际问题是非常方便及其准确的。 关键词 定积分 定积分的应用 求旋转体体积 变力做功 The Application of Definite Integral **** **** (Tianjin University of Commerce ,Tianjin ,300134,China) Abstract:Definite integral in our daily life and learning have a lot of use, this paper expounds the definition of defi nite integral and geometric meaning, and through the example analysis of the definite integral in the higher mathe matics, physics, economics, and other fields of application condition and its applications, through the analysis can be seen that the use of definite integral to solve some practical problems is very convenient and accurate. Keywords: definite integral, the application of definite integral, strives for the body of revolution, volume change forces work 0、前言 众所周知,微积分的两大部分是微分与积分。一元函数情况下,求微分实际上是求一个已知函数的导数,而积分是已知一个函数的导数,求原函数,所以,微分与积分互为逆运算。在我们日常生活当中,定积分的应用是十分广泛的。定积分作为人类智慧最伟大的成就之一,既可以作为基础学科来研究,也可以作为一个解决问题的方法来使用。 微积分是与应用联系着并发展起来的。定积分渗透到我们生活中的方方面面,推动了天文学、物理学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学各个分支的发展。并在这些学科中有越来越广泛的应用,微积分是一门历史悠久而又不断发展进步的学科,历史上许多著名的数学家把毕生的心血投入到微积分的研究中,从生产实际的角度上看,应用又是重中之重,随着数学的不断前进,微积分的应用也呈现前所未有的发展[1-5] 。本文将举例介绍定积分在 的我们日常学习和生活当中的应用。 1定积分的基本定理和几何意义 1.1、定积分的定义 定积分就是求函数)(x f 在区间[]b a ,中图线下包围的面积。即由0=y ,a x =, b x =,()x f y =所围成图形的面积。 定积分与不定积分看起来风马牛不相及,但是由于一个数学上重要的理论的支撑,使得它们有了本质的密切关系。把一个图形无限细分再累加,这似乎是不可能的事情,但是由于这个理论,可以转化为计算积分。这个重要理论就是大名鼎鼎的牛顿-莱布尼兹公式,它的内容是: 如果)(x f 是[]b a ,上的连续函数,并且有())(' x f X F =,那么 ()()()1)( a F b F dx x f b a -=?

不定积分知识点总结

不定积分知识点总结 不定积分知识点总结 不定积分 1、原函数存在定理 定理如果函数f(x)在区间I上连续,那么在区间I上存在可导函数F (x),使对任一x∈l都有F'(x)=f(x);简单的说连续函数一定有原函数。 分部积分法 如果被积函数是幂函数和正余弦或幂函数和指数函数的乘积,就可以考虑用分部积分法,并设幂函数和指数函数为u,这样用一次分部积分法就可以使幂函数的幂降低一次。如果被积函数是幂函数和对数函数或幂函数和反三角函数的乘积,就可设对数和反三角函数为u。 2、对于初等函数来说,在其定义区间上,它的原函数一定存在,但原函数不一定都是初等函数。 定积分 1、定积分解决的典型问题 (1)曲边梯形的面积(2 )变速直线运动的路程 2、函数可积的充分条件 定理设f(x)在区间[a上]上连续,则f(x)在区间[a,b]上可积,即连续=>可积。 定理设f(x)在区间[a,b]上有界,且只有有限个间断点,则f(x)在区间[a,b]上可积

3、定积分的若干重要性质 性质如果在区间[a,b]上f(x)≥0则∫abf(x)dx≥0。 推论如果在区间[a,b]上f(x)≤g(x)则∫abf(x)dx≤∫abg(x)dx 推论|∫abf(x)dx|≤∫ab|f(x)|dx 性质设M及m分别是函数f(x)在区间[a,b]上的最大值和最小值,则m (b-a )≤∫abf(x)≤dx≤M (b-a ),该性质说明由被积函数在积分区间上的最大值及最小值可以估计积分值的大致范围。 性质(定积分中值定理)如果函数f(x)在区间[a,b]上连续,则在积分区间[a,b]上至少存在点ξ。使下式成立:∫abf(x)dx=f(ξ)(b-a )。 4、关于广义积分 设函数f(x)在区刚[a,b]上除点c (a

定积分知识总结

定积分知识总结 一、基本概念和性质 (1)定义 []()[]()) ()(lim ) ()()(,,,,0 max ...,) ()(lim lim )(11 11111101 1 -=∞ →-=----∞ →∞ →=∞ →-?-?=-?≈=→-∞→==-?=?∑∑∑∑?i i n i i n i i n i i i i i i i i i i i i i i i i i n i n n i n n i i b a n x x f x x f S x x f S I S I S I x x I x x n b x x x a n b a x x f S dx x f ξξξξξ④求极限:即③求和:, 上任取一点在上用矩形代替在上的代数面积为在②记时,要求当<<<个小区间,区间分成①把的定义: []dx x g dx x f dx x g x f a b b a b a b a b a ??+??=??+?-=????)()()()(12βαβα②线性运算性质:①)定积分的性质 ( )()()(=??-=????a a a b b a dx x f dx x f dx x f ())) (定要求的区间可积即可,不一其中,包含③区间的可加性:b a c c b a dx x f dx x f dx x f b c c a b a ,,,()()()(∈?+?=????

[][][][]????????≥≡=?≥?≥?≥≥?≥b a b a b a b a b a b a dx x g dx x f x g x f x g x f b a x g x f x f x f dx x f x f x f b a x f dx x g dx x f x g x f b a x g x f dx x f x f b a x f )()(),()(),()(,)(),(0 :0)(00:0)(0 )(0)(0)(,)()()(),()(,)()(0 )(0)(,)(>则: 不恒等于且上连续,在区间推论:若区间上都等于则是指在整个;,也可能整个区间均为可能个别点上等于>,则不恒等于,上连续,在⑥若则上可积且在,⑤若,则上可积且在④ [][][][][]) ()()(,,)() ()()(,)(,)()()(,)(a b f dx x f b a b a x f a b M dx x f a b m M m b a x M x f m b a x f dx x f dx x f b a x f b a b a b a b a -?=?∈-≤?≤-∈≤≤?≤???? ?ξξ,使得: 点上连续,则至少存在一在闭区间若⑨(积分中值定理) 均为常数,则:,,,上可积,在⑧若上可积,则 在⑦若 二、微积分基本公式 1、积分上限函数及其导数 定义:设函数)(x f 在区间],[b a 上连续,对于任意],[b a x ∈,)(x f 在区间],[x a 上也连续,所以函数)(x f 在],[x a 上也可积.显然对于],[b a 上的每一个x 的取值,都有唯一对应的定积分?x a dt t f )(和x 对应,因此?x a dt t f )(是定义在],[b a 上的函数.记 为 ?=Φx a dt t f x )()(,],[b a x ∈. 称)(x Φ叫做变上限定积分,有时又称为变上限积分函数.

高中数学定积分知识点

高中数学定积分知识点Newly compiled on November 23, 2020

数学选修2-2知识点总结 一、导数 1.函数的平均变化率为 = ??=??x f x y x x f x x f x x x f x f ?-?+=--)()()()(111 212 注1:其中x ?是自变量的改变量,可正,可负,可零。 注2:函数的平均变化率可以看作是物体运动的平均速度。 2、导函数的概念:函数)(x f y =在0x x =处的瞬时变化率是x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即)(0'x f =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000. 3.函数的平均变化率的几何意义是割线的斜率; 函数的导数的几何意义是切线的斜率。 4导数的背景(1)切线的斜率;(2)瞬时速度; 5、常见的函数导数 6、常见的导数和定积分运算公式:若()f x ,()g x 均可导(可积),则有:

用导数求函数单调区间的步骤: ①求函数f(x)的导数'() f x ②令'() f x>0,解不等式,得x的范围就是递增区间. ③令'() f x<0,解不等式,得x的范围,就是递减区间; [注]:求单调区间之前一定要先看原函数的定义域。 7.求可导函数f(x)的极值的步骤: (1)确定函数的定义域。 (2) 求函数f(x)的导数'() f x (3)求方程'() f x=0的根 (4) 用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表 f x在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大格,检查/() 值;如果左负右正,那么f(x)在这个根处取得极小值;如果左右不改变符号,那么f(x)在这个根处无极值 8.利用导数求函数的最值的步骤:求) f在[]b a,上的最大值与最小值的步骤如下: (x a,上的极值; ⑴求) (x f在[]b ⑵将) f a f b比较,其中最大的一个是最大值,最小的一个是最小 f的各极值与(),() (x 值。[注]:实际问题的开区间唯一极值点就是所求的最值点; 9.求曲边梯形的思想和步骤(“以直代曲”的思想) 10.定积分的性质 根据定积分的定义,不难得出定积分的如下性质:

相关文档
最新文档