热管换热器设计计算及设计说明书

热管换热器设计计算及设计说明书
热管换热器设计计算及设计说明书

热管换热器设计计算及设计说明书

第一章热管及热管换热器的概述

热管是一种具有极高导热性能的新型传热元件,它通过在全封闭真空管内的液体的蒸发与凝结来传递热量,它利用毛吸作用等流体原理,起到良好的制冷效果。具有极高的导热性、良好的等温性、冷热两侧的传热面积可任意改变、可远距离传热、温度可控制等特点。将热管散热器的基板与晶闸管等大功率电力电子器件的管芯紧密接触,可直接将管芯的热量快速导出。

热管传热技术于六十年代初期由美国的科学家发明[1],它是利用封闭工作腔内工质的相变循环进行热量传输,因而具有传输热量大及传输效率高等特点。随着热管制造成本的降低,尤其是九十年代前后随着水碳钢热管相容性问题的解决,热管凭借其巨大的传热能力,被广泛应用于石油、化工、食品、造纸、冶金等领域的余热回收系统中。热管气-气换热器是最能体现热管优越性的热管换热器产品,它正在逐步取代传统的管壳式换热器。热管气-气换热器是目前应用最广泛的一种气-气换热器。

我国的能源短缺问题日趋严重,节能已被提到了重要的议事日程。大量的工业锅炉和各种窑炉、加热炉所排放的高温烟气,用热管气-气换热器进行余热回收,所得到的高温空气可用于助燃或干燥,因此应用前景非常广阔。据有关报道称,我国三分之二的能源被锅炉吞噬,而我国工业锅炉的实际运行效率只有65%左右,工业发达国家的燃煤工业锅炉运行热效率达85%,因此,提高工业锅炉的热效率,节能潜力十分巨大。如果我国锅炉的热效率能够提高10%,节约的能耗则相当于三峡水库一年的发电量,做好工业锅炉及窑炉的节能工作对节约能源具有十分重要的意义[2~6]。

利用热管气-气换热器代替传统的管壳式气-气换热器,一方面,能够大大提高预热空气进入炉内的温度,降低烟气温度,从而大大提高锅炉的热效率;另一方面,热管气-气换热器运行压降非常小,有时甚至不需要增加引风机等设备,从而使得运行费用大大降低。

1.1 热管及其应用

热管是一种具有极高导热性能的传热元件,它通过在全封闭真空管内工质的蒸发与凝结来传递热量,具有极高的导热性、良好的等温性、冷热两侧的传热面积可任意改变、可远距离传热、可控制温度等一系列优点。由热管组成的换热器具有传热效率高、结构紧凑、流体压降小等优点。由于其特殊的传热特性可控制管壁温度,避免露点腐蚀。目前已广泛应用于冶金、化工、炼油、锅炉、陶瓷、交通、轻纺、机械等行业中进行余热回收以及综合利用工艺过程中的热能,已取得了显著的经济效益[7]。重力热管因其简单的结构及经济的成本得到了广泛的应用,其工作原理是:热管受热侧吸收废气热量,并将热量传给管内工质(液态),工质吸热后以蒸发与沸腾的形式转变为蒸汽,蒸汽在压差作用下上升至放热侧,同时凝结成液体放出汽化潜热,热量传给放热侧的冷流体,冷凝液体依靠重力回流到受热侧。由于热管内部抽成真空,所以工质极易蒸发与沸腾,热管起动迅速。热管在冷、热两侧均可装设翅片,以强化传热。

1.1.1热管的工作原理

热管工作的主要任务是从加热段吸收热量,通过内部相变传热过程,把热量输送到冷却段,从而实现热量转移。完成这一转移有6个同时发生而又相互关联的主要过程,如图1.1。这6个过程是:

图1.1 热管的工作过程示意图

(1)热量从热源通过热管管壁和充满工作液体的吸液芯传递到液-汽分界面;(2)液体在蒸发段内的液-汽分界面上蒸发;(3)蒸汽腔内的蒸汽从蒸发段流到冷凝段;(4)蒸汽在冷凝段内的汽-液分界面上凝结;(5)热量从汽-液分界面通过吸液芯、液体和管壁传给冷源; (6)在吸液芯内由于毛细作用使冷凝后的工作液体回流到蒸发段。为进一步了解热管的传热机理,将以上6个过程详述如下:

从热源到蒸发段内液—汽分界面的传热过程基本上是热传导过程。对于水或酒精这类低导热系数的工作液体来说,由于吸液芯(金属网)的导热系数比液体高,因此通过吸液芯和液体时,热能差不多主要靠多孔吸液芯材料进行传导。但是,如果工作液体是具有高导热系数的液态金属,此时热量既通过吸液芯材料进行热传导,同是也通过吸液芯毛细孔内的液态金属进行传导。在多孔吸液芯的情况下,对流传热是很小的,因为要产生有实际意义的对流流动,毛细孔显得太小了。通过吸液芯材料和工作液体的传导所产生的温差是热管热流通路中的主要温度梯度之一,它的大小取决于工作液体、吸液芯材料、吸液芯液膜

蒸汽

q

q

工质

厚度以及径向净热流量。这个温降可以从摄氏几度到几十度。

热量传递到液—汽分界面附近以后,液体就可能蒸发,与液体蒸发的同时,由于从表面离开的液体质量使液—汽交界面缩回到吸液芯里面,形成一个凹形的弯月面(如图1.2),这个弯月面的形状对热管工作性能有决定性影响。单个毛细孔上简单的力学平衡现象表明,对于球形分界面,蒸汽压力与液体压力之差是等于表面张力除以弯月面半径之商的两倍。这个压差是液体流动和蒸汽流动的基本推动力。它主要起到循环时作用于液体的重力和粘滞力相抗衡的作用。在蒸发段,如果热量进一步增高,则弯月面还要进一步缩入到吸液芯里面,最后它可能妨碍毛细结构中的液体流动,并破坏热管的正常工作。

图1.2 热管的汽—液交界面

当蒸发段里的液体一旦因吸收了汽化潜热并蒸发时,蒸汽就开始通过热管的蒸汽腔向冷却段流动。此流动是由蒸汽腔两端的小压差引起的。蒸发段内蒸汽的温度比冷却段内的饱和温度稍高一些,从而形成了两端的温度差。蒸发段与冷却段之间这个温差常常可作为热管工作成功与否的一个判据。如果此温差小于0.5℃或1℃,则热管常常被称为在“热管工况”下工作,即等温工作。

在蒸汽向冷却段流动的同时,在蒸发段的沿途上不断加进补充的质量(蒸汽),因此在整个蒸发段内,轴向的质量流量和速度是不断增加的,在热管的冷却段内则出现相反的情况。

热管内的蒸汽流动可以是层流,也可是湍流,这取决于热管的实际工作情

况。当蒸汽流过蒸发段和绝热段时,由于粘滞效应和速度效应使得压力不断下降(在绝热段只有粘滞效应),一旦到达冷却段,蒸汽就开始在液体—吸液芯表面上凝结,减速流动使部分动能转化为静压能,从而使得在流体运动的方向上压力有所回升。应该指出:蒸汽腔内的驱动压力要比蒸发段与冷却段内液体的饱和蒸汽压差销为小一些。这是因为要维持一个边界蒸发的过程,蒸发段内液体的蒸汽压力必须超过该处与之相对应的蒸汽压力。同样,为了保持连续凝结,正在冷凝中的蒸汽压力必须超过该处与之对应的液体的蒸汽压力。

当蒸汽凝结时,液体就浸透冷却段内的吸液芯毛细孔,弯月面具有很大的曲率半径,可以认为是无穷大。在热管内只要有过量的工质,就一定集中在冷凝表面上,因而实际上冷凝段的汽—液分界面是一个平面,蒸汽凝结释放出的潜热通过吸液芯、液体层和管壁把热量传给管外冷源。如果有过量液体存在,则从分界面到管壁外面的温降将比蒸发段内相应的温降大,因而,冷却段内的热阻在热管设计中是应当考虑的重要热阻之一。

1.1.2热管的发展历程及应用领域

热管作为一种具有高导热性能的传热装置,其概念首先是由美国通用发动机公司的Gaugler于1944年提出的。他当时的想法是:液体在某一位置上吸热蒸发,而后在它的下方某一位置放热冷凝,不附加任何动力而使冷凝的液体再回到上方原位置继续吸热蒸发,如此循环,达到热量从一个地点传动到另一个地点的目的。Gaugler所提出的第一个专利是一个冷冻装置,由于时代条件的限制,Gaugler的发明在当时未能得到应用。

1962年特雷费森向美国通用电气公司提出报告,倡议在宇宙飞船上采用一种类似Gaugler的传热设备。但因这种倡议并未经过实验证明,亦未能付诸实施。

1963年Los-Alamos科学实验室的Grover在他的专利中正式提出热管的命名,该装置基本上与Gaugler的专利相类似。他采用一根不锈钢管作壳体,钠为工作介质,并发表了管内装有丝网吸液芯的热管实验结果,进行了有限的理论分析,同时提出了以银和锂作为热管的工作介质的观点。

1964年Grover等人首次公开了他们的试验结果。此后英国原子能实验室开始了类似的以钠和其它物质作为工作介质的热管研究工作。工作的兴趣主要是热管在核热离子二极管转换器方面的应用。与此同时,在意大利的欧洲原子能

联合核研究中心也开展了积极的热管研究工作。但兴趣仍然集中在热离子转换器方面,热管的工作温度达到1600~1800℃。

1964年至1966年期间,美国无线电公司制作了以玻璃、铜、镍、不锈钢、钼等材料作为壳体,水、铯、钠、锂、铋等作为管内的工作液体的多种热管,操作温度达到1650℃。

1967年至1968年,美国应用于工业的热管日渐广泛,应用范围涉及到空调、电子器件、核电机的冷却等方面。并初次出现了柔性热管和平板式的异形热管。

Los-Alamos科学实验室的工作一直处于领先状态,其工作重点是卫星上热管的应用研究。1967年一根不锈钢-水热管首次在空间运转成功。1965年Cotter 首次较完整地阐述了热管理论,他描述了热管中发生的各个过程的基本方程,并提出了计算热管工作毛细限的数学模型,从而奠定了热管理论的基础。

Katzoff于1966年首先发明有干道的热管。干道的作用是为后冷凝段回流到蒸发段的液体提供一个压力降较小的通道。后来莫里茨核普鲁谢客提出了一个新的名词,把在吸液芯结构中加进一些干道的热管称为“第二代热管”,并把它与“第一代热管”即装有丝网层等吸液芯的热管作了比较,他们证明“第二代热管”比第一代热管好。

1969年,苏联、日本的有关杂志均发表了有关热管应用研究的文章。在日本的文章中描述了带翅片热管管束的空气加热器。在能源日趋紧张的情况下,它可以用来回收工业排气中的热能。同年特纳核比恩特提出了“可变导热管”作为恒温控制使用。格雷提出转动热管,此种热管没有吸液芯,依靠转动中的离心力使液体从冷凝段回流到蒸发段,这些发明都是热管技术的重大进展。

热管自1964年问世以来,获得了广泛的应用。高温液态金属热管已广泛地被用于动力工程的核反应堆和同位素反应器的冷却系统,并在空间应用中作为热离子核热电发生器的重要部件;此外,作为高温换热器回收高温热能颇具前途。中温热管广泛地被用于电子器件及集成电路的冷却、大功率行波管的冷却、密闭仪表的冷却;在动力工程中用于透平叶轮、发电机、电动机以及变压器的冷却;在能量工程方面用于废气热能回收、太阳能和地热能的利用;在机械工程方面用于高速切削工具(车刀、钻头)的冷却。低温热管在通信联络中冷却红外线传感器、参量放大器;在医学方面可用作低温手术刀,进行眼睛和肿瘤的手术。随着热管技术的发展,其应用范围还在扩大。几个典型的应用如下:

美国阿拉斯加输油管线工程采用热管作输油管线的支撑。这条管线穿过寒冷的冻土地带,夏天冻土融化,使得管线下陷,引起管线破裂。后来,决定在管架支撑中装设简单的重力热管,从而解决这个困难。冬天通过热管将管桩基础周围的热量带出并散失在空气中,使土壤冻透,形成结实的“低温锚桩”。夏天,由于重力热管具有单向传热性能,大气中的热不能传到地下,故地下冻土不能融化;采用了氨-碳钢热管,长10~20m,上部散热端装有铝翅片,埋入土壤中的深度为9~12m,在热管两端温差小于1℃的情况下,保证每根热管可输送300W的热流。其热管的设计使用寿命可达30年,满足整个管线工程的要求。在1290km长的管线上,总共使用了112,000多根热管。

热管应用于一个化学反应釜,反应釜的搅拌轴就是一根热管。当反应釜中的反应温度达不到热管启动温度时,热管不工作,一旦温度上升到热管工作温度时,热管便通过釜内的吸热片把热量传到釜外,通过散热片散入空间,从而使得釜内反应温度保持恒定。

热管在太阳能方面的应用。目前太阳能热管发电装置、太阳能热管热水器等产品已经得到了成功应用。随着工业技术的发展,热管技术正愈来愈广泛地渗入到各个工业领域中,发挥出愈来愈重要的作用。

我国热管研究开始于1970年左右。在1972年,第一根钠热管运行成功,以后相继研制成功氨、水、钠、汞、联苯等各种介质的热管,并在应用上取得了一定的进展。1981年国内第一台试验性热管换热器运行成功,各地相继出现了各种不同类型的、不同温度范围的气-气热管换热器和气-液热管换热器,在工业余热回收方面发挥了良好的作用,并积累了一定的使用经验。

20世纪80年代初,国内一些科研院所、高校及制造厂相继开展了热管气-气换热器的试验研究。主要目的是解决热管的制造工艺、碳钢-水热管的相容性、中高温热管的研制、热管的传热性能及热管换热器的设计方法等问题,其研究成果陆续在石化、冶金、电力等行业推广应用。目前国内已有数千台热管气-气换热器先后投入使用,取得了较好的使用效果。但也暴露了不少问题,如热管失效、低温腐蚀、积灰、漏风等,影响了热管气-气换热器的进一步推广。因此,急需对这些问题进行细致分析与研究,完善热管气-气换热器的设计制造方法,提高热管气-气换热器的使用效果和寿命[8~12]。

1.1.3热管换热器的性能特点及技术优势

由热管管束和外壳等组成的换热器称为热管换热器。一般情况下,它有一个矩形的外壳,在矩形外壳中布满了带翅片的热管。热管的布置可以是错列呈三角形的排列,也可以是顺列呈正方形排列。在矩形壳体内部的中央有一块隔板把壳体分成两个部分,形成热流体与冷流体的通道。当热冷流体同时在各自的通道中流过时,热管就将热流体的热量传给了冷流体,实现了两种流体的热量交换。

根据具体工况设计的热管换热器结构及外形形式多样,图1.3、图1.4分别为应用最为广泛的气-气热管换热器外形示意图和气-液热管换热器外形示意图。

图1.3气-气热管换热器

图1.4 气-液热管换热器

热管式换热器是一种新型的换热器,于70年代初才开始应用于工业中作为节能设备。虽然热管换热器在工业中应用时间不长,但发展速度很快。热管换热器的最大特点是:结构简单、换热效率高,在传递相同热量的条件下,热管换热器的金属耗量少于其他类型的换热器,换热流体通过换热器时的压力损失也比其他换热器小,因而动力消耗也小。热管换热器的这些特点正越来越受到人们的重视,是一种应用前景非常好的换热设备。

我国于1970年开始的热管研制工作,首先是为航天技术发展的需要而进行的。1976年12月7日,在卫星上首次应用热管取得了成功。我国气象卫星也应用了热管,并获得了预期效果。我国在热管换热器方面的研制工作起步较早。南京工业大学于1973年就开始了这方面研制工作,并和南京炼油厂共同完成了国内第一台热管换热器。以后几年,热管换热器相继在纺织、石油、化工等行业用于余热回收及干燥工艺上。各研究热管的科研单位和大专院校都先后与制造热管的厂家组成了科研生产联合体,在扩大热管换热器应用范围和有效、合理地使用热管换热器等方面起了推动作用。

热管气-气换热器是一种应用最广泛的热管换热器。随着能源短缺问题的日趋严峻,节能意识越来越深入人心,热管气-气换热器的应用前景更加广阔。

热管气-气换热器是目前应用最为广泛的一种余热回收设备,它利用锅炉、

加热炉等排烟余热预热炉内的助燃空气,不仅可提高炉子的热效率,还可以减轻对环境的污染,因此,热管气-气换热器在余热回收利用中得到非常广泛的应用。图1.5(a)是热管气-气换热器用于回收锅炉烟气余热,得到的热空气用于锅炉助燃的流程示意图,图1.5(b)是热管气-气换热器用于回收窑炉烟气余热来加热空气,得到的热空气作为烘房热源的流程示意图。

图1.5 热管气-气换热器流程示意图(a)

图1.5 热管气-气换热器流程示意图(b)烟囱

燃料热空气>150℃送烘房

低温烟气<180℃

空气20-30℃

热管气-气换热

窑炉

烟囱

燃料热空气>150℃

低温烟气<180℃

空气20-30℃

锅炉

热管气-气换热

热管气-气换热器就象省煤器和蒸汽过热器一样已经成了大型锅炉整体中正常而必要的一部分。热管气-气换热器的应用简化并加速了燃料的烘干工程,减少了低值燃料和湿燃料的着火困难,并且扩大了这些燃料经济燃烧的可能。热管空气预器热同样还可以提高锅炉整体的蒸汽生产量。热管气-气换热器能够把排出的烟气加以高度冷却。这是由于进入热管气-气换热器的空气温度比较低(一般在20~40℃)、空气与烟气成逆流换热的结果。

传统的气-气换热器的缺点是过于笨重,愈提高烟气冷却程度或者空气的加热温度,气-气换热器就愈加笨重。气-气换热器所排出的烟气的温度也受到限制,既决定于技术经济条件,也决定于必须避免在气-气换热器的金属表面上结成水滴,因为水滴会引起金属壁的腐蚀,灰分也会粘在湿金属壁上使之加速积垢。燃料中含硫愈多,在金属壁上结成的水滴就会愈危险。从气-气换热器中排出的容许温度决定于必须使金属壁温度高于烟气露点的条件[13]。

采用热管气-气换热器能够把排出烟气时带走的热量损失减少到能够容许的程度。每当使排出的烟气温度降低20℃,锅炉整体的效率可提高约1%。此外,热管气-气换热器能使炉膛中前部烟道中的烟气温度有某些提高。在这些地方,烟气与水或蒸汽的温度差将会增加,因而经过受热面传过的热量也就增加了。辐射传递的热量增加得尤为显著。

由于水-碳钢热管的研制成功,使得气-气热管换热器的制造成本大幅降低,从而促进了热管气-气换热器的工业化应用。热管气-气换热器综合起来有如下一些特点[14~17]:

①传热性能高。由于热管气-气换热器的加热段和冷凝段都有带翅片,大大扩展了换热表面,因此,其传热系数比普通光管气-气换热器的要大好多倍;

②对数平均温差大。由于热管气-气换热器可以方便地做到冷流体与热流体的纯逆向流动,这样在相同的进、出口温度条件下,就可以产生最大的对数平均温差;

③传热量大。由于热管气-气换热器的传热系数和对数平均温差大,因此,传热量就大;

④体积小、重量轻、结构紧凑。由于热管气-气换热器所传输的热量大,因此在传输同样的热量情况下,热管气-气换热器就显得体积小、重量轻、结构非常紧凑,因而金属的消耗量小,占地面积也就大大减少。热管气-气换热器这一

独特的优点就使其在余热回收等应用领域开辟了广阔的天地;

⑤便于拆装、检查和更换。热管气-气换热器是由许多根独立的换热元件-热管按着一定的排列方式组成的。因此更换部分热管不会影响热管气-气换热器整体的正常工作;

⑥热管气-气换热器具有很大的灵活性,可以根据不同的热负荷和气体的流量将几个热管气-气换热器串联或并联起来使用;

⑦明显地提高了金属壁温,减轻了低温腐蚀;

⑧有效地防止了漏风,降低了引风机的耗电量;

⑨增强了换热能力,余热回收率高,提高了锅炉热效率;

⑩明显地减轻了受热面积灰,不会出现堵烟现象而影响锅炉正常运行;

⑾流阻小,降低了换热器运行时的动力消耗。

总之, 热管气-气换热器与管壳式预热器相比,有很多优点,主要体现在传热性能好、结构简单、紧凑、投资小、运行费用低和流动阻力小等方面。热管气-气换热器的技术优势就在于利用了热管内部工质的相变传热,换热系数大,易于控制空气及烟气的出口温度。

1.2热管气-气换热器设计中应注意的问题

自七十年代以来,热管换热器用于回收各种废气的余热已经取得相当大的成效,迄今已投入运行的热管换热器已有好几千台;特别是工艺简单、成本低廉的碳钢-水热管的问世,更为热管换热器在余热回收方面的应用开辟了十分广阔的前景。

(1)热管的结构参数

热管直径、热管长度、翅片的结构参数(翅片间距、翅片高度、翅片厚度) 决定翅片效率和翅化比,对热管气-气换热器的传热及流阻性能影响较大,并涉及换热器的紧凑性、投资和运行费用。在设计热管时所依据的都是经验,当烟气的流量、温度一定时,如何确定热管的直径、翅片高度、翅片厚度、翅片间距、热管管间距、热管长度等结构尺寸没有准确的依据。这也影响了热管气-气换热器的应用。

(2)积灰

对于灰尘较多的烟气,如其在热管气-气换热器中设计流动速度过高,虽然

能够提高热管的换热能力,但是会加速热管的磨损,且增大烟气流动阻力;速度较小时,热管翅片上易积灰,使热管换热能力下降,严重时堵塞换热器,使其失效。这也与目前落后的设计方法有关,传统的设计手段难以通过进行精确的设计计算来避免积灰。

(3)露点腐蚀

虽然也有工程技术人员已经采用了以避免露点腐蚀为控制目标的设计计算,但由于受传统设计计算手段的限制,设计计算采用试算验证的方式进行,难以做到各项参数的优化组合,从而造成热管气-气换热器的实际运行参数与设计参数的偏离,导致露点腐蚀,导致热管失效。

第二章热管气-气换热器的计算理论及方法

热管气-气换热器是由若干独立传热的热管按一定的排列方式所组成,目前的工业应用场合,均采用重力式热管作传热元件,所以热管气-气换热器的工艺设计计算内容包括重力式热管,以及以重力式热管作传热元件的气-气换热器两个部分的设计计算。

2.1热管的材料及工作温度

根据热管的工作原理知道,影响热管性能的几个主要因素为:管内的工作液体;热管的工作温度;管壁(壳体)材料。在进行热管设计计算以前,首先应考虑怎样确定上述这些因素。

一般地说,这与设计的目的有关。因为热管的用途相当广泛,不同的用途对热管的要求也不尽一致。在某些场合下要求相当苛刻,例如宇航、军工中就是如此。此时管子的数量可能较少,但可靠程度和精密性要求却相当严格,可靠性占第一位,经济性则处于次要地位。在民用和一般工业中,管子数量相当多(已属批量生产),这时经济性占了突出地位,如果价格昂贵,应用也就失去意义。故此时的热管设计应注意经济性,应尽量采用价廉易得且传输性能好的

工作液体;不采用吸液芯,完全依靠重力回流;对管壁则尽可能采用廉价金属-碳钢。壳体材料首先应满足与工质的相容性要求。除此之外壳体材料还应满足在工作温度下的刚度和强度要求。同时应考虑对热管壳体材料的选择必须符合我国有关标准的规定。

热管是依靠工作液体的相变来传递热量的,因此工作液体的各种性质对于热管的工作特性也就具有重要的影响。一般应考虑以下一些原则[25~28]:

①工质应适应热管的工作温度区

在指定的设计条件下,冷源和热源的温度是已知的,换热条件也是明确的,因而热管本身的工作温度范围可以通过一般的传热公式计算出来。热管的工作温度一般是指工作时热管内部工作液体的蒸汽温度。在良好的热管工作时,工质必然在汽-液两相状态。据此,所选择的热管工作液体熔点应低于热管的工作温度,而临界点必须高于热管的工作温度,热管才有可能正常工作。在某一温度范围内有几种工作液体可被选用,这就要依次考虑各种因素,并加以对比,作出选择。

②工质与壳体材料应相容,且工质应具有热稳定性

工作液体与壳体、吸液芯材料的相容性是最重要的必须考虑的因素。因为一旦壳体或吸液芯材料与工作液体发生化学反应了,或是工作液体本身分解了,都将产生不凝性气体。化学反应的结果将使壳体受到腐蚀破坏,这些都将使热管的性能不断变坏,甚至不能工作。目前还没有完整的理论来计算材料的相容性,但是确定材料相容性的试验研究结果已相当多。原来的文献中认为水与碳钢材料不相容,但水-碳钢热管换热器的实际运行时间甚至有超过10年的。

③工质应有良好的热物理性质

工质的品质因数用来说明工质的物理性质对热管轴向传热能力的影响,用符号N 1表示,是一个有因次数,单位是W/m 2

④其他(包括经济性、毒性、环境污染等) l fg

e μh σρN 1 (2.1)

满足以上条件的工质并不一定就是可采用的最好工质,还要考虑制作的安全性、经济性和来源的难易程度等一系列问题。

2.2 热管的强度与最大传热功率

热管的设计计算通常按以下3个步骤进行:根据一定的蒸汽速度确定热管的直径;按照工作压力对热管进行机械强度校核;验算与热管最大传热能力有关的工作极限。

热管管径的大小对热管的性能有影响,即对热管换热器的性能有影响。对单管传热量来说,管径越大,传热面积就越大,单管传热量就越多。

对一台换热器来说,当总的热负荷一定时,所需要管子的根数就减少,这会降低设备的造价和投资。因此增大管径是有利的。但对热管传热热阻来说,就热管气-气换热器来说,在总的传热热阻中,起控制作用的是管外两侧的放热热阻。随管径的增大,管外放热系数要下降,热阻要增大(此项是热管传热的主要热阻),对传热不利。对热管的强度来说,在其他条件相同的情况下,管径越小,所能承受的管内压力就越高,管径小些有利。从以上看来,管径越小,热管换热器的性能越好。但管径的大小还直接影响了管内流通面积的大小,从而影响着热管的几项传热极限。受流通截面影响最为显著的传热极限有两个,一个是声速极限,另一个是携带极限。在热管的加热段如果增加输入的热量超过一定值时,工质蒸汽流在加热段的出口处达到音速,便出现蒸汽流动的阻塞现象,由此现象产生的传热量的界限称为音速极限(声速限)。

管径计算的一个基本原则是管内蒸汽速度不超过一定的极限值。这个极限值是在蒸汽通道中最大马赫数不能超过0.2。在这样的条件下,蒸汽流动可以被认为是不可压缩的流体流动。这样轴向温度梯度很小,并可忽略不计。否则,在高马赫数下蒸汽流动的可压缩性将不可忽略。

一般来说,一根热管所要传递的最大轴向热流量Q max 是已知的。如果又限定它的马赫数等于0.2,则有

V V V fg v V T R h Q A γρ2.0max

= (2.2)

式中:Av 是蒸汽流道的面积,dv 为蒸汽腔直径,Q max 为最大轴向热流量。热管气-气换热器一般采用的是重力式水-碳钢热管,换热器设计计算后只对工质的工作温度进行校核。

2.3热管气-气换热器的设计计算方法

热管气-气换热器设计计算的主要任务在于求取总传热系数U ,然后根据平均温差ΔT 及热负荷Q 求得总传热面积A ,从而定出管子根数N 。

设计中考虑的问题有:合适的迎风面风速,风速过高会导致压力降过大和动力消耗增加,风速过低会导致管外膜传热系数降低,管子的传热能力得不到充分的发挥;热管的管径,厚度,以及翅片的间距,高度,厚度等参数;冷流体及热流体运行参数,包括流量,进出口温度等[29-30]。

热管气-气换热器的两种基本计算方法是平均温差法和传热单元数法,它们都能完成预热器的设计计算和校核计算。设计计算是设计一个新的气-气换热器,要求确定气-气换热器所需的换热面积;而校核计算是是对已有的气-气换热器进行校核,以确定气-气换热器的流体出口温度和换热量。

通常由于设计计算时冷热流体的进出口温度差比较易于得到,对数平均温度能够方便求出,故常常采用平均温差法进行计算;而校核计算时由于热管气-气换热器冷热流体的热容流率和传热性能是已知的,热管气-气换热器的效能易于确定,故采用传热单元数法进行计算。

热管气-气换热器传热计算的热平衡方程为:

其传热方程为 2/1max 20???? ??=V V V fg v V T R h Q d γπρ (2.3)

42v V d A π= (2.4)

()())()(1221c c c p h h h p T T mc T T mc Q -=-= (2.5)

式中,ΔT m 是由冷热流体的进出口温度确定的。以上三个方程中共有八个独立变量,它们是UA 、(mc p )h 、(mc p )c 、T h1、T h2、T c1、T c2、Q 。因此,热管气-气换热器的换热计算应该是给出其中的五个变量来求得其余三个变量的计算过程。

对于设计计算,典型的情况是给出需设计热管气-气换热器的热容流率(mc p )h 、(mc p )c ,冷、热流体进出口温度中的三个已知量,如T h1、T h2、T c1,计算另一个温度T c2、换热量Q 以及传热性能量UA 。U A 也就是传热系数和传热面积的乘积,最后达到设计热管气-气换热器的目的。

对于校核计算,典型的情况是给出已有热管气-气换热器的热容流率(mc p )h 、(mc p )c 、传热性能量UA 以及冷热流体的进口温度T h1、T c1,计算换热量Q 和冷热流体的出口温度T h2、T c2,最后达到校核换热器性能的目的。

2.3.1 热管气-气换热器换热计算的平均温差法

1. 平均温差法进行热管气-气换热器设计计算的步骤为:

(1)由已知条件,从热管气-气换热器热平衡方程计算出冷热流体进出口温度中待求的那一个温度;

(2)由冷热流体的四个进出口温度确定其对数平均温差ΔT m ;

(3)初步布置换热管,根据无因次准则方程计算总传热系数U ;

(4)从传热方程求出所需的换热面积A ,并核算热管气-气换热器冷热流体的流动阻力;

(5)如果流动阻力过大,或者换热面积过大,造成设计不合理,则应改变设计方案重新计算。

2. 平均温差法用于校核计算,其主要步骤为:

(1)首先假定一个流体的出口温度,按热平衡方程求出流体的另一个出口温度;

(2)由四个进出口温度计算出对数平均温差ΔT m ;

(3)根据热管气-气换热器的结构,计算相应工作条件下的传热系数U 的数值;

(4)从已知的UA 和ΔT m 由传热方程求出换热量Q (假设出口温度下的计 m T UA Q ?= (2.6)

算值);

(5)再由热管气-气换热器热平衡方程计算出冷热流体的出口温度值;

(6)以新计算出的出口温度作为假设温度值,重复以上步骤(2)至(5),直至前后两次计算值的误差小于给定数值为止,一般相对误差应控在1%。

2.3.2 热管气-气换热器计算的传热单元数法

传热单元数是反映冷热流体间换热过程难易程度的参数,也是衡量热管气-气换热器传热能力的参数。

热流体和冷流体的传热单元数NTU h 和NTU c 各按下式定义计算:

式中T h1和T h2分别为热流体的进出口温度; T c1和T c2分别为冷流体的进出口温度;dT h 和dT c 分别为微元传热面两侧的热流体与冷流体温度;U 为平均传热系数;A 为传热面积;(mc p )h 和(mc p )c 分别为热流体和冷流体的水当量。由定义式可知:在设计热管气-气换热器时,换热要求越高,则所需传热面积越大,传热单元数也越大。对操作中的热管气-气换热器,传热单元数越大,表明其性能越好。

采用传热单元数法计算换热过程,还须引入传热效率的概念。热管气-气换热器内传热效率是指两流体的实际传热量与理论上可能的最大传热量(即两流体逆流操作且传热面积为无限大时的传热量,此时T c2= T h1或T h2= T c1)的比值。热流体和冷流体的传热效率分别为:

对一定型式的热管气-气换热器,传热单元数、传热效率和两相热容量流率(m c p )间存在一定关系。对于逆流操作的热管气-气换热器为: ()1

2h h T h h T h C p h dT UA NTU T T mc ==-? (2.7) ()1

2c c T c c T h c p c dT UA NTU T T mc ==-? (2.8) 11121121,c h c c c c h h h h T T T T T T T T --=--=ηη (2.9)

其中:

利用NTU 与η的关系式和热量衡算式,可较方便地进行传热计算,特别是对已有热管气-气换热器传热性能进行核算,可避免试算或减少试算的次数。

1. ε-NTU 法进行热管气-气换热器校核计算的主要步骤为:

①由热管气-气换热器的进口温度和假定出口温度来确定物性参数,计 算热管气-气换热器的传热系数U ;

②计算热管气-气换热器的传热单元数NTU 和热容流率的比值

X min /X max ;

③按照热管气-气换热器中流体流动类型,根据ε-NTU 的计算公式计算 预热器的效能值ε;

④根据冷热流体的进口温度及最小热容流率,按照公式求出换热量Q ; ⑤利用热管气-气换热器热平衡方程确定冷热流体的出口温度T h2、T c2; 以计算出的出口温度重新计算传热系数,并重复进行计算步骤(2)至(5)。

2. ε-NTU 法用于热管气-气换热器的设计计算,其主要步骤是:

①由热管气-气换热器的热平衡方程求出待求的温度值,进而由公式计算出预热器效能ε;

②根据所选用的流动类型以及ε和X min /X max 的数值,计算传热单元数NTU ; ③初步确定换热面的布置,并计算出相应的传热系数U 的数值;

④再由NTU 的定义式确定换热面积A=X min NTU/U ,同时核算热管空气 预热器冷热流体的流动阻力;

⑤如果流动阻力过大,或者换热面积过大,造成设计不合理,则应改 变设计方案重新计算。

2.4 总换热系数的求解理论及方法

()[]()[]()[]()[]1exp 11exp 1,1exp 11exp 1222111----=----=R NTU R R NTU R NTU R R NTU c c c h h h ηη (2.10) ()()()()h

p c p c p h

p mc mc R mc mc R ==21, (2.11)

如图1.3是热管气-气换热器的换热示意简图,高温烟气流过隔板的一侧,将热量传给带有翅片的热管,并通过热管将热量传至空气侧。高温烟气沿流动方向不断被冷却,低温的空气沿流动方向不断被加热。原则上可以把热管群看成是一块流阻很小的“间壁”。因而热管气-气换热器与常规间壁式换热器的计算方法相似。

如图2.1所示,用下标h 表示加热段,下标c 表示冷却段。对于加热段,热流体温度为T h ,T v 代表管内介质蒸汽温度;对于换热管,在加热段和冷却段的管内蒸汽温度基本相等,冷流体温度为T c 。用r w 表示管壁热阻,用r y 表示污垢热阻,其中δy 为污垢层厚度,λy 为污垢层导热系数,可得加热段和冷却段的传热系数。

图2.1 热管的温度分布示意图

对于加热段,有

对于冷却段,有

式中的A h 和A c 分别为加热段和冷却段的管外总表面积,A 0,h 、A 0,c 分别为加热段和冷却段翅片间光管表面积;A f,h 和A f,c 分别为加热段和冷却段的管外翅片总表面积;U h 和U c 分别为加热段和冷却段以各段管外总表面积为基准的传热系数。 h i h i h h y h h y h w h h w h f h h h h h A U A A A r A A r A A U A U ,,,,,0,0)(1+?+?++=η, (2.12) )(1,,0,0,,,c f c c c c c y c c y c w c c w c i c i c c A A U A A A r A A r A U A U η++?+?+=, (2.13) T c T v T h Q

换热器设计说明书模板

换热器课程设计说明书 专业名称:核工程与核技术姓名:*** 班级:*** 学号:*** 指导教师:*** 哈尔滨工程大学 核科学与技术学院 2017 年 1 月 13 日

目录 1 设计题目…………………………………………………………………………… 1.1 设计题目………………………………………………………………………1.2 团队成员……………………………………………………………………… 1.3 设计题目的确定过程………………………………………………………… 2 设计过程…………………………………………………………………………… 3 热力计算…………………………………………………………………………… 4 水力计算…………………………………………………………………………… 5 分析与总结………………………………………………………………………… 5.1 可行性评价和方案优选………………………………………………………5.2 技术分析………………………………………………………………………5.3 总结与体会……………………………………………………………………参考文献………………………………………………………………………………附录计算程序………………………………………………………………………

1.1、设计题目 设计一台管壳式换热器,把 18000 kg/h 的热水由温度 t 1 ’冷却至 t 1 ”,冷却水入口温 度 t 2 ’,出口温度 t 2 ”,设热水和冷却水的运行压力均为低压。 初始参数: 热水的运行压力:0.2MPa (绝对压力) 冷却水运行压力:0.16MPa(绝对压力) 热水入口温度 t 1 ’: 80℃; 热水出口温度 t 1 ”: 50℃; 冷却水入口温度 t 2 ’: 20℃; 冷却水出口温度 t 2 ”: 45℃; 1.3设计题目的确定过程 首先,我们小组集中讨论了本次课程设计内容,即换热器设计的内容和具体细节上的要求,然后在组内达成了共识——求同存异。在题目初始参数相同的情况下对后续的计算以及编程过程发挥各自的特长,并将自己存在的疑问于组内其他成员讨论,充分发挥组内成员的自主和协作能力,努力做到一个合格并且优秀的核专业学生应有的素质。 对于管壳式换热器的设计计算,我们查阅了相关的资料(在本说明书最后一并提到),第一次尝试选择参数,如下: 热水的运行压力:0.2MPa (绝对压力) 冷却水运行压力:0.16MPa(绝对压力) 热水入口温度 t 1 ’: 82℃; 热水出口温度 t 1 ”: 46℃; 冷却水入口温度 t 2 ’: 23℃; 冷却水出口温度 t 2 ”: 43℃; 并尝试进行初步计算,不过在后面进行有效平均温差的计算时,针对我们手头有限的资料(见附录3),为了保证R可查,将参数修正为以下值。 二次选择参数: 热水的运行压力:0.2MPa (绝对压力) 冷却水运行压力:0.16MPa(绝对压力) 热水入口温度 t 1 ’: 82℃; 热水出口温度 t 1 ”: 42℃; 冷却水入口温度 t 2 ’: 23℃; 冷却水出口温度 t 2 ”: 43℃; 继续往下计算,我们通过之前的知识,发现在换热器的设计中,除非处于必须降 ψ>,至少不小于0.8。 低壁温的目的,一般按照要求使0.9

换热器设计说明书

甲醇■甲醇换热器II的设计 第一部分设计任务书 一,设计题目 甲醇-甲醇换热器II的设计 二,设计任务 1,热交换量:8029.39kw 2,设备形式:长绕管式换热器 三,操作条件 ①甲醇:入口温度7.83°C,出口温度-31.68°C ②甲醇:入口温度-37.68°C,出口温度1.00°C ③允许压强降:管侧不大于1.5*105pa壳侧不大于2.9*10’pa. 四,设计内容 ①设计方案简介:对确定的工艺流程及换热器型式进行简要论述。 ②换热器的工艺计算:确定换热器的传热面积和传热系数。 ③换热器的主要结构尺寸设计。 ④主要辅助设备选型。 ⑤绘制换热器总装配图。 第二部分换热器设计理论计算 1,计算并初选换热器的规格

(1) 两流体均不发生相变的传热过程,管程,壳程的介质均为 甲醇。 (2) 确定流体的定性温度,物性数据。 管程介质为甲醇,入口温度为7.83°C,出口温度-31.68°Co 壳程介质也为甲醇,入口温度?37.68°C,出口温度1.00°Co 管侧甲醇的定性温度:打=7兀:型=-H.925 °C 。 2 壳侧的甲醇定性温度:仏=二门卑V —1&34°C 。 2 两流体在定性温度下的物性数据: ⑶传热温差 △ _ 7厂力)一72一" _ (7.83-1)-[-31.8 — (-37.68)] _ 6.83-6 —钳% °C 」厂T- 7?83-(一31?68)_39?51 r-f " 1-(-37.68) ~ 38.68 ") p=hzk= 1—(—37S)=坯=085 「-匕 7.83-(-37.68) 45.51 … 由R 和P 查图得到校正系数为:处ul,所以校正后的温度为 = ^=6.406°C (查传热课本 P288) ,6.83 In ----- 6 [-31.8-(-37.68)]

换热器设计说明书样本1

2010级应用化学专业《化工原理》课程设计说明书 题目: 姓名: 班级学号: 指导老师: 同组人员 完成时间:

《化工原理》课程设计评分细则 说明:评定成绩分为优秀(90-100),良好(80-89),中等(70-79),及格(60-69)和不及格(<60)

目录(按毕业论文格式要求书写)

第一部分设计任务书

第二部分设计方案简介评述 我们设计的是煤油冷却器,冷却器是许多工业生产中常用的设备。列管式换热器的结构简单、牢固,操作弹性大,应用材料广。列管式换热器有固定管板式、浮头式、U形管式和填料函式等类型。列管式换热器的形式主要依据换热器管程与壳程流体的温度差来确定。由于两流体 的温差大于50 C,故选用带补偿圈的固定管板式换热器。这类换热器 结构简单、价格低廉,但管外清洗困难,宜处理壳方流体较清洁及不易结垢的物料。因水的对流传热系数一般较大,并易结垢,故选择冷却水走换热器的管程,煤油走壳程。

第三部分 换热器设计理论计算 1、试算并初选换热器规格 (1)、 定流体通入空间 两流体均不发生相变的传热过程,因水的对流传热系数一 般较大,并易结垢,故选择冷却水走换热器的管程,煤油走壳程。 (2)、确定流体的定性温度、物性数据,并选择列管式换热器的形式: 被冷却物质为煤油,入口温度为140℃,出口温度为40C 冷却介质为自来水,入口温度为30C ,出口温度为40C 煤油的定性温度:(14040)/290m T C =+= 水的定性温度:(3040)/235m t C =+= 两流体的温差:903555m m T t C -=-= 由于两流体温差大于50℃,故选用带补偿圈的固定管板式列管换热器。 两流体在定性温度下的物性数据 (3)、计算热负荷Q 按管内煤油计算,即 1253 361.981010() 2.2210(14040) 1.541610330243600 n ph W Q C T T W ?=-= ????-=??? 若忽略换热器的热损失,水的流量可由热量衡算求得,即 6 3,21() 1.54161036.94/4.17410(4030) c p c Q C t t W kg s =-?==??- (4)、计算两流体的平均温度差,并确定壳程数 逆流 温 差 212211222111 ()()(14040)(4030)39.09614040 ln ln ln 4030m t t T t T t t C t T t t T t ??-?------'====??---?- 121214040 104030 T T R t t --= ==--

换热器的设计说明书.

西安科技大学—乘风破浪团队 1 换热器的设计 1.1 换热器概述 换热器是化工、石油、动力、食品及其它许多任务业部门的通用设备,在生产中占有重要地位。换热器种类很多,但根据冷、热流体热量交换的原理和方式基本上可分三大类即:间壁式、混合式和蓄热式。在三类换热器中,间壁式换热器应用最多。换热器随着换热目的的不同,具体可分为加热器、冷却器、蒸发器、冷凝器,再沸器和热交换器等。由于使用条件的不同,换热设备又有各种各样的形式和结构。 换热器选型时需要考虑的因素是多方面的,主要有: ① 热负荷及流量大小; ② 流体的性质; ③ 温度、压力及允许压降的范围; ④ 对清洗、维修的要求; ⑤ 设备结构、材料、尺寸、重量; ⑥ 价格、使用安全性和寿命; 按照换热面积的形状和结构进行分类可分为管型、板型和其它型式的换热器。其中,管型换热器中的管壳式换热器因制造容易、生产成本低、处理量大、适应高温高压等优点,应用最为广泛。 管型换热器主要有以下几种形式: (1)固定管板式换热器:当冷热流体温差不大时,可采用固定管板的结构型式,这种换热器的特点是结构简单,制造成本低。但由于壳程不易清洗或检修,管外物料应是比较清洁、不易结垢的。对于温差较大而壳体承受压力较低时,可在壳体壁上安装膨胀节以减少温差应力。 (2)浮头式换热器:两端管板只有一端与壳体以法兰实行固定连接,称为固定端。另一端管板不与壳体连接而可相对滑动,称为浮头端。因此,管束的热膨胀不受壳体的约束,检修和清洗时只要将整个管束抽出即可。适用于冷热流体温

西安科技大学—乘风破浪团队 2 差较大,壳程介质腐蚀性强、易结垢的情况。 (3)U 形管式换热器换:热效率高,传热面积大。结构较浮头简单,但是管程不易清洗,且每根管流程不同,不均匀。 表1-1 换热器特点一览表 分类 管 壳 式 名称 特性 管式 固定管板式 刚性结构用于管壳温差较小的情况(一般≤50°C),管间不 能清洗 带膨胀节:有一定的温度补偿能力,壳程只能承受较低的压 力 浮头式 管内外均能承受高压,壳层易清洗,管壳两物料温差>120℃; 内垫片易渗漏 U 型管式 制造、安装方便,造价较低,管程耐压高;但结构不紧凑、 管子不易更换和不易机械清洗 填料 函式 内填料函:密封性能差,只能用于压差较小场合 外填料函:管间容易泄露,不易处理易挥发、易爆易燃及压 力较高场合 釜式 壳体上都有个蒸发空间,用于蒸汽与液相分离 套管 双套管式 结构比较复杂,主要用于高温高压场合或固定床反应器中

换热器的设计说明书

换热器的设计 1.1 换热器概述 换热器是化工、石油、动力、食品及其它许多任务业部门的通用设备,在生产中占有重要地位。换热器种类很多,但根据冷、热流体热量交换的原理和方式基本上可分三大类即:间壁式、混合式和蓄热式。在三类换热器中,间壁式换热器应用最多。换热器随着换热目的的不同,具体可分为加热器、冷却器、蒸发器、冷凝器,再沸器和热交换器等。由于使用条件的不同,换热设备又有各种各样的形式和结构。 换热器选型时需要考虑的因素是多方面的,主要有: ①热负荷及流量大小; ②流体的性质; ③温度、压力及允许压降的范围; ④对清洗、维修的要求; ⑤设备结构、材料、尺寸、重量; ⑥价格、使用安全性和寿命; 按照换热面积的形状和结构进行分类可分为管型、板型和其它型式的换热器。其中,管型换热器中的管壳式换热器因制造容易、生产成本低、处理量大、适应高温高压等优点,应用最为广泛。 管型换热器主要有以下几种形式: (1)固定管板式换热器:当冷热流体温差不大时,可采用固定管板的结构型式,这种换热器的特 页脚内容1

点是结构简单,制造成本低。但由于壳程不易清洗或检修,管外物料应是比较清洁、不易结垢的。对于温差较大而壳体承受压力较低时,可在壳体壁上安装膨胀节以减少温差应力。 (2)浮头式换热器:两端管板只有一端与壳体以法兰实行固定连接,称为固定端。另一端管板不与壳体连接而可相对滑动,称为浮头端。因此,管束的热膨胀不受壳体的约束,检修和清洗时只要将整个管束抽出即可。适用于冷热流体温差较大,壳程介质腐蚀性强、易结垢的情况。 (3)U形管式换热器换:热效率高,传热面积大。结构较浮头简单,但是管程不易清洗,且每根管流程不同,不均匀。 表1-1 换热器特点一览表 页脚内容2

空气压缩热利用热管换热器的设计计算(互联网+)

空气压缩热利用热管换热器的设计计算 杨宝莹 摘 要: 热管技术以其独特的技术在很多领域得到了广泛的应用,在压缩热领域热管技术也逐渐受到重视,除了理论研究热管技术在压缩热领域的应用外,设计出合适的换热设备对热管在压缩热领域的应用也及其重要。热管换热器的计算内容主要有热力计算和校核计算。其中热力设计计算大致可分为常规计算法,离散计算法和定壁温计算法。空气压缩热利用热管换热器一般为气-气型换热器,文章主要针对气-气型热管换热器的常规计算法进行介绍,并给出了一个具体实例的计算结果,以进一步促进热管换热器在空气压缩热利用领域的应用研究。 关键词: 热管 压缩热 热力计算 1 引言[1][2][4] 热管换热技术因其卓越的换热能力及其它换热设备所不具有的独特换热技术在航空,化工,石油,建材,轻纺,冶金,动力工程,电子电器工程,太阳能等领域已有很广泛的应用,空气压缩热利用领域冷热流体温差小,因此热管技术也逐渐受到重视。根据实际需要设计出合理的热管换热器对于空气压缩热利用领域来说也极为重要。 同常规换热器计算一样,热管换热器的计算内容主要有两部分:热管换热器的热力计算和校核计算。在这里主要对热管换热器的热力计算做个介绍。热管换热器的热力设计计算目前大致可分为三类:常规计算法,离散计算法,定壁温计算法。常规计算法将整个热管换热器看成一块热阻很小的间壁,然后采用常规间壁式换热器的设计方法进行计算。离散计算法认为热量从热流体到冷流体的传递不是通过壁面连续进行的,而是通过若干热管进行传递,呈阶梯式变化,不是连续的。定壁温计算法是针对热管换热器在运行中易产生露点腐蚀和积灰而提出的,计算时将热管换热器的每排热管的壁温都控制在烟气露点温度之上。从而避免露点腐蚀及因结露而形成的灰堵。 压缩热利用系统要处理的对象压缩机排气或吸干机排气,都属于气态介质,因此空气压缩热利用热管换热设备为气-气热管换热器。本文将对空气压缩热利用气-气热管换热器的常规计算法的热力计算做个简要介绍,文中的一次空气是压缩机排气,二次空气是吸干机排气。 2 热管换热器的设计计算[3][4] 2.1已知设计参数 一次空气质量流量M h , 进出口温度T 1,T 11,二次空气质量流量M c , 进出口温度T 2,T 21。一般六个已知量中,只要给定5个即可,另一个参数可由热平衡方程算出,如需要,还需给出一、二次空气的允许压降,二次空气出口温度未知时的计算过程为: ①一次空气定性温度 T h = 2 ' 11T T + (1) 查定性温度下的一次空气物性参数:定压比密度h p C 导热系数h λ粘度h μ 普兰德数h r P ②一次空气放出热量)(' 11T T C M Q h p h h -= (2)

列管式换热器设计课程设计说明

化工原理课程设计说明书列管式换热器设计 专业:过程装备与控制工程 学院:机电工程学院

化工原理课程设计任务书 某生产过程的流程如图3-20所示。反应器的混合气体经与进料物流换热后,用循环冷却水将其从110℃进一步冷却至60℃之后,进入吸收塔吸收其中的可溶性组分。已知混合气体的流量为220301kg h ,压力为6.9MPa ,循环冷却水的压力为0.4MPa ,循环水的入口温度为29℃,出口的温度为39℃,试设计一列管式换热器,完成生产任务。 已知: 混合气体在85℃下的有关物性数据如下(来自生产中的实测值) 密度 3190kg m ρ= 定压比热容1 3.297p c kj kg =g ℃ 热导率10.0279w m λ=g ℃ 粘度51 1.510Pa s μ-=?g 循环水在34℃下的物性数据: 密度 31994.3kg m ρ= 定压比热容1 4.174p c kj kg =g K 热导率10.624w m λ=g K 粘度310.74210Pa s μ-=?g

目录 1、确定设计方案 ............................................................................................. - 4 - 1.1选择换热器的类型 (4) 1.2流程安排 (4) 2、确定物性数据............................................................................................. - 4 - 3、估算传热面积............................................................................................. - 5 - 3.1热流量 (5) 3.2平均传热温差 (5) 3.3传热面积 (5) 3.4冷却水用量 (5) 4、工艺结构尺寸............................................................................................. - 5 - 4.1管径和管内流速 (5) 4.2管程数和传热管数 (5) 4.3传热温差校平均正及壳程数 (6) 4.4传热管排列和分程方法 (6) 4.5壳体内径 (6) 4.6折流挡板 (7) 4.7其他附件 (7) 4.8接管 (7) 5、换热器核算 ................................................................................................ - 8 - 5.1热流量核算 (8) 5.1.1壳程表面传热系数.......................................................................................... - 8 -5.1.2管内表面传热系数.......................................................................................... - 8 -5.1.3污垢热阻和管壁热阻...................................................................................... - 9 -5.1.4传热系数.......................................................................................................... - 9 -5.1.5传热面积裕度.................................................................................................. - 9 -5.2壁温计算. (9) 5.3换热器内流体的流动阻力 (10) 5.3.1管程流体阻力................................................................................................ - 10 -5.3.2壳程阻力........................................................................................................ - 11 - 5.3.3换热器主要结构尺寸和计算结果................................................................ - 11 - 6、结构设计 .................................................................................................. - 12 - 6.1浮头管板及钩圈法兰结构设计 (12) 6.2管箱法兰和管箱侧壳体法兰设计 (13) 6.3管箱结构设计 (13) 6.4固定端管板结构设计 (14) 6.5外头盖法兰、外头盖侧法兰设计 (14) 6.6外头盖结构设计 (14) 6.7垫片选择 (14)

气气热管换热器计算书

热管换热器设计计算 1确定换热器工作参数 1.1确定烟气进出口温度ti,t3,烟气流量V,空气出口温度頁,饱和蒸汽压力 Pc?对于热管式换热器,ti范圉一般在250°C?600°C之间,对于普通水- 碳钢热管的工作温度应控制在300°C以下.t2的选定要避免烟气结露形成 灰堵及低温腐蚀,一般不低于180°C.空气入口温度的.所选取的各参数值如下: 2确定换热器结构参数 2.1确定所选用的热管类型 烟气定性温度:f 宇_4沁;2沁=310比 在工程上计算时,热管的工作温度一般由烟气温度与4倍冷却介质温度的和的 半均值所得出: 烟气入口处:q =如+営=420?c+严z = 18O°C 烟气出口处:. t2+tiX4 200°C+20°Cx4 l° 5 5 C 选取钢-水重力热管.其工作介质为水.工作温度为30OC~250°C?满足要求.其相容壳体材料:铜.碳钢(内壁经化学处理)。

2.2确定热管尺寸 对于管径的选择,由音速极限确定所需的管径 d v = 1.64 Qc t J厂9必)2 根据参考文献《热管技能技术》,音速限功率参考范闱,取Qc=4kW,在 10 = 56吃启动时 p v = O.1113k^/7H3 p v = 0.165 X 105pa r = 2367.4幼/kg 因此d v = 1.64 I ! = 10.3 mm yr(p v p v)l 由携带极限确定所要求的管径 d _ I 1.78 X Qent P Ji (P L"1/4+P V~1/4)_2^(P L -Pv]1/4 根据参考文献《热管技能技术》,携带限功率参考范围,取Q ent=4kw 管内工作温度t t = 180°C时 P L = 886.9kg/m3 pv = 5.160/c^/m3 r = 20\3kJ/kg J = 431.0xl0^N/m 178x4 因此 nx20L3x(8Q6.^i/4+SA6^i/4)-2 [gX431.0xl0-4(886.9-5.160)]1/4 =13.6nun 考虑到安全因素,最后选定热管的内径为 4 = 22111111 管売厚度计算由式 Pv4 20qcr] 式中,Pv按水钢热管的许用压力28.5kg /nmr选取,由对应的许用230°C來选 取管壳最大应力乐朋=14kg/nim2,而 [

列管式换热器-课程设计说明书

列管式换热器-课程设计说明书 《化工原理》 列管式换热器 课程设计说明书 学院: 班级: 学号: 姓名: 指导教师: 时间:年月日 目录 一、化工原理课程设计任务书 (2) 二、确定设计方案 (3) 1.选择换热器的类型 2.管程安排 三、确定物性数据 (4)

四、估算传热面积 (5) 1.热流量 2.平均传热温差 3.传热面积 4.冷却水用量 五、工艺结构尺寸 (6) 1.管径和管内流速 2.管程数和传热管数 3.传热温差校平均正及壳程数 4.传热管排列和分程方法 5.壳体内径 6.折流挡板 (7) 7.其他附件 8.接管 六、换热器核算 (8) 1.热流量核算 2.壁温计算 (10) 3.换热器内流体的流动阻力 七、结构设计 (13) 1.浮头管板及钩圈法兰结构设计 2.管箱法兰和管箱侧壳体法兰设计 3.管箱结构设计 4.固定端管板结构设计 5.外头盖法兰、外头盖侧法兰设计............14 6.外头盖结构设计 7.垫片选择 8.鞍座选用及安装位置确定 9.折流板布置 10.说明 八、强度设计计算 (15) 1.筒体壁厚计算 2.外头盖短节、封头厚度计算 3.管箱短节、封头厚度计算 (16) 4.管箱短节开孔补强校核 (17) 5.壳体接管开孔补强校核6.固定管板计算 (18) 7.浮头管板及钩圈 (19) 8.无折边球封头计算 9.浮头法兰计算 (20) 九、参考文献 (20) 一、化工原理课程设计任务书

某生产过程的流程如图3-20所示。反应器的混合气体经与进料物流换热后,用循环冷却水将其从110℃进一步冷却至60℃之后,进入吸收塔吸收其中的可溶性组分。已知混合气体的流量为231801kg h ,压力为6.9MPa ,循环冷却水的压力为0.4MPa ,循环水的入口温度为29℃,出口的温度为39℃,试设计一列管式换热器,完成生产任务。 已知: 混合气体在85℃下的有关物性数据如下(来自生产中的实测值) 密度 3190kg m ρ= 定压比热容1 3.297p c kj kg = ℃ 热导率10.0279w m λ= ℃ 粘度51 1.510Pa s μ-=? 循环水在34℃下的物性数据: 密度 31994.3kg m ρ= 定压比热容1 4.174p c kj kg = K 热导率10.624w m λ= K 粘度310.74210Pa s μ-=? 二、确定设计方案

管壳式换热器设计说明书

1.设计题目及设计参数 (1) 1.1设计题目:满液式蒸发器 (1) 1.2设计参数: (1) 2设计计算 (1) 2.1热力计算 (1) 2.1.1制冷剂的流量 (1) 2.1.2冷媒水流量 (1) 2.2传热计算 (2) 2.2.1选管 (2) 2.2.2污垢热阻确定 (2) 2.2.3管内换热系数的计算 (2) 2.2.4管外换热系数的计算 (3) 2.2.5传热系数 K计算 (3) 2.2.6传热面积和管长确定 (4) 2.3流动阻力计算 (4) 3.结构计算 (5) 3.1换热管布置设计 (5) 3.2壳体设计计算 (5) 3.3校验换热管管与管板结构合理性 (5) 3.4零部件结构尺寸设计 (6) 3.4.1管板尺寸设计 (6) 3.4.2端盖 (6) 3.4.3分程隔板 (7) 3.4.4支座 (7) 3.4.5支撑板与拉杆 (7) 3.4.6垫片的选取 (7) 3.4.7螺栓 (8) 3.4.8连接管 (9) 4.换热器总体结构讨论分析 (10) 5.设计心得体会 (10) 6.参考文献 (10)

1.设计题目及设计参数 1.1设计题目:105KW 满液式蒸发器 1.2设计参数: 蒸发器的换热量Q 0=105KW ; 给定制冷剂:R22; 蒸发温度:t 0=2℃,t k =40℃, 冷却水的进出口温度: 进口1t '=12℃; 出口1 t " =7℃。 2设计计算 2.1热力计算 2.1.1制冷剂的流量 根据资料【1】,制冷剂的lgp-h 图:P 0=0.4MPa ,h 1=405KJ/Kg ,h 2=433KJ/Kg , P K =1.5MPa ,h 3=h 4=250KJ/Kg ,kg m 04427.0v 3 1=,kg m v 3 400078.0= 图2-1 R22的lgP-h 图 制冷剂流量s kg s kg h h Q q m 667 .0250 4051054 10=-= -= 2.1.2冷媒水流量 水的定性温度t s =(12+7)/2℃=9.5℃,根据资料【2】附录9,ρ=999.71kg/m 3 ,c p =4.192KJ/(Kg ·K)

换热器计算

换热器计算的设计型和操作型问题--传热过程计算 与换热器 日期:2005-12-28 18:04:55 来源:来自网络查看:[大中小] 作者:椴木杉热度: 944 在工程应用上,对换热器的计算可分为两种类型:一类是设计型计算(或称为设计计算),即根据生产要求的传热速率和工艺条件,确定其所需换热器的传热面积及其他有关尺寸,进而设计或选用换热器;另一类是操作型计算(或称为校核计算),即根据给定换热器的结构参数及冷、热流体进入换热器的初始条件,通过计算判断一个换热器是否能满足生产要求或预测生产过程中某些参数(如流体的流量、初温等)的变化对换热器传热能力的影响。两类计算所依据的基本方程都是热量衡算方程和传热速率方程,计算方法有对数平均温差(LMTD)法和传热效率-传热单元数(e-NTU)法两种。 一、设计型计算 设计型计算一般是指根据给定的换热任务,通常已知冷、热流体的流量以及冷、热流体进出口端四个温度中的任意三个。当选定换热表面几何情况及流体的流动排布型式后计算传热面积,并进一步作结构设计,或者合理地选择换热器的型号。 对于设计型计算,既可以采用对数平均温差法,也可以采用传热效率-传热单元数法,其计算一般步骤如表5-2所示。 表5-2 设计型计算的计算步骤

体进出口温度计算参数P 、R ; 4. 由计算的P 、R 值以及流动排布型式,由j-P 、R 曲线确定温度修正系数j ;5.由热量衡算方程计算传热速率Q ,由端部温度计算逆流时的对数平均温差Δtm ; 6.由传热速率方程计算传热面积 。 体进出口温度计算参数e 、CR ; 4.由计算的e 、 CR 值确定NTU 。由选定的流动排布型式查取 e-NTU 算图。可能需由e-NTU 关系反复计算 NTU ;5.计算所需的传热面积 。 例5-4 一列管式换热器中,苯在换热器的管内流动,流量为 kg/s ,由80℃冷却至30℃;冷却水在管间与苯呈逆流流动,冷却水进口温度为20℃,出口温度不超过50℃。若已知换热器的传热系数为470 W/(m2·℃),苯的平均比热为1900 J/(kg·℃)。若忽略换热器的散热损失,试分别采用对数平均温差法和传热效率-传热单元数法计算所需要的传热面积。 解 (1)对数平均温差法 由热量衡算方程,换热器的传热速率为 苯与冷却水之间的平均传热温差为 由传热速率方程,换热器的传热面积为 A = Q/KΔt m = = m 3 (2)传热效率-传热单元数法 苯侧 (m C ph ) = *1900 = 2375 W/℃ 冷却水侧 (m c C pc ) =(m h C ph )(t h1-t h2)/(t c1-t c2) =2375*(80-30)/(50-20)= W/℃ 因此, (m C p )min=(m h C ph )=2375 W/℃ 由式(5-29),可得

换热器设计说明书

设计任务和设计条件 某生产过程的流程如图所示。反应器的混合气体经与进料物流℃之后,进入60换热后,用循环冷却水将其从110℃进一步冷却至为量的流 知混合气体组吸塔收其中的可溶性分。已吸收237301,压力为6.9,循环冷却水的压力为0.4,循环MPaMPa hkg水的入口温度为29℃,出口的温度为39℃,试设计一列管式换热器,完成生产任务。

物性特征:混和气体在35℃下的有关物性数据如下(来自生产中的实测值): 密度3?mkg/?901定压 比热容 =3.297kj/kg℃c1p热导率 =0.0279w/m ?1粘度5??Pas51?.?1011 下的物性数据:34℃循环水在3/m=994.3 密度㎏?1℃ =4.174kj/kg定压比热容c1p =0.624w/m℃热导率 ?1粘度3??Pas10742?0.?1确定设计方案 1.选择换热器的类型 两流体温的变化情况:热流体进口温度110℃出口温度60℃;冷流体进口温度29℃,出口温度为39℃,该换热器用循环冷却水冷却,冬季操作时,其进口温度会降低,考虑到这一因素,估计该换热器的管壁温度和壳体温度之差较大,因此初步确定选用浮头式换热器。2.管程安排 从两物流的操作压力看,应使混合气体走管程,循环冷却水走壳程。但由于循环冷却水较易结垢,若其流速太低,将会加快污垢增长速度,使换热器的热流量下降,所以从总体考虑,应使循环水走管程,混和气体走壳程。

浮头式换热器介绍 浮头式换热器的特点是有一端管板不与外壳连为一体,可以沿轴向自由浮动。这种结构不但完全消除了热应力的影响,且由于固2 定端的管板以法兰与壳体连接,整个管束可以从壳体中抽出,因此便于清洗和检修。故浮头式换热器应用较为普遍,但它的结构比较复杂,造价较高。 确定物性数据

化工原理课程设计说明书(换热器的设计)

中南大学 化工原理课程设计 2010年01月22日 题目设计说明书指导老师夏柳荫 学生姓名徐春波学院化学化工学院学生学号1503070127 专业班级制药0701班

目录 一、设计题目及原始数据(任务书) (3) 二、设计要求 (3) 三、列环式换热器形式及特点的简述 (3) 四、论述列管式换热器形式的选择及流体流动空间的选择 (8) 五、换热过程中的有关计算(热负荷、壳层数、总传热系数、传热 面积、压强降等等) (10) ①物性数据的确定 (14) ②总传热系数的计算 (14) ③传热面积的计算 (16) ④工艺结构尺寸的计算 (16) ⑤换热器的核算 (18) 六、设计结果概要表(主要设备尺寸、衡算结果等等) (22) 七、主体设备计算及其说明 (22) 八、主体设备装置图的绘制 (33) 九、课程设计的收获及感想 (33) 十、附表及设计过程中主要符号说明 (37) 十一、参考文献 (40)

一、设计题目及原始数据(任务书) 1、生产能力:17×104吨/年煤油 2、设备形式:列管式换热器 3、设计条件: 煤油:入口温度140o C,出口温度40 o C 冷却介质:自来水,入口温度30o C,出口温度40 o C 允许压强降:不大于105Pa 每年按330天计,每天24小时连续运行 二、设计要求 1、选择适宜的列管式换热器并进行核算 2、要进行工艺计算 3、要进行主体设备的设计(主要设备尺寸、横算结果等) 4、编写设计任务书 5、进行设备结构图的绘制(用420*594图纸绘制装置图一张:一主视图,一俯视图。一剖面图,两个局部放大图。设备技术要求、主要参数、接管表、部件明细表、标题栏。) 三、列环式换热器形式及特点的简述 换热器概述 换热器是将热流体的部分热量传递给冷流体的设备,以实现不同温度流体间的热能传递,又称热交换器。换热器是实现化工生产过程中热量交换和传递不可缺少的设备。

ASPEN PLUS换热器设计说明(中文)

ASPEN PLUS换热器设计说明 ASPEN PLUS与换热器设计 程序的界面 本章讲述的是如何使用ASPEN PLUS 自带的换热器设计程序界面(HXINT)在AS PEN PLUS运行与换热器设计程序包之间传输加热/冷却曲线的数据。 本章的主题包括: §生成物性数据 §开始运行HTXINT §选择加热/冷却曲线的结果 §生成界面文件 §在换热器设计程序包中使用界面程序 关于换热器设计程序界面 用户可以使用HTXINT程序从一个ASPEN PLUS 运行程序中选择加热/冷却曲线数据,并将这些数据传输到某个能被下列换热器设计程序包读取的文件中: §B-JAC中的HETRAN §HTFS的TASC, ACOL, 以及APLE §HTFS的M-系列程序, 包括M-TASC, M-ACOL, 以及M-APLE §HTRI的ST, CST, ACE, PHE以及RKH 用户还可以扩展由加热/冷却曲线所得到的默认数据,使其包括换热器设计程序包所需要的所有物性数据。 完成一次ASPEN PLUS 运行之后,在开始运行设计程序之前要先运行HTXINT。HTXINT将通过一系列提示给用户以指引,为换热器设计程序选择加热/冷却曲线。 HTXINT是一个用于调用ASPEN PLUS 摘要文件工具的应用程序。

在模拟中生成物性数据 HTXINT所使用的物性数据来自加热/冷却曲线,许多ASPEN PLUS单元操作模型都可以生成这种曲线。在使用HTXINT时,用户必须先使用ASPEN PLUS 生成所需的加热/冷却曲线,对于每个想要的单元模块都要生成加热/冷却曲线(一条或多条)。关于指定加热/冷却曲线的详细细节,请参见第10章“要求加热/冷却曲线计算”一节。在模块的Hcurve上就可以: 1.在“Property Sets”栏下选择“HXDESIGN” 2.选择所需采样点的数目。见本章“指定加热/冷却曲线的取样点数”一节 3.指定压力降的数值 下面各节将详细讲述以上各步骤。 指定物性集 为了生成换热器设计程序界面所需要的物性数据,在Hcurve下选择内建的HX DESIGN物性集。 指定加热/冷却曲线的取样点数目 一般地,ASPEN PLUS所默认的10个中间点的设置是可以接受的,用户也可以增减这一数目。假如取样点的数量超过了换热器设计程序所能接受的最大数目,HTXINT会在加热/冷却曲线上选择,将曲线终点以及曲线上的任何露点或泡点包含在内。由于ASPEN PLUS会额外增加露点或泡点,最终的取样点数可能会比用户要求的要多。 指定压降 HETRAN是唯一接受非等压物性曲线的换热器设计程序包。对于其他的换热器设计程序包,不可以将带有压降的加热/冷却曲线拷贝到HTXINT界面就算完事。HTRI程序包可以在每侧接受最多3条不同压力下的加热/冷却曲线。为了使结果尽可能的精确,应该定义下列压力下的3条加热/冷却曲线: §入口压力 §出口压力 §发生相变时的压力 启动HTXINT 要想交互式的运行HTXINT界面,请恰当的使用命令

192空调用热管换热器的设计计算全文

空调用热管换热器的设计计算 西安工程大学 王晓杰 黄翔 武俊梅 郑久军 摘 要: 热管技术以其独特的技术在很多领域得到了广泛的应用,在空调领域热管技术也逐渐受到重视,除了理论研究热管技术在空调领域的应用外,设计出合适的换热设备对热管在空调领域的应用也及其重要。热管换热器的计算内容主要有热力计算和校核计算。其中热力设计计算大致可分为常规计算法,离散计算法和定壁温计算法。空调用热管换热器一般为气-气型换热器,文章主要针对气-气型热管换热器的常规计算法进行介绍,并给出了一个具体实例的计算结果,以进一步促进热管换热器在制冷空调领域的应用研究。 关键词: 热管 空调 热力计算 1 引言[1][2][4] 热管换热技术因其卓越的换热能力及其它换热设备所不具有的独特换热技术在航空,化工,石油,建材,轻纺,冶金,动力工程,电子电器工程,太阳能等领域已有很广泛的应用,制冷空调领域冷冷热流体温差小,因此热管技术也逐渐受到重视。根据实际需要设计出合理的热管换热器对于空调领域来说也极为重要。 同常规换热器计算一样,热管换热器的计算内容主要有两部分:热管换热器的热力计算和校核计算。在这里主要对热管换热器的热力计算做个介绍。热管换热器的热力设计计算目前大致可分为三类:常规计算法,离散计算法,定壁温计算法。常规计算法将整个热管换热器看成一块热阻很小的间壁,然后采用常规间壁式换热器的设计方法进行计算。离散计算法认为热量从热流体到冷流体的传递不是通过壁面连续进行的,而是通过若干热管进行传递,呈阶梯式变化,不是连续的。定壁温计算法是针对热管换热器在运行中易产生露点腐蚀和积灰而提出的,计算时将热管换热器的每排热管的壁温都控制在烟气露点温度之上。从而避免露点腐蚀及因结露而形成的灰堵。 空调系统要处理的对象一般为室外新风或是室内排风,都属于气态介质,因此空调用热管换热设备为气-气热管换热器。本文将对空调用气-气热管换热器的常规计算法的热力计算做个简要介绍,文中的一次空气是待处理室外新风,二次空气可以是室内排风或室外新风。 2 热管换热器的设计计算[3][4] 2.1已知设计参数 一次空气质量流量M h , 进出口温度T 1,T 1’,二次空气质量流量M c , 进出口温度T 2,T 2’。一般六个已知量中,只要给定5个即可,另一个参数可由热平衡方程算出,如需要,还需给出一、二次空气的允许压降,二次空气出口温度未知时的计算过程为: ①一次空气定性温度T h =2 ' 11T T + (1) 查定性温度下的一次空气物性参数:定压比密度h p C 导热系数h λ粘度h μ 普兰德数h r P ②一次空气放出热量)(' 11T T C M Q h p h h -= (2)

换热器设计说明书

甲醇-甲醇换热器Ⅱ的设计 第一部分设计任务书 一,设计题目 甲醇-甲醇换热器Ⅱ的设计 二,设计任务 1,热交换量:8029.39kw 2,设备形式:长绕管式换热器 三,操作条件 ①甲醇:入口温度7.83℃,出口温度-31.68℃ ②甲醇:入口温度-37.68℃,出口温度1.00℃ ③允许压强降:管侧不大于1.5*105pa 壳侧不大于2.9*105pa. 四,设计内容 ①设计方案简介:对确定的工艺流程及换热器型式进行简要论述。 ②换热器的工艺计算:确定换热器的传热面积和传热系数。 ③换热器的主要结构尺寸设计。 ④主要辅助设备选型。 ⑤绘制换热器总装配图。 第二部分换热器设计理论计算 1,计算并初选换热器的规格

(1)两流体均不发生相变的传热过程,管程,壳程的介质均为甲醇。 (2)确定流体的定性温度,物性数据。 管程介质为甲醇,入口温度为7.83℃,出口温度-31.68℃。 壳程介质也为甲醇,入口温度-37.68℃,出口温度1.00℃。 管侧甲醇的定性温度:t m 1= 925.112 68 .3183.7-=-℃。 壳侧的甲醇定性温度:34.182 00 .168.372-=+-=t m ℃。 两流体在定性温度下的物性数据: (3)传热温差△t m =-----= ?) () ()()(12211221t T t T t T t T t In m 406.6683.6ln 6 83.6)]68.37(8.31[)183.7(ln )]68.37(8.31[)183.7(=-=---------℃ R= = --t t T T 1 2 2 102.168 .3851 .39)68.37(1)68.31(83.7==---- P= 85.051 .4568 .38)68.37(83.7)68.37(11 1 12==----= --t T t t 由R 和P 查图得到校正系数为:=?t ?1,所以校正后的温度为

计算热管换热器

1. 《热工学》,《传热学》里面有计算公式和公式推导 2. 各种手册里有更为直接的工程计算方法和参数列表,比如机械类手册,热工类手册、暖通类手册,压力容器类手册。 3. 计算热管换热系数可以采用有限元方法,ansys 、abaqus 都可以,如果有流固耦合,也可以用fluent 和cfx ,甚至是基于workbench 的多物理场联合仿真。另外还有流程类仿真计算软件,如aspen 之类的,这个软件一般应用在石化领域, 计算换热器比较有优势。 热管换热器设计 一台锅炉排烟温度为160℃,要求设计一台热管换热器,用烟气余热加热进气以提高锅炉效率。已知参数:锅炉排烟量f V =189000m 3/h ,迎风面风速=f u 2.9m/s ,排烟温度=1f t 160℃,设定出口烟气温度=2f t 118℃。需要空气的流量V l =120000m 3/h ,进气温度℃251=l t ,空气风速为s m v f /9.2= 选取圆片翅片强化换热。翅片管材料选择碳钢(w C =1%)。热管参数:热管蒸发段长取l 0=3.16m ,管外径d 0=34mm ,管内径d i =29mm ,壁厚δ0=2.5mm , 翅片高度H=12mm ,翅片厚度δ=2mm ,翅片间距mm s f 4.6=,那么翅片的节距 mm s s f f 4.8'=+=δ,每根管肋片数为n f =3160/8.4=376片。管排选用叉排布置, 迎面横向管子距离设定为m S T 115.0=,翅片管纵向距离m S S T L 115.0==。由于烟气和空气的物性很相近,取相同的蒸发器和冷凝器结构参数。 1. 总换热量计算 定性温度t fm=℃1392 118 1602 t 21 =+= +f f t 查物性得: ) /(10473.3/10931.25682.0Pr )/(0793.1/8712.02 2 6 3 K m W s m K kg kJ c m kg f f f p f ??=?==?==--λνρ,,,,

相关文档
最新文档