合肥市2018年高三第二次教学质量检测数学试题(理科)(含答案)
2018年全国统一高考真题数学试卷(理科)(新课标ⅰ)(含答案及解析)

2018年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)设z=+2i,则|z|=()A.0B.C.1D.2.(5分)已知集合A={x|x2﹣x﹣2>0},则∁R A=()A.{x|﹣1<x<2}B.{x|﹣1≤x≤2}C.{x|x<﹣1}∪{x|x>2}D.{x|x≤﹣1}∪{x|x≥2}3.(5分)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.(5分)记S n为等差数列{a n}的前n项和.若3S3=S2+S4,a1=2,则a5=()A.﹣12B.﹣10C.10D.125.(5分)设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为()A.y=﹣2x B.y=﹣x C.y=2x D.y=x6.(5分)在△ABC中,AD为BC边上的中线,E为AD的中点,则=()A.﹣B.﹣C.+D.+7.(5分)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.2B.2C.3D.28.(5分)设抛物线C:y2=4x的焦点为F,过点(﹣2,0)且斜率为的直线与C交于M,N两点,则•=()A.5B.6C.7D.89.(5分)已知函数f(x)=,g(x)=f(x)+x+a.若g(x)存在2个零点,则a的取值范围是()A.[﹣1,0)B.[0,+∞)C.[﹣1,+∞)D.[1,+∞)10.(5分)如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为I,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则()A.p1=p2B.p1=p3C.p2=p3D.p1=p2+p3 11.(5分)已知双曲线C:﹣y2=1,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M,N.若△OMN为直角三角形,则|MN|=()A.B.3C.2D.412.(5分)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。
2018届高三第二次月考数学试卷(理)含答案

2018届⾼三第⼆次⽉考数学试卷(理)含答案⾼三第⼆次⽉考数学试题(理)⼀、选择题:(本⼤题共12⼩题,每⼩题5分,在每⼩题给出的四个选项中,只有⼀个符合题⽬要求)1.若M={x|﹣2≤x ≤2},N={x|y=log 2(x ﹣1)},则M ∩N=() A .{x|﹣2≤x <0} B .{x|﹣1<x <0}C .{﹣2,0}D .{x|1<x ≤2}2.复数()ii z 22-= (i 为虚数单位),则|z |等于( )A .25 B.41 C .5 D. 53.设φ∈R,则“φ=0”是“f (x )=cos(x +φ)(x ∈R)为偶函数”的( )A .充分⽽不必要条件B .必要⽽不充分条件C .充分必要条件D .既不充分也不必要条件4.设x ,y ∈R,向量a =(x,1),b =(1,y ),c =(2,-4),且a ⊥c ,b ∥c ,则|a +b |等于( )A. 5B.10 C .2 5 D .105.设函数f (x )=x 2+4x +6,x ≤0-x +6,x >0,则不等式f (x )( )A .(-3,-1)∪(3,+∞)B .(-3,-1)∪(2,+∞)C .(-3,+∞)D .(-∞,-3)∪(-1,3)6.已知定义在R 上的奇函数f (x )满⾜f (x -4)=-f (x ),且在区间[0,2]上是增函数,则( )A .f (-25) < f (11) < f (80)B .f (80) < f (11)C .f (11)< f (80)D .f (-25) < f (80)+ax 的导函数f ′(x )=2x +1,则dx x f ?-21)(的值等于 ( )A.56B.12C.23D.16 8.函数y =ln(1-x )的⼤致图像为( )第1页(共4页)9.若tan α+1tan α=103,α∈(π4,π2),则sin(2α+π4)的值为( ) A .-210B.210 C.3210 D.721010.△ABC 中,AC =7,BC =2,B =60°,则BC 边上的⾼等于( )A.32B.332C.3+62D.3+39411.函数11y x =-的图像与函数2sin (24)y x x π=-≤≤的图像所有交点的横坐标之和等于() A .2B .4C .6D .812.若直线y=kx +b 是曲线y =ln x +2的切线,也是曲线y =ln (x +1)的切线,则b =()A .1 B.21 C. 1-ln2 D. 1-2ln2⼆、填空题:(本⼤题共4⼩题,每⼩题5分)13.已知命题p :“任意x ∈[0,1],a ≥e x”;命题q :“存在x ∈R,使得x 2+4x +a =0”.若命题“p 且q ”是真命题,则实数a 的取值范围是__________.14.设偶函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π)的部分图像如图所⽰,△KLM 为等腰直⾓三⾓形,∠KML =90°,KL =1,则f (16)的值为________.15.在△ABC 中,M 是BC 的中点,AM =4,点P 在AM 上,且满⾜AP →=3PM →,则PA →·(PB →+PC →)的值为___________.16.在△ABC 中,D 为边BC 上⼀点,BD=12DC ,∠ADB=120°,AD=2,若ADC ?S =3,则∠BAC=_______.三、解答题:(解答应写出⽂字说明,证明过程和演算步骤)17. (本⼩题满分12分)已知向量a =(4,5cos α),b =(3,-4tan α),α∈(0,π2),a ⊥b ,求:(1)|a +b |;(2)cos(α+π4)的值.18.(本⼩题满分12分)已知函数f (x )=(3sin ωx +cos ωx )cos ωx -12(ω>0)的最⼩正周期为4π..(1)求f (x )的单调递增区间;(2)在△ABC 中,⾓A ,B ,C 的对边分别是a ,b ,c 满⾜(2a -c )cos B =b cos C ,求函数f (A )的取值范围.19. (本⼩题满分12分)已知△ABC 的内⾓为A 、B 、C ,其对边分别为a 、b 、c ,B 为锐⾓,向量=(2sin B ,-3),=(cos 2B,2cos 2B2-1),且∥.(1)求⾓B 的⼤⼩;(2)如果b =2,求S △ABC 的最⼤值.20.(本⼩题满分12分)(1)在等差数列{a n }中,已知a 1=20,前n 项和为S n ,且S 10=S 15,求当n 取何值时,S n 取得最⼤值,并求出它的最⼤值;(2)已知数列{a n }的通项公式是a n =4n -25,求数列{|a n |}的前n 项和.第3页(共4页)21.(本⼩题满分12分)已知函数f (x )=mx -m x,g (x )=3ln x . (1)当m =4时,求曲线f (x )=mx -m x在点(2,f (2))处的切线⽅程;(2)若x ∈(1, e ](e 是⾃然对数的底数)时,不等式f (x )-g (x )<3恒成⽴,求实数m 的取值范围.(选考题:共10分。
2018年高考理科数学试题(含全国1卷、2卷、3卷)带参考答案

有
种. (用数字填写答案)
16. 已知函数 f( x) =2sinx+sin2x ,则 f(x)的最小值是
.
三 . 解答题:共 70 分。解答应写出文字说明、证明过程或演算步骤。第 17~21 题为必考题, 每个试题考生都必须作答。第 22、23 题为选考题,考生根据要求作答。
(一)必考题:共 60 分。 17. ( 12 分)
A、-12 B 、-10 C 、10 D 、12 5、设函数 f (x)=x3+(a-1 ) x2+ax . 若 f(x)为奇函数,则曲线 y= f(x)在点( 0,0)处的Biblioteka 切线方程为( )2
A.y= -2x
B.y= -x C.y=2x D.y=x
6、在 ? ABC中, AD为 BC边上的中线, E 为 AD的中点,则 =( )
5
如检验出不合格品,则更换为合格品,检验时,先从这箱产品中任取 20 件产品作检验,再根
据检验结果决定是否对余下的所有产品做检验,设每件产品为不合格品的概率都为
P
( 0<P<1),且各件产品是否为不合格品相互独立。
( 1)记 20 件产品中恰有 2 件不合格品的概率为 f(P),求 f(P)的最大值点
A.
-
B.
-
C.
+
D.
+
7、某圆柱的高为 2,底面周长为 16,其三视图如右图。圆柱表面上的点 M在正视图上的对应 点为 A,圆柱表面上的点 N 在左视图上的对应点为 B,则在此圆柱侧面上, 从 M到 N 的路径中, 最短路径的长度为( )
A. 2 B. 2 C. 3 D. 2 8. 设抛物线 C:y2=4x 的焦点为 F,过点( -2 ,0)且斜率为 的直线与 C 交于 M,N 两点,则 · =( ) A.5 B.6 C.7 D.8
安徽省合肥市2018届高三第二次质量检测理综化学试卷(含答案)(可编辑修改word版)

合肥市2018 年高三第二次教学质量检测理科综合试题(化学部分)可能用到的相对原子质量:H:1B:11C:12N:14O:16S:32Cl:35.5Cu:64Sn:119一、选择题:本题共13 小题,每小题 6 分,共78 分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
常见古诗文记载化学知识A 《荀子·劝学》:冰水为之,而寒于水。
冰的能量低于水,冰变为水属于吸热反应B 《泉州府志》:元时南安有黄长者为宅煮糖,宅垣忽泥土具有吸附作用,能将红糖变白糖坏,去土而糖白,后人遂效之。
C 《天工开物》:凡研硝(KNO3不以铁碾入石臼,相激性质不稳定,撞击易爆炸火生,祸不可测。
D 《本草纲目》:釆蒿蓼之属,晒干烧灰,以原水淋汁,石碱具有碱性,遇酸产生气体久则凝淀如石(石碱),浣衣发面。
8欧美三位科学家因“分子机器的设计与合成”研究而荣获2016 年诺贝尔化学奖。
纳米分子机器研究进程中常见机器的“车轮”组件如下图所示。
下列说法正确的是A.①③互为同系物B.①②③④均属于烃C.①④的一氯代物均为三种D.②④互为同分异构体9.实验室按如下装置测定纯碱(含少量NaC1)的纯度。
下列说法不正确的是A.滴人盐酸前,应将装置中含有CO2的空气排尽B.装置①、④的作用是防止空气中的CO2进入装置③C.必须在装置②、③间添加盛有饱和NaHCO3溶液的洗气瓶D.反应结束时,应再通入空气将装置②中CO2转移到装置③中10.短周期主族元素Ⅹ、Y、Z、W 的原子序数依次增大,Ⅹ、W 同主族且W 原子核电荷数等于X 原子核电荷数的2 倍,Y、Z 原子的核外电子数之和与Ⅹ、W 原子的核外电子数之和相等。
下列说法中一定正确的是A.Ⅹ的原子半径比Y 的原子半径大B.Ⅹ形成的氢化物分子中不含非极性键C.z、W 的最高价氧化物对应的水化物是酸D.Y 单质与水反应,水可能作氧化剂也可能作还原剂11.如下图所示,装置(I)是一种可充电电池,装置(Ⅱ)为惰性电极的电解池。
2018年全国统一高考数学试卷(理科)(新课标Ⅱ)(含答案)

绝密★启用前2018年全国统一高考数学试卷(理科)(新课标Ⅱ)考试时间:120分钟;试卷整理:微信公众号--浙江数学学校:___________姓名:___________班级:___________考号:___________题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上评卷人得分一.选择题(共12小题,满分60分,每小题5分)1.(5分)(2018•新课标Ⅱ)=()A.iB.C.D.2.(5分)(2018•新课标Ⅱ)已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z),则A 中元素的个数为()A.9B.8C.5D.43.(5分)(2018•新课标Ⅱ)函数f(x)=的图象大致为()A.B.C.D.4.(5分)(2018•新课标Ⅱ)已知向量,满足||=1,=﹣1,则•(2)=()A.4B.3C.2D.05.(5分)(2018•新课标Ⅱ)双曲线=1(a>0,b>0)的离心率为,则其渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±x6.(5分)(2018•新课标Ⅱ)在△ABC中,cos=,BC=1,AC=5,则AB=()A.4B.C.D.27.(5分)(2018•新课标Ⅱ)为计算S=1﹣+﹣+…+﹣,设计了如图的程序框图,则在空白框中应填入()A.i=i+1B.i=i+2C.i=i+3D.i=i+48.(5分)(2018•新课标Ⅱ)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是()A.B.C.D.9.(5分)(2018•新课标Ⅱ)在长方体ABCD﹣A 1B1C1D1中,AB=BC=1,AA1=,则异面直线AD1与DB1所成角的余弦值为()A.B.C.D.10.(5分)(2018•新课标Ⅱ)若f(x)=cosx﹣sinx在[﹣a,a]是减函数,则a的最大值是()A.B.C.D.π11.(5分)(2018•新课标Ⅱ)已知f(x)是定义域为(﹣∞,+∞)的奇函数,满足f(1﹣x)=f(1+x),若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)=()A.﹣50B.0C.2D.5012.(5分)(2018•新课标Ⅱ)已知F1,F2是椭圆C:=1(a>b>0)的左、右焦点,A是C的左顶点,点P在过A且斜率为的直线上,△PF1F2为等腰三角形,∠F1F2P=120°,则C的离心率为()A.B.C.D.第Ⅱ卷(非选择题)请点击修改第Ⅱ卷的文字说明评卷人得分二.填空题(共4小题,满分20分,每小题5分)13.(5分)(2018•新课标Ⅱ)曲线y=2ln(x+1)在点(0,0)处的切线方程为.14.(5分)(2018•新课标Ⅱ)若x,y满足约束条件,则z=x+y的最大值为.15.(5分)(2018•新课标Ⅱ)已知sinα+cosβ=l,cosα+sinβ=0,则sin(α+β)=.16.(5分)(2018•新课标Ⅱ)已知圆锥的顶点为S,母线SA,SB所成角的余弦值为,SA与圆锥底面所成角为45°,若△SAB的面积为5,则该圆锥的侧面积为.评卷人得分三.解答题(共7小题,满分80分)17.(12分)(2018•新课标Ⅱ)记S n为等差数列{a n}的前n项和,已知a1=﹣7,S3=﹣15.(1)求{a n}的通项公式;(2)求S n,并求S n的最小值.18.(12分)(2018•新课标Ⅱ)如图是某地区2000年至2016年环境基础设施投资额y(单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y与时间变量t的两个线性回归模型.根据2000年至2016年的数据(时间变量t的值依次为1,2,…,17)建立模型①:=﹣30.4+13.5t;根据2010年至2016年的数据(时间变量t的值依次为1,2,…,7)建立模型②:=99+17.5t.(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;(2)你认为用哪个模型得到的预测值更可靠?并说明理由.19.(12分)(2018•新课标Ⅱ)设抛物线C:y2=4x的焦点为F,过F且斜率为k (k>0)的直线l与C交于A,B两点,|AB|=8.(1)求l的方程;(2)求过点A,B且与C的准线相切的圆的方程.20.(12分)(2018•新课标Ⅱ)如图,在三棱锥P﹣ABC中,AB=BC=2,PA=PB=PC=AC=4,O为AC的中点.(1)证明:PO⊥平面ABC;(2)若点M在棱BC上,且二面角M﹣PA﹣C为30°,求PC与平面PAM所成角的正弦值.21.(12分)(2018•新课标Ⅱ)已知函数f(x)=e x﹣ax2.(1)若a=1,证明:当x≥0时,f(x)≥1;(2)若f(x)在(0,+∞)只有一个零点,求a.22.(10分)(2018•新课标Ⅱ)在直角坐标系xOy中,曲线C的参数方程为,(θ为参数),直线l的参数方程为,(t为参数).(1)求C和l的直角坐标方程;(2)若曲线C截直线l所得线段的中点坐标为(1,2),求l的斜率.23.(10分)(2018•新课标Ⅱ)设函数f(x)=5﹣|x+a|﹣|x﹣2|.(1)当a=1时,求不等式f(x)≥0的解集;(2)若f(x)≤1,求a的取值范围.2018年全国统一高考数学试卷(理科)(新课标Ⅱ)参考答案与试题解析一.选择题(共12小题,满分60分,每小题5分)1.(5分)(2018•新课标Ⅱ)=()A.iB.C.D.【考点】A5:复数的运算.【分析】利用复数的除法的运算法则化简求解即可.【解答】解:==+.故选:D.【点评】本题考查复数的代数形式的乘除运算,是基本知识的考查.2.(5分)(2018•新课标Ⅱ)已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z),则A 中元素的个数为()A.9B.8C.5D.4【考点】1A:集合中元素个数的最值.【分析】分别令x=﹣1,0,1,进行求解即可.【解答】解:当x=﹣1时,y2≤2,得y=﹣1,0,1,当x=0时,y2≤3,得y=﹣1,0,1,当x=1时,y2≤2,得y=﹣1,0,1,即集合A中元素有9个,故选:A.【点评】本题主要考查集合元素个数的判断,利用分类讨论的思想是解决本题的关键.3.(5分)(2018•新课标Ⅱ)函数f(x)=的图象大致为()A.B.C.D.【考点】6B:利用导数研究函数的单调性;3A:函数的图象与图象的变换.【分析】判断函数的奇偶性,利用函数的定点的符号的特点分别进行判断即可.【解答】解:函数f(﹣x)==﹣=﹣f(x),则函数f(x)为奇函数,图象关于原点对称,排除A,当x=1时,f(1)=e﹣>0,排除D.当x→+∞时,f(x)→+∞,排除C,故选:B.【点评】本题主要考查函数的图象的识别和判断,利用函数图象的特点分别进行排除是解决本题的关键.4.(5分)(2018•新课标Ⅱ)已知向量,满足||=1,=﹣1,则•(2)=()A.4B.3C.2D.0【考点】9O:平面向量数量积的性质及其运算;91:向量的概念与向量的模.【分析】根据向量的数量积公式计算即可.【解答】解:向量,满足||=1,=﹣1,则•(2)=2﹣=2+1=3,故选:B.【点评】本题考查了向量的数量积公式,属于基础题5.(5分)(2018•新课标Ⅱ)双曲线=1(a>0,b>0)的离心率为,则其渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±x【考点】KC:双曲线的性质.【分析】根据双曲线离心率的定义求出a,c的关系,结合双曲线a,b,c的关系进行求解即可.【解答】解:∵双曲线的离心率为e==,则=====,即双曲线的渐近线方程为y=±x=±x,故选:A.【点评】本题主要考查双曲线渐近线的求解,结合双曲线离心率的定义以及渐近线的方程是解决本题的关键.6.(5分)(2018•新课标Ⅱ)在△ABC中,cos=,BC=1,AC=5,则AB=()A.4B.C.D.2【考点】HR:余弦定理.【分析】利用二倍角公式求出C的余弦函数值,利用余弦定理转化求解即可.【解答】解:在△ABC中,cos=,cosC=2×=﹣,BC=1,AC=5,则AB====4.故选:A.【点评】本题考查余弦定理的应用,考查三角形的解法以及计算能力.7.(5分)(2018•新课标Ⅱ)为计算S=1﹣+﹣+…+﹣,设计了如图的程序框图,则在空白框中应填入()A.i=i+1B.i=i+2C.i=i+3D.i=i+4【考点】EH:绘制程序框图解决问题;E7:循环结构.【分析】模拟程序框图的运行过程知该程序运行后输出的S=N﹣T,由此知空白处应填入的条件.【解答】解:模拟程序框图的运行过程知,该程序运行后输出的是S=N﹣T=(1﹣)+(﹣)+…+(﹣);累加步长是2,则在空白处应填入i=i+2.故选:B.【点评】本题考查了循环程序的应用问题,是基础题.8.(5分)(2018•新课标Ⅱ)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是()A.B.C.D.【考点】CB:古典概型及其概率计算公式.【分析】利用列举法先求出不超过30的所有素数,利用古典概型的概率公式进行计算即可.【解答】解:在不超过30的素数中有,2,3,5,7,11,13,17,19,23,29共10个,从中选2个不同的数有=45种,和等于30的有(7,23),(11,19),(13,17),共3种,则对应的概率P==,故选:C.【点评】本题主要考查古典概型的概率的计算,求出不超过30的素数是解决本题的关键.9.(5分)(2018•新课标Ⅱ)在长方体ABCD﹣A 1B1C1D1中,AB=BC=1,AA1=,则异面直线AD1与DB1所成角的余弦值为()A.B.C.D.【考点】LM:异面直线及其所成的角.【分析】以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出异面直线AD1与DB1所成角的余弦值.【解答】解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,∵在长方体ABCD﹣A1B1C1D1中,AB=BC=1,AA 1=,∴A(1,0,0),D 1(0,0,),D(0,0,0),B 1(1,1,),=(﹣1,0,),=(1,1,),设异面直线AD1与DB1所成角为θ,则cosθ===,∴异面直线AD1与DB1所成角的余弦值为.故选:C.【点评】本题考查异面直线所成角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.10.(5分)(2018•新课标Ⅱ)若f(x)=cosx﹣sinx在[﹣a,a]是减函数,则a的最大值是()A.B.C.D.π【考点】GP:两角和与差的三角函数;H5:正弦函数的单调性.【分析】利用两角和差的正弦公式化简f(x),由,k∈Z,得,k∈Z,取k=0,得f(x)的一个减区间为[,],结合已知条件即可求出a的最大值.【解答】解:f(x)=cosx﹣sinx=﹣(sinx﹣cosx)=,由,k∈Z,得,k∈Z,取k=0,得f(x)的一个减区间为[,],由f(x)在[﹣a,a]是减函数,得,∴.则a的最大值是.故选:A.【点评】本题考查了两角和与差的正弦函数公式的应用,三角函数的求值,属于基本知识的考查,是基础题.11.(5分)(2018•新课标Ⅱ)已知f(x)是定义域为(﹣∞,+∞)的奇函数,满足f(1﹣x)=f(1+x),若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)=()A.﹣50B.0C.2D.50【考点】3K:函数奇偶性的性质与判断.【分析】根据函数奇偶性和对称性的关系求出函数的周期是4,结合函数的周期性和奇偶性进行转化求解即可.【解答】解:∵f(x)是奇函数,且f(1﹣x)=f(1+x),∴f(1﹣x)=f(1+x)=﹣f(x﹣1),f(0)=0,则f(x+2)=﹣f(x),则f(x+4)=﹣f(x+2)=f(x),即函数f(x)是周期为4的周期函数,∵f(1)=2,∴f(2)=f(0)=0,f(3)=f(1﹣2)=f(﹣1)=﹣f(1)=﹣2,f(4)=f(0)=0,则f(1)+f(2)+f(3)+f(4)=2+0﹣2+0=0,则f(1)+f(2)+f(3)+…+f(50)=12[f(1)+f(2)+f(3)+f(4)]+f(49)+f(50)=f(1)+f(2)=2+0=2,故选:C.【点评】本题主要考查函数值的计算,根据函数奇偶性和对称性的关系求出函数的周期性是解决本题的关键.12.(5分)(2018•新课标Ⅱ)已知F1,F2是椭圆C:=1(a>b>0)的左、右焦点,A是C的左顶点,点P在过A且斜率为的直线上,△PF1F2为等腰三角形,∠F1F2P=120°,则C的离心率为()A.B.C.D.【考点】K4:椭圆的性质.【分析】求得直线AP的方程:根据题意求得P点坐标,代入直线方程,即可求得椭圆的离心率.【解答】解:由题意可知:A(﹣a,0),F1(﹣c,0),F2(c,0),直线AP的方程为:y=(x+a),由∠F 1F2P=120°,|PF2|=|F1F2|=2c,则P(2c,c),代入直线AP:c=(2c+a),整理得:a=4c,∴题意的离心率e==.故选:D.【点评】本题考查椭圆的性质,直线方程的应用,考查转化思想,属于中档题.二.填空题(共4小题,满分20分,每小题5分)13.(5分)(2018•新课标Ⅱ)曲线y=2ln(x+1)在点(0,0)处的切线方程为y=2x.【考点】6H:利用导数研究曲线上某点切线方程.【分析】欲求出切线方程,只须求出其斜率即可,故先利用导数求出在x=0处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.【解答】解:∵y=2ln(x+1),∴y′=,当x=0时,y′=2,∴曲线y=2ln(x+1)在点(0,0)处的切线方程为y=2x.故答案为:y=2x.【点评】本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.14.(5分)(2018•新课标Ⅱ)若x,y满足约束条件,则z=x+y的最大值为9.【考点】7C:简单线性规划.【分析】由约束条件作出可行域,数形结合得到最优解,求出最优解的坐标,代入目标函数得答案.【解答】解:由x,y满足约束条件作出可行域如图,化目标函数z=x+y为y=﹣x+z,由图可知,当直线y=﹣x+z过A时,z取得最大值,由,解得A(5,4),目标函数有最大值,为z=9.故答案为:9.【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.15.(5分)(2018•新课标Ⅱ)已知sinα+cosβ=l,cosα+sinβ=0,则sin(α+β)=.【考点】GP:两角和与差的三角函数.【分析】把已知等式两边平方化简可得2+2(sinαcosβ+cosαsinβ)=1,再利用两角和差的正弦公式化简为2sin(α+β)=﹣1,可得结果.【解答】解:sinα+cosβ=l,两边平方可得:sin2α+2sinαcosβ+cos2β=1,①,cosα+sinβ=0,两边平方可得:cos2α+2cosαsinβ+sin2β=0,②,由①+②得:2+2(sinαcosβ+cosαsinβ)=1,即2+2sin(α+β)=1,∴2sin(α+β)=﹣1.∴sin(α+β)=.故答案为:.【点评】本题考查了两角和与差的正弦函数公式的应用,三角函数的求值,属于基本知识的考查,是基础题.16.(5分)(2018•新课标Ⅱ)已知圆锥的顶点为S,母线SA,SB所成角的余弦值为,SA与圆锥底面所成角为45°,若△SAB的面积为5,则该圆锥的侧面积为40π.【考点】MI:直线与平面所成的角.【分析】利用已知条件求出圆锥的母线长,利用直线与平面所成角求解底面半径,然后求解圆锥的侧面积.【解答】解:圆锥的顶点为S,母线SA,SB所成角的余弦值为,可得sin∠AMB==.△SAB的面积为5,可得sin∠AMB=5,即×=5,即SA=4.SA与圆锥底面所成角为45°,可得圆锥的底面半径为:=2.则该圆锥的侧面积:π=40π.故答案为:40π.【点评】本题考查圆锥的结构特征,母线与底面所成角,圆锥的截面面积的求法,考查空间想象能力以及计算能力.三.解答题(共7小题,满分80分)17.(12分)(2018•新课标Ⅱ)记S n为等差数列{a n}的前n项和,已知a1=﹣7,S3=﹣15.(1)求{a n}的通项公式;(2)求S n,并求S n的最小值.【考点】85:等差数列的前n项和;84:等差数列的通项公式.【分析】(1)根据a1=﹣7,S3=﹣15,可得a1=﹣7,3a1+3d=﹣15,求出等差数列{a n}的公差,然后求出a n即可;(2)由a1=﹣7,d=2,a n=2n﹣9,得S n===n2﹣8n=(n﹣4)2﹣16,由此可求出S n以及S n的最小值.【解答】解:(1)∵等差数列{a n}中,a1=﹣7,S3=﹣15,∴a1=﹣7,3a1+3d=﹣15,解得a1=﹣7,d=2,∴a n=﹣7+2(n﹣1)=2n﹣9;(2)∵a1=﹣7,d=2,a n=2n﹣9,∴S n===n2﹣8n=(n﹣4)2﹣16,∴当n=4时,前n项的和S n取得最小值为﹣16.【点评】本题主要考查了等差数列的通项公式,考查了等差数列的前n项的和公式,属于中档题.18.(12分)(2018•新课标Ⅱ)如图是某地区2000年至2016年环境基础设施投资额y(单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y与时间变量t的两个线性回归模型.根据2000年至2016年的数据(时间变量t的值依次为1,2,…,17)建立模型①:=﹣30.4+13.5t;根据2010年至2016年的数据(时间变量t的值依次为1,2,…,7)建立模型②:=99+17.5t.(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;(2)你认为用哪个模型得到的预测值更可靠?并说明理由.【考点】BK:线性回归方程.【分析】(1)根据模型①计算t=19时的值,根据模型②计算t=9时的值即可;(2)从总体数据和2000年到2009年间递增幅度以及2010年到2016年间递增的幅度比较,即可得出模型②的预测值更可靠些.【解答】解:(1)根据模型①:=﹣30.4+13.5t,计算t=19时,=﹣30.4+13.5×19=226.1;利用这个模型,求出该地区2018年的环境基础设施投资额的预测值是226.1亿元;根据模型②:=99+17.5t,计算t=9时,=99+17.5×9=256.5;.利用这个模型,求该地区2018年的环境基础设施投资额的预测值是256.5亿元;(2)模型②得到的预测值更可靠;因为从总体数据看,该地区从2000年到2016年的环境基础设施投资额是逐年上升的,而从2000年到2009年间递增的幅度较小些,从2010年到2016年间递增的幅度较大些,所以,利用模型②的预测值更可靠些.【点评】本题考查了线性回归方程的应用问题,是基础题.19.(12分)(2018•新课标Ⅱ)设抛物线C:y2=4x的焦点为F,过F且斜率为k (k>0)的直线l与C交于A,B两点,|AB|=8.(1)求l的方程;(2)求过点A,B且与C的准线相切的圆的方程.【考点】KN:直线与抛物线的位置关系.【分析】(1)方法一:设直线AB的方程,代入抛物线方程,根据抛物线的焦点弦公式即可求得k的值,即可求得直线l的方程;方法二:根据抛物线的焦点弦公式|AB|=,求得直线AB的倾斜角,即可求得直线l的斜率,求得直线l的方程;(2)根据过A,B分别向准线l作垂线,根据抛物线的定义即可求得半径,根据中点坐标公式,即可求得圆心,求得圆的方程.【解答】解:(1)方法一:抛物线C:y2=4x的焦点为F(1,0),当直线的斜率不存在时,|AB|=4,不满足;设直线AB的方程为:y=k(x﹣1),设A(x1,y1),B(x2,y2),则,整理得:k2x2﹣2(k2+2)x+k2=0,则x1+x2=,x1x2=1,由|AB|=x1+x2+p=+2=8,解得:k2=1,则k=1,∴直线l的方程y=x﹣1;方法二:抛物线C:y2=4x的焦点为F(1,0),设直线AB的倾斜角为θ,由抛物线的弦长公式|AB|===8,解得:sin2θ=,∴θ=,则直线的斜率k=1,∴直线l的方程y=x﹣1;(2)过A,B分别向准线x=﹣1作垂线,垂足分别为A1,B1,设AB的中点为D,过D作DD1⊥准线l,垂足为D,则|DD1|=(|AA1|+|BB1|)由抛物线的定义可知:|AA1|=|AF|,|BB1|=|BF|,则r=|DD1|=4,以AB为直径的圆与x=﹣1相切,且该圆的圆心为AB的中点D,由(1)可知:x1+x2=6,y1+y2=x1+x2﹣2=4,则D(3,2),过点A,B且与C的准线相切的圆的方程(x﹣3)2+(y﹣2)2=16..【点评】本题考查抛物线的性质,直线与抛物线的位置关系,抛物线的焦点弦公式,考查圆的标准方程,考查转换思想思想,属于中档题.20.(12分)(2018•新课标Ⅱ)如图,在三棱锥P﹣ABC中,AB=BC=2,PA=PB=PC=AC=4,O为AC的中点.(1)证明:PO⊥平面ABC;(2)若点M在棱BC上,且二面角M﹣PA﹣C为30°,求PC与平面PAM所成角的正弦值.【考点】MJ:二面角的平面角及求法;LW:直线与平面垂直;MI:直线与平面所成的角.【分析】(1)利用线面垂直的判定定理证明PO⊥AC,PO⊥OB即可;(2)根据二面角的大小求出平面PAM的法向量,利用向量法即可得到结论.【解答】解:(1)证明:∵AB=BC=2,O是AC的中点,∴BO⊥AC,且BO=2,又PA=PC=PB=AC=2,∴PO⊥AC,PO=2,则PB2=PO2+BO2,则PO⊥OB,∵OB∩AC=O,∴PO⊥平面ABC;(2)建立以O坐标原点,OB,OC,OP分别为x,y,z轴的空间直角坐标系如图:A(0,﹣2,0),P(0,0,2),C(0,2,0),B(2,0,0),=(﹣2,2,0),设=λ=(﹣2λ,2λ,0),0<λ<1则=﹣=(﹣2λ,2λ,0)﹣(﹣2,﹣2,0)=(2﹣2λ,2λ+2,0),则平面PAC的法向量为=(1,0,0),设平面MPA的法向量为=(x,y,z),则=(0,﹣2,﹣2),则•=﹣2y﹣2z=0,•=(2﹣2λ)x+(2λ+2)y=0令z=1,则y=﹣,x=,即=(,﹣,1),∵二面角M﹣PA﹣C为30°,∴cos30°=|=,即=,解得λ=或λ=3(舍),则平面MPA的法向量=(2,﹣,1),=(0,2,﹣2),PC与平面PAM所成角的正弦值sinθ=|cos<,>|=||==.【点评】本题主要考查空间直线和平面的位置关系的应用以及二面角,线面角的求解,建立坐标系求出点的坐标,利用向量法是解决本题的关键.21.(12分)(2018•新课标Ⅱ)已知函数f(x)=e x﹣ax2.(1)若a=1,证明:当x≥0时,f(x)≥1;(2)若f(x)在(0,+∞)只有一个零点,求a.【考点】6D:利用导数研究函数的极值.【分析】(1)通过两次求导,利用导数研究函数的单调性极值与最值即可证明,(2)分离参数可得a=在(0,+∞)只有一个根,即函数y=a与G(x)=的图象在(0,+∞)只有一个交点.结合图象即可求得a.【解答】证明:(1)当a=1时,函数f(x)=e x﹣x2.则f′(x)=e x﹣2x,令g(x)=e x﹣2x,则g′(x)=e x﹣2,令g′(x)=0,得x=ln2.当∈(0,ln2)时,h′(x)<0,当∈(ln2,+∞)时,h′(x)>0,∴h(x)≥h(ln2)=e ln2﹣2•ln2=2﹣2ln2>0,∴f(x)在[0,+∞)单调递增,∴f(x)≥f(0)=1,解:(2),f(x)在(0,+∞)只有一个零点⇔方程e x﹣ax2=0在(0,+∞)只有一个根,⇔a=在(0,+∞)只有一个根,即函数y=a与G(x)=的图象在(0,+∞)只有一个交点.G,当x∈(0,2)时,G′(x)<0,当∈(2,+∞)时,G′(x)>0,∴G(x)在(0,2)递减,在(2,+∞)递增,当→0时,G(x)→+∞,当→+∞时,G(x)→+∞,∴f(x)在(0,+∞)只有一个零点时,a=G(2)=.【点评】本题考查了利用导数探究函数单调性,以及函数零点问题,考查了转化思想、数形结合思想,属于中档题.22.(10分)(2018•新课标Ⅱ)在直角坐标系xOy中,曲线C的参数方程为,(θ为参数),直线l的参数方程为,(t为参数).(1)求C和l的直角坐标方程;(2)若曲线C截直线l所得线段的中点坐标为(1,2),求l的斜率.【考点】QH:参数方程化成普通方程.【分析】(1)直接利用转换关系,把参数方程和极坐标方程与直角坐标方程进行转化.(2)利用直线和曲线的位置关系,在利用中点坐标求出结果.【解答】解:(1)曲线C的参数方程为(θ为参数),转换为直角坐标方程为:.直线l的参数方程为(t为参数).转换为直角坐标方程为:sinαx﹣cosαy+2cosα﹣sinα=0.(2)把直线的参数方程代入椭圆的方程得到:+=1整理得:(4cos2α+sin2α)t2+(8cosα+4sinα)t﹣8=0,则:,由于(1,2)为中点坐标,所以:,则:8cosα+4sinα=0,解得:tanα=﹣2,即:直线l的斜率为﹣2.【点评】本题考查的知识要点:参数方程和极坐标方程与直角坐标方程的转化,直线和曲线的位置关系的应用,中点坐标的应用.23.(10分)(2018•新课标Ⅱ)设函数f(x)=5﹣|x+a|﹣|x﹣2|.(1)当a=1时,求不等式f(x)≥0的解集;(2)若f(x)≤1,求a的取值范围.【考点】R5:绝对值不等式的解法.【分析】(1)去绝对值,化为分段函数,求出不等式的解集即可,(2)由题意可得|x+a|+|x﹣2|≥4,根据据绝对值的几何意义即可求出【解答】解:(1)当a=1时,f(x)=5﹣|x+1|﹣|x﹣2|=.当x≤﹣1时,f(x)=2x+4≥0,解得﹣2≤x≤1,当﹣1<x<2时,f(x)=2≥0恒成立,即﹣1<x<2,当x≥2时,f(x)=﹣2x+6≥0,解得2≤x≤3,综上所述不等式f(x)≥0的解集为[﹣2,3],(2)∵f(x)≤1,∴5﹣|x+a|﹣|x﹣2|≤1,∴|x+a|+|x﹣2|≥4,∴|x+a|+|x﹣2|=|x+a|+|2﹣x|≥|x+a+2﹣x|=|a+2|,∴|a+2|≥4,解得a≤﹣6或a≥2,故a的取值范围(﹣∞,﹣6]∪[2,+∞).【点评】本题考查了绝对值的不等式和绝对值的几何意义,属于中档题。
2018年全国统一高考数学试卷(理科)(新课标ⅱ)(含解析版)

2018年全国统一高考数学试卷(理科)(新课标Ⅱ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)=()A.i B.C.D.2.(5分)已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A中元素的个数为()A.9B.8C.5D.43.(5分)函数f(x)=的图象大致为()A.B.C.D.4.(5分)已知向量,满足||=1,=﹣1,则•(2)=()A.4B.3C.2D.05.(5分)双曲线=1(a>0,b>0)的离心率为,则其渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±x6.(5分)在△ABC中,cos=,BC=1,AC=5,则AB=()A.4B.C.D.27.(5分)为计算S=1﹣+﹣+…+﹣,设计了如图的程序框图,则在空白框中应填入()A.i=i+1B.i=i+2C.i=i+3D.i=i+48.(5分)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是()A.B.C.D.9.(5分)在长方体ABCD﹣A1B1C1D1中,AB=BC=1,AA1=,则异面直线AD1与DB1所成角的余弦值为()A.B.CD.10.(5分)若f(x)=cosx﹣sinx在[﹣a,a]是减函数,则a的最大值是()A.B.C.D.π11.(5分)已知f(x)是定义域为(﹣∞,+∞)的奇函数,满足f(1﹣x)=f(1+x),若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)=()A.﹣50B.0C.2D.5012.(5分)已知F1,F2是椭圆C:=1(a>b>0)的左、右焦点,A是C的左顶点,点P在过A 且斜率为的直线上,△PF1F2为等腰三角形,∠F1F2P=120°,则C的离心率为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。
2018年福建省质检数学(理科)试卷(含答案)
2018年福建省高三毕业班质量检查测试理科数学一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合21{|log 0},33xA x xB x ⎧⎫⎪⎪⎛⎫=<=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,则A B =I ( )A .{|11}x x -<<B .{|01}x x <<C .{|0}x x >D .R1.【答案】B【考查意图】本小题以集合为载体,考查指数函数、对数函数的图象与性质,集合的运算等基础知识;考查运算求解能力,考查数形结合思想等.【答题分析】只要掌握指、对数函数的图象与性质,集合的运算等,便可解决问题.解:2log 0x <等价于22log log 1x <,解得01x <<,所以(0,1)A =;133x⎛⎫< ⎪⎝⎭等价于11133x-⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,解得1x >-,所以(1,)B =-+∞,从而(0,1)A B =I . 2.将函数sin 2y x =的图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数()y f x =的图象,则( )A .()y f x =的图象关于直线8x π=对称B .()f x 的最小正周期为2π C .()y f x =的图象关于点,02π⎛⎫⎪⎝⎭对称 D .()f x 在,36ππ⎛⎫-⎪⎝⎭单调递增 2.【答案】D【考查意图】本小题以三角函数为载体,考查函数的图象变换及三角函数的图象与性质等基础知识,考查推理论证能力,考查数形结合思想、特殊与一般思想等.【答题分析】只要掌握函数图象变换知识、三角函数的图象与性质,便可解决问题. 解:由题意得,()sin f x x =.sin y x =的图象对称轴为直线,2x k k Z ππ=+∈,所以选项A 错误;sin y x =的最小正周期为2T π=,所以选项B 错误; sin y x =的图象对称中心为(,0),k k Z π∈,所以选项C 错误;sin y x =的一个单调递增区间为,22ππ⎛⎫- ⎪⎝⎭,,,3622ππππ⎛⎫⎛⎫-⊆- ⎪ ⎪⎝⎭⎝⎭,所以选项D 正确.3.庄严美丽的国旗和国徽上的五角星是革命和光明的象征.正五角星是一个非常优美的几何图形,且与黄金分割有着密切的联系;在如图所示的正五角星中,以,,,,A B C D E 为顶点的多边形为正五边形,且51PT AT -=.下列关系中正确的是( ) A .512BP TS RS -=u u u r u u r u uu r B .512CQ TP TS +=u u u r u u r u ur C .512ES AP BQ -=u u u r u u u r u u ur D .512AT BQ CR +=u u u r u u u r u u ur ABCDEP QR S T【考察意图】本小题以正五角星为载体,考查平面向量的概念及运算等基础知识,考查推理论证能力,考查转化与化归思想等.【答题分析】只要掌握平面向量的概念,平面向量的加法、减法及数乘运算的几何意义,便可解决问题.解:由题意得,51BP TS TE TS SE RS +-=-==u u u r u u r u u r u u r u u r u uu r ,所以选项A 正确. 512CQ TP PA TP TA ST +=+==u u u r u u r u u u r u u r u u r u u u r ,所以选项B 错误;512ES AP RC QC RQ QB -=-==u u u r u u u r u u u r u u u r u u u r u u u r ,所以选项C 错误;51,2AT BQ SD RD CR RS RD SD +=+==-u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r ,若512AT BQ CR +=u u u r u u u r u u u r ,则0SD =u u u r r,不合题意,所以选项D 错误.故选A .4.已知5234560123456(2)(21)x x a a x a x a x a x a x a x +-=++++++,则024a a a ++=( ) A .123 B .91 C .120- D .152- 4.【答案】D【考查意图】本小题以代数恒等式为载体,考查二项式定理等基础知识,考查运算求解能力、抽象概括能力,考查函数与方程思想、特殊与一般思想等.【答题分析】只要掌握二项式定理,会合理赋值,便可解决问题.解法一:由5234560123456(2)(21)x x a a x a x a x a x a x a x +-=++++++,取1x =得:01234563a a a a a a a ++++++=, ①取1x =-得:0123456243a a a a a a a -+-+-+=-, ②+①②,得0246120a a a a +++=-,又561232a =⨯=,所以024152a a a ++=-.解法二:因为5(21)x -的展开式的第1r +项515(2)(1),0,1,2,3,4,5r r r r T C x r -+=-=, 所以5054143230525522(1)2,12(1)22(1)70a C a C C =⨯-=-=⨯-+⨯-=-, 23214145512(1)22(1)80a C C =⨯-+⨯-=-,所以024152a a a ++=-,故选D .5.程大位是明代著名数学家,他的《新编直指算法统宗》是中国历史上一部影响巨大的著作.它问世后不久便风行宇内,成为明清之际研习数学者必读的教材,而且传到朝鲜、日本及东南亚地区,对推动汉字文化圈的数学发展起了重要的作用.卷八中第33问是:“今有三角果一垛,底阔每面七个.问该若干?”如图是解决该问题的程序框图.执行该程序框图,求得该垛果子的总数S 为( ) A .120 B .84 C .56 D .28【答案】B【考查意图】本小题以数学文化为载体,考查程序框图等基础知识,考查运算求解能力、应用意识. 【答题分析】只要按程序框图逐步执行,便可解决问题. 解:按步骤执行程序框图中的循环体,具体如下:1,1,12,3,43,6,104,10,20i n S i n S i n S i n S ===→===→===→===; 5,15,356,21,567,28,84i n S i n S i n S ===→===→===.所以输出84S =.故选B .6.已知函数22()22x f x x x =-+.命题1:()p y f x =的图象关于点(1,1)对称;命题2:p 若2a b <<,则()()f a f b <.则在命题112212312:,:()(),:()q p p q p p q p p ∨⌝∧⌝⌝∨和 412:()q p p ∧⌝中,真命题是( )A .13,q qB .14,q qC .23,q qD .24,q q【答案】B【考察意图】本小题以分式函数为载体,考查函数的图象与性质、导数及其应用、逻辑联结词的含义等基础知识,考查运算求解能力、推理论证能力,考查函数与方程思想、特殊与一般思想等.【答题分析】只要掌握逻辑联结词的含义、函数图象的对称性,会利用导数研究函数的单调性,会判断含逻辑联结词的命题的真假,便可解决问题.解法一:因为2222(2)44(2)(2)2(2)222x x x f x x x x x --+-==---+-+, 所以22244()(2)222x x x f x f x x x -+++-==-+,故()f x 的图象关于点(1,1)对称,故命题1p 为真命题; 因为2(2),(0)05f f -==,所以(2)0f ->,故命题2p 为假命题. 所以1p ⌝为假命题,2p ⌝为真命题,故1212,()p p p p ∨∧⌝为真命题.故选B .解法二:因为2222(1)()122(1)1x x f x x x x -==+-+-+,所以函数()y f x =的图象可由22()1xg x x =+的图象向右平移1个单位,再向上平移1个单位后得到.因为()()g x g x -=-,所以()g x 是奇函数,()g x 的图象关于原点对称,从而()y f x =的图象关于点(1,1)对称,故命题1p 为真命题.因为22224()(22)x xf x x x -+'=-+,令()0f x '>,得02x <<,所以()f x 的单调递增区间为(0,2);令()0f x '<,得0x <或2x >,所以()f x 的单调递减区间为(,0)-∞,(2,)+∞; 故命题2p 为假命题.所以1p ⌝为假命题,2p ⌝为真命题,故1212,()p p p p ∨∧⌝为真命题.故选B . 解法三:同解法一可得,命题1p 为真命题.因为当0x ≠时,2221()2211122x f x x x x x ==-+⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭,设2()221h t t t =-+,1t x =,则1t x=在(,0)-∞单调递减,当(,0)x ∈-∞时,(,0)t ∈-∞,又因为 2()221h t t t =-+在(,0)-∞单调递减,当(,0)t ∈-∞时,()(1,)h t ∈+∞,所以211122y x x ⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭在(,0)-∞单调递增,又因为1y x =在(1,)+∞单调递减,所以()f x 在(,0)-∞单调递减,故命题2p 为假命题.所以1p ⌝为假命题,2p ⌝为真命题,故1212,()p p p p ∨∧⌝为真命题.故选B .7.如图,在平面直角坐标系xOy 中,质点,M N 间隔3分钟先后从点P 出发,绕原点按逆时针方向作角速度为6π弧度/分钟的运算圆周运动,则M 与N 的纵坐标之差第4次达到最大值时,N 运动的时间为( ) A .37.5分钟 B .40.5分钟 C .49.5分钟 D .52.5分钟O Py【答案】A【考查意图】本小题以匀速圆周运动为背景,考查任意角三角函数的定义、三角函数的图象与性质等基础知识,考查抽象概括能力、推理论证能力、运算求解能力、应用意识及创新意识,考查函数与方程思想、数形结合思想等.【答题分析】只要掌握任意角三角函数的定义、三角函数的图象与性质等,或结合平面几何知识直观判断,便可解决问题.解法一:设点N 出发后的运动的时间为t 分钟,圆O 的半径为1,由三角函数的定义,得sin cos 266N y t t πππ⎛⎫=-+=- ⎪⎝⎭,因为,M N 间隔3分钟,所以362MON ππ∠=⨯=,所以sin sin 2626M y t t ππππ⎛⎫=-++= ⎪⎝⎭,所以sincos26664M N y y t t t ππππ⎛⎫-=+=+ ⎪⎝⎭, 当2,642t k k Z ππππ+=+∈,即312,2t k k Z =+∈时, M N y y -取得最大值,故当3k =时,M N y y -第4次取得最大值,此时37.5t =,故选A .解法二:因为,M N 间隔3分钟,所以362MON ππ∠=⨯=,当M N y y -取得最大值时,MN x ⊥轴,且4PON π∠=,O PyNM当M N y y -第一次取得最大值时,N 运动的时间为4 1.56ππ=分钟;又质点N 运动一周的时间为2126ππ=分钟,当M N y y -第4次取得最大值时,N 运动的时间为1.512337.5+⨯=分钟.8.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,俯视图中的两条曲线均为圆弧,则该几何体的体积为( ) A .32643π-B .648π-C .16643π-D .8643π-【答案】C【考查意图】本小题以空间几何体为载体,考查三视图,正方体,圆柱,圆锥的体积等基础知识;考查空间想象能力,运算求解能力.【答题分析】只要掌握三视图及正方体、圆柱、圆锥的体积计算公式,便可解决问题. 解:由三视图可知该几何体是由棱长为4的正方体截去14个圆锥和14个圆柱所得的几何体,且圆锥的底面半径为2,高为4;圆柱的底面半径为2,高为4,如图. 所以该几何体的体积为311164444464433πππ⎛⎫-⨯⨯⨯+⨯⨯=- ⎪⎝⎭.故选C .9.已知5台机器中有2台存在故障,现需要通过逐台检测直至区分出2台故障机器为止.若检测一台机器的费用为1000元,则所需检测费的均值为( ) A .3200元 B .3400元 C .3500元 D .3600元 【答案】C【考查意图】本小题以故障机器问题为载体,考查计数原理、排列与组合、随机变量的分布列与数学期望等基础知识,考查抽象概括能力、运算求解能力及应用意识,考查统计与概率思想、分类与整合思想等. 【答题分析】只要能列出随机变量的所有取值并应用计数原理及排列组合知识计算对应的概率,理解数学期望的意义,便可解决问题.解法一:设检测机器的台数为ξ,则ξ的所有可能取值为2,3,4.1123223232235513133(2),(3),(4)1101010105C C A A A P P P A A ξξξ+========--=, 所以133234 3.510105E ξ=⨯+⨯+⨯=,故所需检测费用的均值为10003500E ξ⨯=元. 解法二:设检测费为η元,则η的所有可能取值为2000,3000,4000.1123223232235513133(2000),(3000),(4000)1101010105C C A A A P P P A A ηηη+========--=所以133200030004000350010105E η=⨯+⨯+⨯=,故所需检测费用的均值为3500元. 10.已知抛物线2:2(0)E y px p =>的焦点为F ,过F 且斜率为1的直线交E 于,A B 两点,线段AB 的中点为M ,其垂直平分线交x 轴于点C ,MN y ⊥轴于点N .若四边形CMNF 的面积等于7,则E 的方程为( )A .2y x =B .22y x =C .24y x =D .28y x =【答案】C【考查意图】本小题以抛物线为载体,考查抛物线的标准方程及其简单几何性质、直线与抛物线的位置关系等基础知识,考查运算求解能力、推理论证能力,考查数形结合思想、函数与方程思想等.【答题分析】只要掌握抛物线的标准方程及其简单几何性质,直线与抛物线的位置关系,并根据题意准确作//FC NM ,设112200(,),(,),(,)A x y B x y M x y ,则1212221212122122AB y y y y pk y y x x y y p p--====-+- 所以122y y p +=,所以0y p =,作MK x ⊥轴于K ,则MK p =,因为AB 的斜率为1, 所以FMK △为等腰直角三角形,故FK KC p ==,所以32MN OK OF FK p ==+=,所以四边形CMNF 的面积为132722p p p ⎛⎫⨯+⨯= ⎪⎝⎭,解得2p =,故抛物线方程为24y x =. 解法二:由题意,得,02p F ⎛⎫⎪⎝⎭,直线AB 的方程为2p y x =-,四边形CNMF 为梯形,且//FC NM ,设112200(,),(,),(,)A x y B x y M x y ,由222p y x y px ⎧=-⎪⎨⎪=⎩,得2220y py p --=,则122y y p +=,所以0y p =,故(0,)N p ,由于2p y x =-,令0y p =,得032x p =, 所以3,2M p p ⎛⎫⎪⎝⎭,因为MC AB ⊥,所以1MC AB k k ⋅=-,故1MC k =-,从而直线MC 的方程为52y x p =-+,令0y =,得52C x p =,故5,02p C ⎛⎫⎪⎝⎭,所以四边形CMNF 的面积为132722p p p ⎛⎫⨯+⨯= ⎪⎝⎭,解得2p =,故抛物线方程为24y x =.11.已知,,,A B C D 四点均在以点1O 为球心的球面上,且25AB AC AD ===,42,8BC BD CD ===.若球2O 在球1O 内且与平面BCD 相切,则球2O 直径的最大值为( )A .1B .2C .4D .8【答案】D【考查意图】本小题以球为载体,考查空间几何体,球的性质等基础知识,考查空间想象能力、运算求解能力,考查函数与方程思想等.【答题分析】只要通过长度关系,认清以,,,A B C D 四点为顶点的三棱锥的图形特征,正确判断球心1O 的位置,借助方程求出球1O 的半径,直观判断球2O 的位置,便可解决问题.解法一:取CD 的中点O ,连结,AO BO ,如图,因为42BC BD ==8CD =,所以222BD BC CD +=,所以BC BD ⊥,故O 为BCD △的外心,因为25AC AD ==AO CD ⊥,且2AO =,故AO OB ⊥,又BO CD O =I ,所以AO ⊥平面BCD ,所以1O 在直线AO 上,连结1O D ,设1O D R =,则1AO R =,12OO R =-,因为1OO DO ⊥,所以22211DO OO O D +=,即2216(2)R R +-=,解得5R =,球2O 的直径最大时,球2O 与平面BCD 相切且与球1O 相切,12,,,A O O O 四点共线,此时球2O 的直径为18R OO +=.解法二:将Rt BCD △补形成正方形ECBD ,如图,易知四棱锥A BCED -为正四棱锥,正方形BDEC 的中心为O ,BO CD ⊥.连结,AO BO ,则O 为BCD △的外心,因为25AC AD ==AO CD ⊥,且2AO =,又因为4,4OD BO ==,所以222AO BO AB +=,故AO OB ⊥,又BO CD O =I ,所以AO ⊥平面CBDE ,设1O D R =,则1AO R =,12OO R =-,因为1OO DO ⊥,所以22211DO OO O D +=,即2216(2)R R +-=,解得5R =,球2O 的直径最大时,球2O 与平面BCD 相切且与球1O 相切,12,,,A O O O 四点共线,此时球2O 的直径为18R OO +=.1O 2O A BC DO 1O 2O A BCDO E12.已知函数3()()3(0)f x x a x a a =--+>在[1,]b -上的值域为[22,0]a --,则b 的取值范围是( ) A .[0,3]B .[0,2]C .[2,3]D .(1,3]-【答案】A【考查意图】本题以三次函数为载体,考查导数及其应用等基础知识,考查运算求解能力、推理论证能力及创新意识,考查函数与方程思想、分类与整合思想、数形结合思想、化归与转化思想等. 【答题分析】只要将函数3()()3()2f x x a x a a =----的图象作平移变换得到3()3g x x x =-,将条件转化为“当[1,]x a b a ∈---时,()g x 的值域为[2,2]a -”,注意到()g x 的极小值与它在[1,]a b a ---上的最小值相等,再结合函数图象,由()g x 的值域为[2,2]a -直观判断b a -的取值范围;或直接研究函数()f x 的图象与性质,通过分类讨论确定a 的值,进而根据图象直观判断出b 的取值范围. 解法一:将函数33()()3()3()2f x x a x a x a x a a =--+=----的图象向左平移a 个单位,再向上平移2a 个单位,得到3()3g x x x =-的图象,故条件等价于3()3g x x x =-在[1,]a b a ---的值域为[2,2]a -.2()333(1)(1)g x x x x '=-=+-,所以当(,1)x ∈-∞-或(1,)x ∈+∞时,()0g x '>,故()g x 的单调递增区间为(,1),(1,)-∞-+∞;当(1,1)x ∈-时,()0g x '<,故()g x 的单调递减区间为(1,1)-.又(1)2,(1)2g g -==-,令()2g x =,得3320x x -+=,即2(1)(2)0x x -+=,得2x =-或1x =,因为0a >,所以11a --<-,由图象得12a ---≥,故01a <≤.①当1a =时,3()3g x x x =-在[2,1]b --的值域为[2,2]-,因为(1)(2)2g a g --=-=-,令()2g x =,得3320x x --=,即2(1)(2)0x x +-=,解得:1x =-或2x =,故由图象得112b --≤≤,解得03b ≤≤;②当01a <<时,211,022a a -<--<-<<,所以1b a -<-,又()g x 在(1,)a b a ---上单调递增,所以()(1)2g x g a -->-≥,此时与题意矛盾. 综上,可知03b ≤≤,故选A .解法二:因为3()()3f x x a x a =--+,所以2()3()3f x x a '=--,令()0f x '=得:1x a =+或1x a =-,又(1)22,(1)22f a a f a a +=---=-+,当x 变化时,(),()f x f x '的变化情况如下表:x (,1)a -∞-1a -(1,1)a a -+1a +(1,)a ++∞()f x ' ()0f x '>()0f x '<()0f x '>()f x单调递增22a -+ 单调递减22a --单调递增① 若(1)22f a -=--,则32340a a +-=,整理得,2(1)(2)0a a -+=,解得:1a =或2a =-(舍去),此时3()(1)31f x x x =--+,令()4f x =-,解得1x =-或2x =;令()0f x =,解得0x =或3x =,因为()f x 在[1,]b -的值域为[4,0]-,故由图象可得03b ≤≤. ②若(1)22f a ->--,因为0a >,所以11a ->-,要使()f x 在[1,]b -上的值域为[22,0]a --,则1a b +≤,所以1[1,]a b -∈-,所以(1)22(1)0f a f a ->--⎧⎨-⎩≤, 即3(1)322220a a a a ⎧--++>--⎨-⎩≤,即2(1)(2)01a a a ⎧-+<⎨⎩≥,无解. 综上,可得03b ≤≤,故选A .二、填空题:本大题共4小题,每小题5分,共20分。
2018届高三第二次质量检测数学(理)试题 含答案
荷山中学2018届高三年第二次质量检测理科数学试卷一、选择题:(每小题5分,共70分)(1)已知集合{|2}M x x =<,集合{}2|0N x x x =-<,则下列关系中正确的是( )(A )M N ⋃=R (B )M C N ⋃=R R (C )N C M ⋃=R R (D )M N M = (2)命题“**,()n N f n N ∀∈∈ 且()f n n ≤”的否定形式是( )(A )**,()n N f n N ∀∈∉且()f n n > (B) **,()n N f n N ∀∈∉或()f n n > (C )**00,()n N f n N ∃∈∉且00()f n n > (D) **00,()n N f n N ∃∈∉或00()f n n > (3)在一次数学实验中,运用图形计算器采集到如下一组数据:则x 、y ) (A) y =a +bx (B) y =a +b x(C) y =ax 2+b (D) y =a +b x(4)已知132a -=,21211log ,log 33b c ==,则( ) (A )a b c >> (B)a c b >> (C)c a b >> (D)c b a >> (5)直线y=x-4与抛物线y 2=2x 所围成的图形面积是( )(A )15 (B)16 (C)17 (D)18(6)已知条件p :关于x 的不等式|1||3|x x m -+-<有解;条件q :()(73)x f x m =-为减函数,则p 成立是q 成立的( ). (A)充分不必要条件 (B)必要不充分条件(C)充要条件 (D)既不充分也不必要条件(7)设,a b 都是不等于1的正数,则“333a b >>”是“log 3log 3a b <”的( ) (A)充要条件 (B)充分不必要条件 (C)必要不充分条件 (D)既不充分也不必要条件(8)已知定义在R 上的奇函数()f x 满足(4)()f x f x -=-,且在区间[]0,2上是增函数,则( )(A)(25)(11)(80)f f f -<< (B)(80)(11)(25)f f f <<- (C)(11)(80)(25)f f f <<- (D)(25)(80)(11)f f f -<<(9)已知函数f (x )=lnx ,x 1,x 2∈(0,),且x 1<x 2,则下列结论中正确的是( ) (A)(x 1-x 2)<0 (B) f ()<f ()(C) x 1f (x 2)>x 2f (x 1) (D) x 2f (x 2)>x 1f (x 1)(10)如图1,直角梯形OABC 中,AB ∥OC ,|AB |=1,|OC |=|BC |=2, 直线l ∶x =t 截此梯形所得位于l 左方图形面积为S , 则函数S =f (t )的图像大致为图中的( )图1(11)函数cos sin y x x x =+的图象大致为( )(A) (B) (C) (D)(12)已知函数222,0()2,0x x x f x x x x ⎧-+≥⎪=⎨- <⎪⎩,若关于x 的不等式2[()]()0f x af x +<恰有1个整数解,则实数a 的最大值是( ) (A) 2(B) 3(C) 5(D) 8(13)已知函数()|ln |1f x x =-,2()23g x x x =-++,用min{m,n}表示m,n 中最小值, 设函数h(x)=min{f(x),g(x)},则函数h(x)的零点个数为( ) (A) 1 (B) 2 (C) 3 (D) 4. (14) 已知函数()f x 满足:()2'()0f x f x +>,那么下列不等式成立的是( )(A) (1)f>(B)(0)(2)f f e < (C)(1)(2)f > (D)2(0)(4)f e f >二、填空题(每小题4分,共20分)(15)曲线21x y xe -=在点(1,1)处的切线方程为 .(16)12)x dx ⎰=(17)已知函数f (x )=⎩⎪⎨⎪⎧log 2xx3xx,且关于x 的方程f (x )+x -a =0有且只有一个实根,则实数a 的取值范围是______________.(18)已知()()212log 3f x x ax a =-+在区间[)2,+∞上为减函数,则实数a 的取值范围是___ __(19) 定义在R 上奇函数的f (x )周期为2,当0<x <1时,f (x )=4x,则=+-)1()25(f f __三、解答题(每小题12分,共60分)(20) (1)已知f (x )=23x -1+m 是奇函数,求常数m 的值;(2)画出函数y =|3x-1|的图像,利用图像研究方程|3x-1|=k 解得情况。
2018年高考全国卷2理科数学真题(附含答案解析)
2018年普通高等学校招生全国统一考试理科数学本试卷共23题,共150分,共5页。
一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.A. B. C. D.2.已知集合A={(x,y)|x ²+y ²≤3,x∈Z,y∈Z},则A中元素的个数为3.函数f(x)=e ²-e-x/x ²的图像大致为A.B.C.D.4.已知向量a,b满足∣a∣=1,a·b=-1,则a·(2a-b)=5.双曲线x ²/a ²-y ²/b ²=1(a﹥0,b﹥0)的离心率为,则其渐进线方程为=±x =±x =± =±6.在中,cos=,BC=1,AC=5,则AB=B. C.7.为计算s=1-+-+…+-,设计了右侧的程序框图,则在空白框中应填入=i+1 =i+2 =i+3 =i+48.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果。
哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23,在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是A. B. C. D.9.在长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=则异面直线AD1与DB1所成角的余弦值为A. B.10.若f(x)=cosx-sinx在[-a,a]是减函数,则a的最大值是A. B. C. D. π11.已知f(x)是定义域为(-∞,+∞)的奇函数,满足f(1-x)=f(1+x)。
若f(1)=2,则f(1)+ f(2)+ f(3)+…+f(50)=12.已知F1,F2是椭圆C: =1(a>b>0)的左、右焦点,A是C的左顶点,点P在过A且斜率为的直线上,△PF1F2为等腰三角形,∠F1F2P=120°,则C的离心率为A..B.C.D.二、填空题:本题共4小题,每小题5分,共20分。
2018年(理科数学)(新课标Ⅱ)试卷真题+参考答案+详细解析
2018年全国统一高考数学试卷(理科)(新课标Ⅱ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)12(12ii+=- ) A .4355i --B .4355i -+C .3455i --D .3455i -+2.(5分)已知集合22{(,)|3A x y x y =+,x Z ∈,}y Z ∈,则A 中元素的个数为( ) A .9B .8C .5D .43.(5分)函数2()x x e e f x x--=的图象大致为( ) A . B .C .D .4.(5分)已知向量a ,b 满足||1a =,1a b =-,则(2)(a a b -= ) A .4B .3C .2D .05.(5分)双曲线22221(0,0)x y a b a b-=>>3( )A .2y x =B .3y x =C .2y = D .3y = 6.(5分)在ABC ∆中,5cos 2C =,1BC =,5AC =,则(AB = ) A .42B 30C 29D .257.(5分)为计算11111123499100S =-+-+⋯+-,设计了如图的程序框图,则在空白框中应填入( )A .1i i =+B .2i i =+C .3i i =+D .4i i =+8.(5分)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是( ) A .112B .114C .115D .1189.(5分)在长方体1111ABCD A B C D -中,1AB BC ==,13AA =,则异面直线1AD 与1DB 所成角的余弦值为( )A .15B 5C 5D 210.(5分)若()cos sin f x x x =-在[a -,]a 是减函数,则a 的最大值是( )A .4πB .2π C .34π D .π11.(5分)已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+,若(1)2f =,则(1)(2)(3)(50)(f f f f ++++= )A .50-B .0C .2D .5012.(5分)已知1F ,2F 是椭圆2222:1(0)x y C a b a b+=>>的左、右焦点,A 是C 的左顶点,点P 在过A 且斜3的直线上,△12PF F 为等腰三角形,12120F F P ∠=︒,则C 的离心率为( ) A .23 B .12 C .13 D .14二、填空题:本题共4小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
合肥市2018年高三第三次教学质量检测 数学试题(理科) (考试时间:120分钟 满分:150分)
第Ⅰ卷 一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知复数2i1iz(i为虚数单位),则z= A.3 B.2 C.3 D.2 2.已知集合220AxRxx,2210BxRxx,则CRAB
A. B.12 C.1 D. 1 12,
3.已知椭圆2222:1yxEab(0ab)经过点A5 0,,0 3B,,则椭圆E的离心率为 A.23 B.53 C.49 D.59 4.已知111 2 3 23,,,,,若fxx为奇函数,且在0 ,上单调递增,则实数的值是 A.-1,3 B.13,3 C.-1,13,3 D. 13,12,3 5.若lm,为两条不同的直线,为平面,且l,则“//m”是“ml”的 A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 6.已知*12nxnN展开式中3x的系数为80,则展开式中所有项的二项式系数之和为 A.64 B.32 C.1 D.1 7.已知非零实数ab,满足aabb,则下列不等式一定成立的是
A.33ab B.22ab C.11ab D.1122loglogab 8.运行如图所示的程序框图,若输出的s值为10,则判断框内的条件应该是 A.3?k B.4?k C.5?k D.6?k 9.若正项等比数列na满足2*12nnnaanN,则65aa的值是 A.2 B.162 C.2 D.162 10.如图,给7条线段的5个端点涂色,要求同一条线段的两个端点不能同色,现有4种不同的颜色可供选择,则不同的涂色方法种数有 A.24 B.48 C.96 D.120 11.我国古代《九章算术》将上下两面为平行矩形的六面体称为刍童.如图所示为一个刍童的三视图,其中正视图及侧视图均为等腰梯形,两底的长分别为2和4,高为2,则该刍童的表面积为 A.125 B.40 C.16123 D.16125 12.已知函数22fxxxa有零点12xx,,函数2(1)2gxxax有零点34xx,,且3142xxxx,则实数a的取
值范围是 A.924, B.9 04, C.(-2,0) D.1 ,
第Ⅱ卷 本卷包括必考题和选考题两部分.第(13)题—第(21)题为必考题,每个试题考生都必须作答.第(22)题、第(23)题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分.把答案填在答题卡相应的位置.
(13)若实数xy,满足条件1010330xyxyxy,则2zxy的最大值为 . (14)已知23 0OA,,0 2OB,,ACtABtR,,当OC最小时,t= . (15)在ABC中,内角ABC,,所对的边分别为abc,,.若45A,2sinsin2sinbBcCaA,且ABC的面积等于3,则b= . (16)设等差数列na的公差为d,前n项的和为nS,若数列nSn也是公差为d的等差数列,则=na .
三、解答题:解答应写出文字说明、证明过程或演算步骤. (17)(本小题满分12分)
已知函数13sincoscos223fxxxx. (Ⅰ)求函数fx图象的对称轴方程; (Ⅱ)将函数fx图象向右平移4个单位,所得图象对应的函数为gx.当0 2x,时,求函数 gx的值域.
(18)(本小题满分12分) 2018年2月9-25日,第23届冬奥会在韩国平昌举行.4年后,第24届冬奥会将在中国北京和张家口举行.为了宣传冬奥会,某大学在平昌冬奥会开幕后的第二天,从全校学生中随机抽取了120名学生,对是否收看平昌冬奥会开幕式情况进行了问卷调查,统计数据如下:
(Ⅰ)根据上表说明,能否有99%的把握认为,收看开幕式与性别有关? (Ⅱ)现从参与问卷调查且收看了开幕式的学生中,采用按性别分层抽样的方法,选取12人参加2022年北京冬奥会志愿者宣传活动. (ⅰ)问男、女学生各选取了多少人? (ⅱ)若从这12人中随机选取3人到校广播站开展冬奥会及冰雪项目的宣传介绍,设选取的3人中女生人数为X,写出X的分布列,并求EX.
附:22nadbcKabcdacbd,其中nabcd. 2
0PKk
0.10 0.05 0.025 0.01 0.005
0k 2.706 3.841 5.024 6.635 7.879
(19)(本小题满分12分) 如图,在多面体ABCDE中,平面ABD⊥平面ABC,ABAC,AEBD,DE12AC,AD=BD=1. (Ⅰ)求AB的长;
收看 没收看 男生 60 20 女生 20 20
EDCBA (Ⅱ)已知24AC,求点E到平面BCD的距离的最大值. (20)(本小题满分12分) 已知抛物线2:2Cypx(0p)的焦点为F,以抛物线上一动点M为圆心的圆经过点F.若圆M的面积最小值为. (Ⅰ)求p的值; (Ⅱ)当点M的横坐标为1且位于第一象限时,过M作抛物线的两条弦MAMB,,且满足AMFBMF.若直线AB恰好与圆M相切,求直线AB的方程.
(21)(本小题满分12分) 已知函数212xfxexax有两个极值点12xx,(e为自然对数的底数). (Ⅰ)求实数a的取值范围; (Ⅱ)求证:122fxfx.
请考生在第(22)、(23)题中任选一题作答.注意:只能做所选定的题目,如果多做,则按所做的第一个题目计分,作答时,请用2B铅笔在答题卡上,将所选题号对应的方框涂黑. (22)(本小题满分10分)选修4-4:坐标系与参数方程
在平面直角坐标系xOy中,直线l的参数方程为212212xtyt(t为参数),圆C的方程为22215xy.以原点O为极点,x轴正半轴为极轴建立极坐标系.
(Ⅰ)求直线l及圆C的极坐标方程; (Ⅱ)若直线l与圆C交于AB,两点,求cosAOB的值. (23)(本小题满分10分)选修4-5:不等式选讲 已知函数13fxxx. (Ⅰ)解不等式1fxx;
(Ⅱ)设函数fx的最小值为c,实数ab,满足0a,0b,abc,求证:22111abab.
合肥市2018年高三第二次教学质量检测 数学试题(理科)参考答案及评分标准
一、选择题:本大题共12小题,每小题5分. 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 D C A B A B A C D C D C
二、填空题:本大题共4小题,每小题5分. (13)4 (14)34 (15)3 (16)1na或1524nan
三、解答题:解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)
(Ⅰ)1313sincoscos2sin2cos22344fxxxxxx1sin226x. 令262xkkZ,,解得32kx. ∴函数fx图象的对称轴方程为32kxkZ,. …………………………5分 (Ⅱ)易知12sin223gxx. ∵0 2x,,∴222 333x,,∴23sin21 32x,, ∴1213sin2 2324gxx,, 即当0 2x,时,函数gx的值域为13 24,. …………………………12分
(18)(本小题满分12分) (Ⅰ)因为22120602020207.56.63580408040K, 所以有99%的把握认为,收看开幕式与性别有关. ………………………5分 (Ⅱ)(ⅰ)根据分层抽样方法得,男生31294人,女生11234人, 所以选取的12人中,男生有9人,女生有3人. ………………………8分 (ⅱ)由题意可知,X的可能取值有0,1,2,3.
30219393331212
841080 1220220CCCCPXPXCC,,
12039393331212
27123220220CCCCPXPXCC,,
∴X的分布列是: X 0 1 2 3
P 84220 108220 27220 1220
∴84108271301232202202202204EX. ……………………12分
(19)(本小题满分12分) (Ⅰ)∵平面ABD⊥平面ABC,且交线为AB,而AC⊥AB,∴AC⊥平面ABD. 又∵DE∥AC,∴DE⊥平面ABD,从而DE⊥BD. 注意到BD⊥AE,且DE∩AE=E,∴BD⊥平面ADE,于是,BD⊥AD. 而AD=BD=1,∴2AB. ………………………5分 (Ⅱ)∵AD=BD,取AB的中点为O,∴DO⊥AB. 又∵平面ABD⊥平面ABC,∴DO⊥平面ABC. 过O作直线OY∥AC,以点O为坐标原点,直线OB,OY,OD分别为xyz,,轴,建立空间直角坐标系Oxyz,如图所示.
记2ACa,则12a,22 0 0 0 022AB,,,,,,