从大麦中提取β葡聚糖的新工艺研究

从大麦中提取β葡聚糖的新工艺研究
从大麦中提取β葡聚糖的新工艺研究

壳聚糖在国内外食品中的发展现状及其应用前景

壳聚糖在国内外食品中的发展现状及其应 用前景 摘要: 壳聚糖是一种可被生物体降解而对人体无毒的物质,不仅在食品领域有广泛的应用,在饲料行业、医药行业、以及环境保护等许多领域都有广泛的应用。本文主要概述了壳聚糖在国内外食品中的发展现状,并介绍了壳聚糖的性质、在食品中的应用及其化学改性,阐明了壳聚糖在食品开发方面的广阔前景。 关键词:壳聚糖,添加剂,改性,复合纳米粒子 Chitosan in the development situation of food at home and abroad and its application prospects Ma Zhengran Class 0804, School of Food of Science and Technology, Jiangnan University; 010******* Abstract: Chitosan is a biodegradable and non-toxic substances on the human body. It's not only widely use d in food industry, but also in feed industry, pharmaceutical industry, environmental protection a nd many other areas. This article is mainly about chitosan in the development situation of food at home and abroad,and describes the nature of chitosan, the application in food industry and che mical modification of chitosan and set out the broad development prospects of chitosan. Key words:chitosan; additives; modification; composite nanoparticles 引言 壳聚糖是自然界中唯一带正电荷、阳离子的膳食纤维,被称为挽救人类健康的神奇“电粉”。作为天然的可再生资源,壳聚糖具有广谱抗菌性、吸附性、成膜性、保湿性、生物可降解性、生物可相容性、无毒性以及极好的螯合能力,且能加速伤口愈合。大量应用实例证明,壳聚糖对人体的各项生理功能具有良好的调节作用,并显示出许多生命特征,如改善代谢内分泌功能,调节免疫功能;改善消化机能,降低胆固醇;调节人体酸碱平衡吸附,排除体内有害重金属;活化细胞,增强人体生命活力,延缓衰老等。近年来,随着食品工业的不断发展,国内外研究人员对壳聚糖的关注和重视也不断加强。本文主要论述壳聚糖在国内外食品工业中的各种研究应用及其发展前景。 1、壳聚糖的简介 甲壳素是一种带正电的碱性多糖,广泛存在于虾、蟹、昆虫的甲壳,以及真菌(酵母、霉菌)的细胞壁和植物(如蘑菇)的细胞壁中,是自然界中仅次于纤维素的第二大天然高分子化合物,是存在于自然界中唯一能够被生物降解的阳离子高分子材料。甲壳素经浓碱处理,脱去分子中的乙酰基后,转化为可溶性的脱乙酰甲壳素,又称壳聚糖(Chitosan),学名:几丁聚糖。其化学结构是由大部分氨基葡萄糖和少量的N一乙酰基葡萄糖通过β一1,4糖苷键连接起来的直链多糖。 分子式为:(C6H11NO4)n 结构: 2、壳聚糖在食品中的应用 2.1 抗菌剂

β葡聚糖提取工艺

β-葡聚糖保健食品批文申报研发报告30 产品研发报告;一.产品的研发思路;β-葡聚糖就是禾谷类植物籽粒胚乳与糊粉层细胞壁的主;燕麦作为世界8大粮食作物之一,也就是我国北方各省的;目前,燕麦β-葡聚糖的结构已被确认,它就是由β(1;β-葡聚糖在增强免疫力方面的作用已经被大量学者实;此外,从燕麦中提取的β-葡聚糖目前已被证实在 以下;1.抑制肿瘤,防止癌变;2.降血脂;3.降血糖;目前,增强免疫力类功能食品就是 产品研发报告 一. 产品的研发思路 β-葡聚糖就是禾谷类植物籽粒胚乳与糊粉层细胞壁的主要成分。近20年来,围绕着从禾谷类植物中提取的β-葡聚糖,国内外学者进行了大量的的人体与动物试验,发现其在增强免疫力、加快人体免疫反应、降血脂及血清胆固醇、控制由胰岛素引起的糖尿病等方面均具有良好的效果。 燕麦作为世界8大粮食作物之一,也就是我国北方各省的重要的小杂粮作物。医学研究证明,长期服用燕麦,有增强免疫力、降血脂、降血糖与减少心血管疾病的作用。而燕麦的保健功能,都归功于其中的主要功效成分,可溶性膳食纤维——β-葡聚糖。 目前,燕麦β-葡聚糖的结构已被确认,它就是由β(1-3), β(1-4)糖苷键连接组成的线性β-葡聚糖,相对分子质量为2、62×106 。

β-葡聚糖在增强免疫力方面的作用已经被大量学者实验并验证。早在1982年,图伦大学医学院研究表明,以β-葡聚糖免疫的小白鼠在经过高浓度的大肠杆菌注射后数小时内,不论死亡率还就是血液中细菌浓度都较未处理者低得多,证明β-葡聚糖的确具有免疫保护功能。上海第三军医大学郭波等进行的动物实验,结果证明,β-葡聚糖可明显提高小鼠的特异性IgG、IgG2a、IgG1抗体应答,具有促进抗体产生的作用[1]。加拿大的YUN CH等用感染了艾美球虫的大鼠实验同样证明,燕麦中提取的β-葡聚糖(oat-glucan)可明显提高大鼠血清中总IgG, IgG1, IgG2a, IgM 与 IgA抗体水平【2】。在后续研究中,发现从燕麦中提取的β-葡聚糖可明显提高对细菌及寄生感染等的抵抗力【3】。Estrada A等研究发现燕麦β-葡聚糖可促进腹膜巨噬细胞IL-1、TNF-alpha等细胞免疫因子的分泌,对脾细胞也具有促进IL-2,、IFN-gamma 、IL-4等细胞免疫因子分泌的作用【4】。对于燕麦β-葡聚糖增强免疫力方面的机理,目前主要认为, 燕麦β-葡聚糖与体内的巨噬细胞、嗜中性细胞表面的受体(CR3)结合,从而刺激免疫细胞,提高其活力,达到增强机体免疫力的效果,J、 M、 Davis等人的研究也确认了燕麦β-葡聚糖增强巨噬细胞等活力的作用【5】。 此外,从燕麦中提取的β-葡聚糖目前已被证实在以下方面具有良好的作用: 1.抑制肿瘤,防止癌变。燕麦中的β-葡聚糖可以刺激体内巨噬细胞、嗜中性细胞,提高活力,增强对癌细胞毒素的抵抗能力。美国的一项大鼠实验证明,在大鼠灌喂了燕麦β-葡聚糖10天后,静脉注射2 x 105的同源的B16黑素瘤细胞,之后继续灌喂14天。检测结果发现,大鼠的肺肿瘤病灶明显减少,同时巨噬细胞的细胞毒作用(macrophage cytotoxicity)则也有所增强。另外,作为一种水溶性膳食纤维,燕麦β-葡聚糖在肠内促进肠管蠕动,缩短了废弃物通过肠道的时间, 减少了肠内致癌物对肠管的污染, 达到防癌作用【6-8】。

葡聚糖检测方法

葡聚糖检测方法(试剂盒方法翻译) 一.提供试剂 瓶1:exo-1,3-β-Glucanase (100 U/mL) plus β-Glucosidase(20 U/mL) suspension, 2.0 mL 瓶2:Amyloglucosidase (1630 U/mL) plus invertase(500 U/mL) solution in 50 % v/v glycerol, 20 mL 瓶3:GOPOD Reagent Buffer. Buffer (48 mL,pH 7.4), p-hydroxybenzoic acid and sodium azide(0.4 % w/v). 瓶4:GOPOD Reagent Enzymes. Glucose oxidaseplus peroxidase and 4-aminoantipyrine. Freeze-dried powder. 瓶5:D-Glucose standard solution (5 mL, 1.00 mg/mL) in0.2 % w/v benzoic acid 瓶6:Contr ol yeast β-glucan preparation ( 2 g, β-glucan content stated on the bottle label). 二.提供试剂的处理 1.向瓶1中加入8ml醋酸钠缓冲液,分装-20℃存放。 2.直接使用瓶2中的试剂,稳定在4°C ~ 2年或者-20°C > 4 年。 3.将瓶3的GOPOD试剂用纯化稀释水定容到1L,稳定在4°C > 2年。 4.将瓶4的GOPOD试剂用纯化稀释水定容到1L,黑暗环境存放, 稳定在4 °C 2 - 3个月,在-20°C或> 12个月。

改性壳聚糖富集研究综述范文【精编】

改性壳聚糖富集研究综述 摘要:壳聚糖及其衍生物是一种天然高分子,随着对其研究的深入发展,涉及的内容和应用范围越来越广泛。本文综合概述了壳聚糖的结构、性质、富集及其化学改性的方法,简单介绍了它们的应用领域。 关键词:壳聚糖;富集;化学改性;应用。 引言: 壳聚糖具有许多独特的化学物理性质,根据其酸化、酉旨化和氧化、接枝与交联、经基化、经烷基化等反应还可制备成多种用途的产品,而且从氨基多糖的特点出发具有比纤维素更为广泛的用途。对壳聚糖的应用开发研究,自本世纪六十年代以来就十分活跃,近年来国际更是十分重视对它的深入开发和应用。通过对甲壳质和壳聚糖进行化学修饰与改性来制备性能独特的衍生物已经成为当今世界应用开发的一个重要方面。 1、壳聚糖及其改性吸附剂 壳聚糖(chitosan)是一种天然化合物,属于碳水化合物中的多糖,是甲壳素N-脱乙酰基的产物,其学名是β(1→4)-2-氨基-2-脱氧-D-葡萄糖。 壳聚糖本身的基本结构是葡萄糖胺聚合物,与纤维素类似。但因多了一个胺基,带有正电荷,所以使其化学性质较为活泼。且因其聚合分子结合键角度自然扭转之故,对于小分子或元素会发生凝集螫合作用。根据甲壳素脱乙酰化时的条件不同,壳聚糖的脱乙酰度和分子量不同,壳聚糖的分子量通常在几十万左右。但一般来说N-乙酰基脱去55%以上的就可称之为壳聚糖。 壳聚糖本身性质十分稳定,不会氧化或吸湿。鉴于壳聚糖及其衍生物具有优良的生理活性,在食品、生物制药、水处理方面显示出非常诱人的应用价值。近年来,国内外对壳聚糖的开发研究十分活跃。 2、壳聚糖富集工艺的研究现状 由于壳聚糖吸附剂有以上的优点,学者们对其富集的工艺已经有了较为深入的研究。 李斌,崔慧[1]研究了以壳聚糖作富集柱,稀H2SO4为洗脱剂,稀NaOH 为再生剂,火焰原子吸收光谱法简便、快速分离富集测定水中痕量Cu(Ⅱ)的方法,于波长325nm 处测定,检出限为20ng·ml-1,线性范围为10~20μg·ml-1。此法的优点在于简便、快速、选择性好、经济实用、效果良好。但由于壳聚糖易降解,在实际操作中存在着流速控制难,富集效果不均一,空白大的问题。

葡甘聚糖的提取工艺综述

魔芋葡甘聚糖的提取工艺综述 摘要目的:综述魔芋葡甘聚糖的提取及分离方法研究现状。方法:对国内外文献进行归纳、分析及总结。结果:魔芋葡甘聚糖是天然高分子多糖,理化性质稳定。结论:魔芋葡甘聚糖在医药、化工、食品等方面具有广泛的应用前景,在药用辅料方面值得开发。 关键词: 魔芋葡甘聚糖提取分离综述 0 前言 魔芋属天南星科, 多年生草木植物。研究表明, 魔芋精粉中约含40 %~70 %的葡甘聚糖, 还含有少量蛋白质、食物纤维、淀粉、游离还原糖、氨基酸及微量无机盐等[1 ]。魔芋的主要活性成分为葡甘聚糖,它是对魔芋进行深加工利用的重要成分。魔芋葡甘聚糖的含量高,分子量大,其精粉及其相应产品的质量就好。由于葡甘聚糖及其改性产物水溶胶的高粘度、稳定性、乳化性、高膨胀性、成膜性、凝胶性和特定的生物活性,使得它们在食品、医药、化工、日化、造纸、纺织、石油和环保等领域具有很好的应用前景。因此,研究魔芋葡甘聚糖的提取分离方法具有重要的意义。 1 魔芋葡甘聚糖(KGM)的提取[ 2 ] 1.1粗提 魔芋粉 80g→150ml石油醚→60cC-65℃加热回流0.5h→过滤斗回收石油醚后→150mL 90%乙醇→70-80℃加热回流0.5h→过滤→回收乙醇→滤渣→60℃干燥→粗魔芋葡甘露聚糖。样品重71g,产品收率为89%。用分光光度法[6.71测得葡甘露聚糖含量为74.2%o 1.2精制 1.2.1乙醇沉淀法 粗魔芋葡甘聚糖(5g)→配成1%溶胶→95%乙醇沉淀→80%乙醇洗涤两次→85%乙醇50℃洗涤30min→95%乙醇沉淀→60℃干燥→粉碎→KGM。用分光光度法16,71测得KGM的含量为90.1%,产品收率为90.5%o 1.2.2酸水解法 粗魔芋葡甘聚糖(5g) →配成1%溶胶酸→水解(10%HCI调pH2-pH3,85℃-90℃水解15h)→95%

壳聚糖及其结构特点

第一章 绪 论 1.1 壳聚糖及其结构特点 壳聚糖(Chitosan)是甲壳素(Chitin)脱乙酰基后的产物,是甲壳素最基本、最重要的衍生物。甲壳素又名甲壳质、几丁质,化学名为(1,4)—2—乙酰胺—2—脱氧—β—D—葡聚糖,主要存在于虾、蟹、蛹及昆虫等动物外壳以及菌类、藻类植物的细胞壁中。节肢类动物的干外壳约含20~50%甲壳素。自然界中甲壳素有三种结构:α、β、γ,其中最为常见、普通的是α型。地球上每年甲壳素的生物合成量为数十亿吨,是产量仅次于纤维素的天然高分子化合物。下图1-1是甲壳素和壳聚糖的结构: 图1-1 甲壳素、壳聚糖分子的结构示意图 Fig.1-1 The configuration schematic of chitin and chitosan 纯净的甲壳素和壳聚糖均为白色片状或粉状固体,比重0.3,常温下能稳定存在。甲壳素分子之间存在强烈的氢键作用,使得甲壳素形成高度的结晶结构,因而甲壳素分子高度难溶。甲壳素不溶于水及绝大多数有机溶剂,也不溶于稀酸、稀浓碱,只溶于浓酸和某些溶剂。壳聚糖分子的活性基团为氨基而不是乙酰基,因而化学性质和溶解性较甲壳素有所改善,可溶于稀酸、甲酸、乙酸,但也不溶于水和绝大多数有机溶剂。由于氨基和羟基比较活泼,壳聚糖的化学性质较甲壳素活泼,可以发生多种化学反应,比如烷基化、酰基化反应等等。 1.2 壳聚糖及其衍生物产品的应用 壳聚糖及其衍生物由于其可再生性、生物相容性以及结构中的多种活性基团,具有多种优良的性质,已经广泛应用于化妆品、食品、医药、农业、环保等多个行业中。 1.2.1 在环保中的应用 壳聚糖及其衍生物能够通过分子中的氨基和羟基与多种金属离子形成稳定的整合物且可帮助微粒凝聚,故广泛用作化工、轻工纺织等废水处理中的吸附剂和絮凝剂。壳聚糖作为吸附剂和絮凝剂,能够有效地捕集溶液中的重金属离子和 有机物,并可以抑制细菌生长,使污水变清,特别是对于汞、铬、铜、铅、钴、3n n 甲壳素壳聚糖

β-葡聚糖研究进展

?-葡聚糖的研究进展 程彦伟李魁赵江 燕麦β-葡聚糖是一种存在于大燕麦皮中的天然非淀粉类水溶性植物糖,其基本结构是由D葡萄糖以β14,β1-3糖苷键连接而成的线性多糖,这两种糖苷键的比例大致为7:3。 燕麦β-葡聚糖是一种水溶性膳食纤维,因其具有的黏性阻碍淀粉、蛋白质等物质的消化和吸收,并可增殖消化道有益菌,所以可对人体具有一些极为有利的生理功能:具有显著的降血脂、降血糖及提高免疫能力,维持肠道微生态环境等。另外,它还能加快确定人群的免疫细胞。对细菌感染的反应并控制住细菌感染的位置,使感染面尽快恢复;作为化妆品的有效成分,可以提高皮肤抗过敏能力,激活免疫功能,延缓皮肤衰老。燕麦水溶性膳食纤维和燕麦葡聚糖,可有效降低餐后血糖浓度和胰岛素水平,降低胆固醇和预防心血管疾病.燕麦纤维食品易被人体吸收,并且因含热量很低,既有利于减肥,又适合心脏病,高血压和糖尿病患者食疗的需要。 降低胆固醇 早在多年,科学家就发现bata一葡聚糖能够减少肠胃吸收脂肪酸的速率,降低人体胆固醇的合成.随着bata一葡聚糖研究的日趋成熟,学者们先后在动物及人体实验水平上进行了大量的实验,证实了bata一葡聚糖在降低胆固醇和低密度脂蛋白方面具有特 异的生理功能.科学家发现bata一葡聚糖对胆固醇的影响主要在于能显著降低血浆中 总胆固醇(TC)和低密度脂蛋白胆固醇(LDI一TC),而对高密度脂蛋白(HDL)和甘油三醋(TG)没有明显影响仁。燕麦葡聚糖对高血脂人群有明显的降低胆固醇的作用。 有关燕麦葡聚糖降低胆固醇的机理目前有四种假说: ①可结合胆汁酸,增加了胆汁酸的排泄,从而降低胆汁酸水平和血浆胆固醇浓度。 ②可被肠道中微生物发酵而产生短链脂肪酸,可抑制肝脏中胆固醇的合成。 ③可促进LDL一C分解。 ④可在消化道中形成高粘度环境,阻碍消化道对脂肪,胆固醇和胆汁酸的吸收。 降血糖 每天食用葡聚糖燕麦食品后,患者血糖水平可降低约50%,使用燕麦食品有显著降低血糖作用燕麦汗葡聚糖可通过降低血脂含量,改善血液流动性能,加快糖类成分在吸收利用过程中的转运速度和效率,同时对糖尿病所并发的肝肾组织病变有良好的修复作用,并且可有效降低肝糖原的分解,从而导致血糖降低。 增强免疫力 燕麦葡聚糖具有免疫调节作用,燕麦p一葡聚糖可使小鼠淋巴细胞增值,增强小鼠 抵抗细菌侵袭的能力;可刺激小鼠腹膜巨噬细胞释放肿瘤坏死因子(TNF一ALPHAhe)和白介素一1(In-terlukinIL一1)及巨噬细胞p338DI的释放,经灌胃或肠外注射燕麦葡聚糖,小鼠血清免疫球蛋白数量明显增加,说明燕麦葡聚糖具有提高小鼠免疫力的作用。 抗癌功能

【CN110003357A】一种魔芋粉残渣中魔芋葡甘露聚糖提取工艺及应用【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910369078.3 (22)申请日 2019.05.05 (71)申请人 汕头市捷成生物科技有限公司 地址 515000 广东省汕头市金平区潮汕路 金园工业城6B5片区 (72)发明人 黄林青  (74)专利代理机构 汕头兴邦华腾专利代理事务 所(特殊普通合伙) 44547 代理人 张树峰 聂文文 (51)Int.Cl. C08B 37/02(2006.01) A23C 9/13(2006.01) A23C 9/156(2006.01) (54)发明名称 一种魔芋粉残渣中魔芋葡甘露聚糖提取工 艺及应用 (57)摘要 本发明公开了一种魔芋粉残渣中魔芋葡甘 聚糖提取工艺及应用。本发明将魔芋粉提取淀粉 后的残渣采用超声波—微波联合辅助乙醇沉淀 法提取纯化魔芋葡甘聚糖,采用酸性乙醇法除去 杂质、异味,提高魔芋葡甘聚糖含量,使魔芋中的 营养成分得到充分利用,节约资源;将魔芋葡甘 聚糖、异麦芽酮糖醇配伍使用具有较好的改善肠 道内环境及调节肠道菌群功能,可润肠通便,防 止便秘,不仅安全有效,还可促进营养成分的吸 收,真正做到排而不泄, 通而不痛的效果。权利要求书1页 说明书4页CN 110003357 A 2019.07.12 C N 110003357 A

1.一种魔芋粉残渣中魔芋葡甘聚糖提取工艺及应用,其特征包括以下步骤: (1)将魔芋粉残渣加入乙醇溶液中,搅拌均匀,70℃水浴加热,再分别经超声、微波处理,离心取沉淀;沉淀经上述工艺反复操作3~4次,再经60~70℃热风干燥后,得魔芋葡甘聚糖粗品; (2)将魔芋葡甘聚糖粗品加纯化水溶胀,过滤取滤渣,滤渣加入乙醇溶液,用盐酸调节溶液pH,60℃水浴加热搅拌60min,过滤取滤渣;滤渣经不同浓度乙醇溶液梯度洗涤后,干燥得纯品; (3)将魔芋葡甘聚糖纯品吸水膨胀成糊状,取出冷冻干燥,粉碎成粒度80 ~100目得速溶 葡甘聚糖; (4)将制备的速溶魔芋葡甘聚糖与异麦芽酮糖醇按配比混合,经微波灭菌后分装即得。 2.如权利要求1所述一种具有减肥功效的水果味奶昔的配方,其特征在于,所述步骤(1)中乙醇溶液浓度为70~80%,添加量为魔芋粉残渣的100倍。 3.如权利要求1所述一种魔芋粉残渣中魔芋葡甘聚糖提取工艺及应用,其特征在于,所述步骤(1)中超声处理条件为:超声功率180W,时间50~60min,微波处理条件为:微波功率480W,时间20~30s。 4.如权利要求1所述一种魔芋粉残渣中魔芋葡甘聚糖提取工艺及应用,其特征在于,所述步骤(2)中溶胀纯化水添加量为魔芋葡甘聚糖粗品的100倍。 5.如权利要求1所述一种魔芋粉残渣中魔芋葡甘聚糖提取工艺及应用,其特征在于,所述步骤(2)中滤渣提取乙醇溶液浓度为80%,添加量为魔芋葡甘聚糖粗品的100倍。 6.如权利要求1所述一种魔芋粉残渣中魔芋葡甘聚糖提取工艺及应用,其特征在于,所述步骤(2)中盐酸调节pH至4~5。 7.如权利要求1所述一种魔芋粉残渣中魔芋葡甘聚糖提取工艺及应用,其特征在于,所述步骤(2)中梯度洗涤乙醇溶液浓度依次为85%、95%、无水乙醇。 8.如权利要求1所述一种魔芋粉残渣中魔芋葡甘聚糖提取工艺及应用,其特征在于,所述步骤(3)中冷冻干燥温度为-20~-30℃。 9.如权利要求1所述一种魔芋粉残渣中魔芋葡甘聚糖提取工艺及应用,其特征在于,所述步骤(4)中速溶魔芋葡甘聚糖与异麦芽酮糖醇配比按重量份比包括:速溶魔芋葡甘聚糖60~70份、异麦芽酮糖醇30~40份。 10.如权利要求1所述一种魔芋粉残渣中魔芋葡甘聚糖提取工艺及应用,其特征在于,所述步骤(4)中微波灭菌条件为:微波功率360W,时间4~5min。 权 利 要 求 书1/1页 2 CN 110003357 A

从活化酵母中提取葡聚糖的工艺研究

从活化酵母中提取β-葡聚糖的工艺研究 [摘要]笔者采用酸法、碱法和酸碱融合法提取酵母细胞壁中的β- 葡聚糖,对得率和纯度进行对比分析后,发现用碱法浸提工艺从破壁酵母中提取碱不溶性β- 葡聚糖效率最高。通过正交试验得出最佳提取条件为:在75°C 条件下、0.75mol/L 的碱液处理15min。不同脱水和干燥条件的对比实验表明:脱水和干燥条件影响产品的色泽;溶剂和水分蒸发得越快,产品最终含水率越低,产品颜色越白。 [关键词]酵母细胞壁β- 葡聚糖碱法酸法酸碱法 0.引言 β- 葡聚糖作为活性多糖不仅具有免疫促进作用,而且具有抗癌、 抗肿瘤、提高抗病能力和降低胆固醇等生理活性,是一类研究较多的活 性多糖。由于其具有高粘性、高持水性和热稳定性,以及制备工艺简单 等方面的优点,在食品、医学、化妆品、造纸和建筑材料等行业得以广泛 应用。 在国内外相关研究报道中,对于β-葡聚糖的制备,有酸法,碱法, 以及酸碱、有机溶剂和酶相结合的方法。其中,碱法由于其浸提工艺简 单,产品纯度高,是从废弃酵母中有效提取高纯度β-葡聚糖的理想途 径。 本文在对比酸法、碱法和酸碱法的基础上,主要研究用碱法工艺提 取β- 葡聚糖的最佳条件,并分析不同提取条件对产物得率和纯度的 影响,以及干燥和脱水条件的选择对结果的影响,为啤酒生产中的废酵 母泥利用提供技术参考。 1.材料与方法 1.1 材料和试剂 酵母粉,乙酸,NaOH, 无水乙醇,无水乙醚,硫酸等,均为分析纯。 1.2 方法 1.2.1 酵母破壁 盐法破壁:在酵母菌体浓度 10%,氯化钠浓度 2.5%,破壁时间 2.5h,破壁温度70℃的实验条件下进行破壁。 1.2.2 酸法 配制 1.0mol/L 醋酸溶液 60mL,加入酵母粉 3g,在70℃下水浴 1- 2 小时。3000r/min 离心 15min,沉淀物水洗 2 次,然后用无水乙醇洗涤,无 水乙醚脱水,在37℃条件下干燥至恒重。 1.2.3 碱法 配制 1.0mol/L NaOH 溶液 60mL,加入酵母粉 3g,在70℃下水浴 1- 2 小时。3000r/min 离心 15min,沉淀物水洗 2 次,然后用无水乙醇洗 涤,无水乙醚脱水,在37℃条件下干燥至恒重。 1.2.4 酸碱法 4g 酵母粉加适量水制成酵母泥,加入 200mL 1mol/L NaOH 在90℃ 下,作用 2h 后 3000r/min 离心 15min,水洗 2 遍,加入 4%的乙酸溶液 50mL 室温处理 2h,3000r/min 离心 10min 后,用无水乙醇和无水乙醚分 别脱水两次,在37℃下干燥 12h 至恒重。 1.2.5 碱法分离提取的最佳实验条件

真菌(1-3)-β-D葡聚糖测定试剂盒(显色法)产品技术要求kehe

真菌(1-3)-β-D葡聚糖测定试剂盒(显色法) 适用范围:用于体外定量测定人血清样本中真菌(1-3)-β-D葡聚糖的含量。1.1 规格 24人份/盒、48人份/盒 1.2 主要组成成分 校准品靶值批特异,详见靶值单 质控范围批特异,详见靶值单 2.1 外观 反应主剂为白色冻干块状物,样品处理液、溶解液和主剂复溶液为无色透明液体。 2.2 装量 处理液、溶解液和主剂复溶液装量不小于标示量。 2.3 准确度

试剂盒的回收率须在85%~115%范围内。 2.4 重复性 检测浓度为125pg/mL的溶液,重复检测10次,其变异系数(CV)值应不大于10%。 2.5 线性 2.5.1在浓度[31.25,500]pg/mL范围内,其线性相关系数的绝对值r≥0.990; 2.5.2在浓度[31.25 ,125)pg/mL范围内,其线性绝对偏差的绝对值不大于12.5 pg/mL;在浓度[125 ,500]pg/mL范围内,其线性相对偏差的绝对值不大于10%。 2.6 空白限 试剂盒的空白限不大于16 pg/mL。 2.7 溯源性 根据GB/T21415的有关规定提供校准品的来源、赋值过程及测量不确定等内容,溯源至企业工作校准品。 2.8 质控品赋值有效性 检测质控品,检测结果应在质控范围内。 2.9 批内瓶间差 同一批号的10个待检试剂盒对浓度为250pg/mL的标准溶液进行测试,重复10次,瓶间差的变异系数不得大于10%。 2.10 批间差 3个批号的试剂盒检测结果的变异系数应不大于15%。 2.11 稳定性 2.11.1 2℃~8℃保存,有效期12个月,取过有效期3个月以内的试剂盒进行测定,应符合2.3、2.3、2.5、2.6、2.7、2.8的要求; 2.11.2校准品溶解后,-20℃保存10天后进行测定,应符合2.3的要求; 2.11.3质控品溶解后,-20℃保存10天后进行测定,应符合2.8的要求; 2.11.4反应主剂溶解后,立即冻存至-20℃保存7天后进行测定,应符合2.3、2.5的要求。

壳聚糖开发应用现状(1)

天然产物提取分离技术 课程论文 题目壳聚糖开发应用现状 壳聚糖开发应用现状 摘要壳聚糖(chitosan)是一种由甲壳素脱乙酰基后的产物。壳聚糖及其衍生物具有优良的生理活性和功能保健作用。在食品,医药方面显示出非常诱人的应用价值。本文介绍它的特性,简单的化学法制作,并着重介绍壳聚糖在食品,药物制剂,生物技术以及其他方面的应用。最后介绍了国内外壳聚糖的市场现状及发展前景。

关键词壳聚糖脱乙酰甲壳质药物制剂生物技术 前言壳聚糖(Chitosan)又称脱乙酰甲壳质;可溶性甲壳质.是甲壳素脱去乙酰基后的产物。壳聚糖具有许多特殊的性能,如良好的生物降解性、生物相容性、无毒,无污染等。壳聚糖分子中的活性侧基为氨基。可酸化成盐。导入羧基官能团,取代合成侧链铵盐、混合醚、聚氧乙烯醚等等,制备具有水溶性、醇溶性、有机溶剂溶解性、表面活性以及纤维性等各种衍生物。壳聚糖(chitosan)是由自然界广泛存在的几丁质(chitin)经过脱乙酰作用得到的,化学名称为聚葡萄糖胺[(1-4)-2-氨基-B-D葡萄糖,自1859年,法国人Rouget首先得到壳聚糖后,这种天然高分子的生物官能性和相容性、血液相容性、安全性、微生物降解性等优良性能被各行各业广泛关注,在医药、食品、化工、化妆品、水处理、金属提取及回收、生化和生物医学工程等诸多领域的应用研究取得了重大进展。针对患者,壳聚糖降血脂、降血糖的作用已有研究报告。 1、壳聚糖的特性 壳聚糖是由大部分D-氨基葡萄糖和少量的N-乙酰-D-氨基葡萄糖组成,以β(1,4)糖苷健连接起来的直链多糖,化学名为(1,4)-2-氨基-2-脱氧-β-D-葡萄糖,其结构类似于纤维素。 壳聚糖因其独特的分子结构,是天然多糖中推一大量存在的碱性氨基多糖,因而具有一系列特殊功能性质。壳聚糖有αβγ三种构象,其分子键是以螺旋形式存在,α-型研究较多,因为这种构象的壳聚糖存在最多也最易制得。β-型则关注的相对较少,然而这种构象的特征是具有很弱的分子间作用力,并且被确定在不同的调节反应中会显示出比a-型更高的反应能够活性和对溶剂的更高的亲和力。在壳聚糖结构中存在四种类型的糖苷键,但由于C2-氨基或乙酰氢基的存在而使得糖苷键都较难水解。壳聚糖分子中含有羟基,乙酰氢基和氨基,决定了壳聚糖可进行多功能基化学反应。 2、壳聚糖的制备方法 这里介绍一下化学法生产工艺[1] 2.1、主要原料主要原料有虾蟹壳、4 %~6 %的工业盐酸、10 %和40 %氢氧化钠溶液、高锰酸钾、亚硫酸氢钠(工业级)、去离子水、水。 2.2、生产工艺要点 1)将剔除肉质的虾蟹壳加水煮沸抽提得到净甲壳; 2)将净甲壳加入4 %~6 %盐酸浸泡除去钙盐等 3)将除盐后的甲壳质加入质量百分比为10 %的氢氧化钠溶液煮沸,脱除蛋白质,得到粗品甲壳素。 4)将粗品甲壳素先用1 %高锰酸钾脱色漂白,再用2 %亚硫酸氢钠溶液还原,并洗净沥干,即得到不溶性甲壳素; 5)将不溶性甲壳素加于脱乙酰基反应釜内,用40 %氢氧化钠溶液(质量百分比)在80~100℃下进行脱乙酰基反应。反应终结后经洗净、脱水、烘干得可溶性壳聚糖产品。

β 葡聚糖 提取工艺

β-葡聚糖保健食品批文申报研发报告 30 产品研发报告;一.产品的研发思路;β-葡聚糖是禾谷类植物籽粒胚乳和糊粉层细胞壁的主;燕麦作为世界8大粮食作物之一,也是我国北方各省的;目前,燕麦β-葡聚糖的结构已被确认,它是由β(1;β-葡聚糖在增强免疫力方面的作用已经被大量学者实;此外,从燕麦中提取的β-葡聚糖目前已被证实在以下;1.抑制肿瘤,防止癌变;2.降血脂;3.降血糖;目前,增强免疫力类功能食品是产品研发报告 一.产品的研发思路 β-葡聚糖是禾谷类植物籽粒胚乳和糊粉层细胞壁的主要成分。近20年来,围绕着从禾谷类植物中提取的β-葡聚糖,国内外学者进行了大量的的人体和动物试验,发现其在增强免疫力、加快人体免疫反应、降血脂及血清胆固醇、控制由胰岛素引起的糖尿病等方面均具有良好的效果。 燕麦作为世界8大粮食作物之一,也是我国北方各省的重要的小杂粮作物。医学研究证明,长期服用燕麦,有增强免疫力、降血脂、降血糖和减少心血管疾病的作用。而燕麦的保健功能,都归功于其中的主要功效成分,可溶性膳食纤维——β-葡聚糖。 目前,燕麦β-葡聚糖的结构已被确认,它是由β(1-3), β(1-4)糖苷键连接组成的线性β-葡聚糖,相对分子质量为2.62×106 。

β-葡聚糖在增强免疫力方面的作用已经被大量学者实验并验证。早在1982年,图伦大学医学院研究表明,以β-葡聚糖免疫的小白鼠在经过高浓度的大肠杆菌注射后数小时内,不论死亡率还是血液中细菌浓度都较未处理者低得多,证明β-葡聚糖的确具有免疫保护功能。上海第三军医大学郭波等进行的动物实验,结果证明,β-葡聚糖可明显提高小鼠的特异性IgG、IgG2a、IgG1抗体应答,具有促进抗体产生的作用[1]。加拿大的YUN CH等用感染了艾美球虫的大鼠实验同样证明,燕麦中提取的β-葡聚糖(oat-glucan)可明显提高大鼠血清中总IgG, IgG1, IgG2a, Ig M 和 IgA抗体水平【2】。在后续研究中,发现从燕麦中提取的β-葡聚糖可明显提高对细菌及寄生感染等的抵抗力【3】。Estrada A等研究发现燕麦β-葡聚糖可促进腹膜巨噬细胞IL-1、TNF-alpha等细胞免疫因子的分泌,对脾细胞也具有促进IL -2,、IFN-gamma 、IL-4等细胞免疫因子分泌的作用【4】。对于燕麦β-葡聚糖增强免疫力方面的机理,目前主要认为, 燕麦β-葡聚糖与体内的巨噬细胞、嗜中性细胞表面的受体(CR3)结合,从而刺激免疫细胞,提高其活力,达到增强机体免疫力的效果,J. M. Davis等人的研究也确认了燕麦β-葡聚糖增强巨噬细胞等活力的作用【5】。 此外,从燕麦中提取的β-葡聚糖目前已被证实在以下方面具有良好的作用:1.抑制肿瘤,防止癌变。燕麦中的β-葡聚糖可以刺激体内巨噬细胞、嗜中性细胞,提高活力,增强对癌细胞毒素的抵抗能力。美国的一项大鼠实验证明,在大鼠灌喂了燕麦β-葡聚糖10天后,静脉注射2 x 105的同源的B16黑素瘤细胞,之后继续灌喂14天。检测结果发现,大鼠的肺肿瘤病灶明显减少,同时巨噬细胞的细胞毒作用(macrophage cytotoxicity)则也有所增强。另外,作为一种水溶性膳食

浅谈壳聚糖的发展概况

浅谈壳聚糖的发展概况 关键词:壳聚糖;壳聚糖制备;壳聚糖应用 引语:本文介绍了壳聚糖的性质、制备以及着重介绍了壳聚糖在水处理、分析化学、纺织工业、膜材料、液晶材料、医学材料方面的应用。 1壳聚糖 壳聚糖(chitosan)又称脱乙酰甲壳素,是由自然界广泛存在的几丁质(chitin)经过脱乙酰作用得到的,化学名称为聚葡萄糖胺(1-4)-2-氨基-B-D葡萄糖。自1859年,法国人Rouget首先得到壳聚糖后,这种天然高分子的生物官能性和相容性、血液相容性、安全性、微生物降解性等优良性能被各行各业广泛关注,在医药、食品、化工、化妆品、水处理、金属提取及回收、生化和生物医学工程等诸多领域的应用研究取得了重大进展。针对患者,壳聚糖降血脂、降血糖的作用已有研究报告。同时,壳聚糖被作为增稠剂、被膜剂列入国家食品添加剂使用标准GB-2760。[1] 1.1物理属性 纯甲壳素和纯壳聚糖都是一种白色或灰白色半透明的片状或粉状固体,无味、无臭、无毒性,纯壳聚糖略带珍珠光泽。生物体中甲壳素的相对分子质量为1×106~2×106,经提取后甲壳素的相对分子质量约为3×105~7×105,由甲壳素制取壳聚糖相对分子质量则更低,约2×105~5×105。在制造过程中甲壳素与壳聚糖相对分子质量的大小,一般用粘度高低的数值来表示。商品壳聚糖视其用途不同有三种不同的粘度,即高粘度产品为0.7~1Pa·s、中粘度产品为0.25~0.65Pa·s、低粘度产品<0.25Pa·s。制造纤维产品必须采用高粘度的甲壳素或壳聚糖。[2] 1.2化学性质 化学名:β-(1→4)-2-氨基-2-脱氧-D- 葡萄糖 分子式:(C6H11NO4)N

魔芋提取物

魔芋提取物 简要说明: 魔芋属的一些种类块茎富含魔芋多糖,尤其是白魔 芋、花魔芋品种含量高达50—65%。魔芋多糖又称 魔芋葡萄甘露聚糖,是由众多的甘露糖和葡萄糖, 以β-1,4-糖苷健连接起来的线性高分子化合物, 在其分子的某些糖基侧链上,连接有一定数量的乙 酰基团,葡萄糖和甘露糖的分子比为1:1.5— 1.7,分子量可高达106道尔顿,粘度特高,溶于 水,在水中膨胀度特大,具有特定的生物活性。 魔芋 这些特性,决定了魔芋多糖具有多种的用途。除医 学外,魔芋多糖在纺织、印染、化妆、陶瓷、消 防、环保、军工、石油开采等方面都有广泛的用 途。此外,魔芋精粉加工过程中有30%—40%的飞粉 产生,由于飞粉中也含有一定 量的葡萄甘露聚糖, 因此,飞粉也是多羟基化合物为主体的天然高分子 化合物,所以象淀粉一样,可以制成黄原酸酯,应 用于沉淀废水中的可溶性重金属离子。 产品作用: 魔芋膳食纤维的功效 1.促进肠道蠕动,软化宿便,预防便秘、结肠癌及直肠癌; 2.降低血液中的胆固醇、甘油三酯,预防肥胖; 3.清除体内毒素,预防色斑形成、青春痘等皮肤问题; 4.减少糖类在肠道内的吸收,降低餐后血糖; 5.促进肠道有益菌增殖,提高人体吸收能力。 魔芋膳食纤维的益处 1.保持消化系统健康 2.增强免疫系统 3.降低胆固醇和高血压 4.降低胰岛素和三酸甘油脂 5.通便、利尿、清肠健胃 6.预防心血管疾病、癌症、糖尿病以及其它疾病 7.平衡体内的荷尔蒙及降低与荷尔蒙相关的癌症 技术指标: 序号 指标项目 指标要求 1 外观 白色,有极少量淡黄色或褐色无块状无霉变的粉末 2 气味 魔芋固有的极轻微的鱼腥味 3 粘度 ≥13000mPa ·s 4 PH (1%水溶液) 5.00-7.00 5 葡甘聚糖(以干基计) ≥70.0% 6 水分 ≤10.0% 7 灰分 ≤3.0%

真菌βD葡聚糖检测与真菌感染诊断

真菌β-D-葡聚糖检测与真菌感染诊断 一、概述 经研究表明,(1-3)-β-D-葡聚糖是一种广泛存在于真菌细胞壁的抗原成分, 占其干燥重量的80%~90%,其它微生物、动物及人的细胞成分和细胞外液均不含有。深部真菌感染患者中血浆(1-3)-β-D-葡聚糖含量增高,两者存在相关性。? 当真菌进入人体血液或深部组织后,经吞噬细胞的吞噬、消化代谢后,(1-3)-β-D葡聚糖可从胞壁中释放出来,从而使血液或其它体液中(1-3)-β-D葡聚糖含量增高。当真菌在体内含量减少时,机体免疫可迅速对其清除。而在浅部真菌感染中,(1-3)-β-D葡聚糖未被释放出来,故其在体液中的量不增高,它在血液及无菌体液中的存在可以很大程度上视为IFI(深部真菌感染)的标志。 二、深部真菌感染的诊治 近年来,由于造血干细胞移植、实体器官移植的广泛开展、高强度免疫抑制剂和大剂量化疗药物的应用以及各种导管的体内介入、留置等,临床上侵袭性真菌感染(invasive fungal infections,IFI)的患病率明显上升。IFI也日益成为导致骨髓及器官移植受者、接受化疗的恶性血液病和恶性肿瘤患者、AIDS以及其他危重病患者的严重并发症及重要死亡原因之一。由于缺少有效的早期诊断手段,深部真菌感染病死率居高不下。对深部真菌感染治疗成败的关键在于早期诊断,及早用药治疗。 常规病原学诊断“微生物培养”可为临床提供直接的诊断依据,但其培养方法耗时长(4-7天),不适宜用作早期诊断。并且,随着光谱抗生素、抗菌药物的大量应用,使得培养的阳性率极低。常用的免疫学方法,也由于抗原抗体反应的特异性差,往往对某一疑似真菌感染患者要作多种真菌抗原或抗体检测,既费时又不经济,而且当所用药盒的抗原谱或抗体谱不全时也极易造成漏诊。对一些以往接触过相应真菌抗原的个体,作抗体检测时还会出现阳性反应,因而对抗体的检测往往要求作动态观察才能作出诊断,期末属性较差。 有研究报道血清葡聚糖在念珠菌血症时明显升高,将其用于念珠菌血症的早期诊断明显优于传统的培养法和血清学诊断试验。虽然检测(1-3)-β-D葡聚糖只能提示有无真菌侵袭性感染,不能确定为何种真菌,但也可能转化为一种优势。因近年来,一些罕见的条件致病真菌也可引起深部感染,这就要求一种能迅速确定有无深部真菌感染的方法。因系统抗真菌药物种类较少,抗菌谱较广,且不因真菌种类而异,当检测到标本中的(1-3)-β-D葡聚糖含量较高时,可给予以系统治疗,不必耗时等待鉴定出种属,否则会贻误最佳治疗时机。 因此,血清(1-3)-β-D葡聚糖含量检测不失为一种实用的真菌感染早期诊断方法。并且,相关研究表明,(1-3)-β-D葡聚糖水平在确诊IFI患者的血清中出现持续升高,而随着药物的使用,对药物敏感者可很快出现(1-3)-β-D葡聚糖水平下降及转阴,而药物治疗无效人群(1-3)-β-D葡聚糖值无明显改变。因此,(1-3)-β-D葡聚糖可以用来判断药物的疗效,以协助临床医师及时进行药物种类及剂量的调整。 通过对人体体液进行(1-3)-β-D葡聚糖含量检测,可帮助判断人体是否已被真菌感染。对高危患者的样本进行连续分析,可为临床检测提供入侵真菌的量值或阴性预示值,为临床诊断和

发酵法生产壳聚糖的研究现状

发酵法生产壳聚糖的研究现状 甲壳素(chitin)学名为聚(1,4)-2-乙酰氨基-2-脱氧--D-葡萄糖,又名甲壳质、壳多糖、几丁质、蟹壳素、明角壳蛋白、虫膜质、不溶性甲壳质、聚乙酰氨基葡萄糖等,与纤维素相似。甲壳素是一种重要的天然高分子化合物,其结构与纤维素相似,也是多糖化合物中最重要的一种聚氨基葡萄糖。甲壳素因主要来源于节肢动物如虾、蟹等的甲壳而得名。它也广泛存在于低等植物如真菌、藻类的细胞壁中[1]。 壳聚糖(Chitosan,简称CTS)学名为聚(1,4)-2-氨基-2-脱氧--D-葡萄糖,是甲壳素脱乙酰化而得到的一种生物高分子,是甲壳素的主要衍生物,又称脱乙酰几丁质、聚甲壳糖、甲壳胺、聚氨基葡糖、可溶性甲壳素、粘性甲壳素等。甲壳素和壳聚糖是含氮的多糖类物质,也是自然界中唯一的天然碱性多糖,因此具有许多独特的生物活性。甲壳素的溶解性能较差,只能溶于浓无机酸且同时发生降解,而不溶于水、稀酸、稀碱及一般有机溶剂,从而限制了甲壳素的应用。通过脱乙酰化反应,使甲壳素转变为壳聚糖。由于甲壳素分子结构的规整性受到破坏,壳聚糖分子中有大量游离氨的存在,壳聚糖的溶解性能较甲壳素有了很大的改善,化学性质也较活泼,兼具有甲壳素的天然、无毒、生物相容性好与易于降解等优点,所以壳聚糖有十分良好的经济应用价值,其应用范围比甲壳素大得多[2,3]。 目前壳聚糖的主要来源还是从虾蟹壳中用酸碱加工提取,其制备存在着许多不足之处:提取过程需耗费大量的酸碱,腐蚀性强,劳动强度大;所排出的废液中的有机质很高,废液量很大,严重污染环境;用浓碱进行反应时,甲壳质的分子易降解,使分子量变小,黏度减少而影响产品质量和使用。由之,随着发酵技术的进步,用生物工程技术大规模生产甲壳素及壳聚糖将有可能成为大有前途的清洁生产方式。本文介绍了目前生产壳聚糖的几种发酵方法。 2生产壳聚糖的发酵方法 2.1从虾蟹壳中制备壳聚糖 目前提取壳聚糖和甲壳素主要是从虾蟹壳中用酸碱加工提取,但最近有人提出使用发酵方法从虾蟹壳中提取壳聚糖和甲壳素。其主要原理是利用菌丝体发酵产生的蛋白酶消耗蛋白质,以及发酵过程中微生物产生的酸消耗无机物,从而提取壳聚糖和甲壳素。 SiniT.K.,等[4]提出使用芽孢杆菌发酵产生的蛋白酶和酸降解虾壳中的蛋白质和无机物,其实验方法是将200g的虾壳切碎加入200mL含108CFU mL的芽孢杆菌在粗糖培养基中,密封发酵15d,在发酵过程中能够去除虾壳中84%的蛋白质和72%的无机物,待发酵完成后取出沉淀并清洗,再经过少量弱酸碱处理和脱乙酰,提取产物通过分析,其质量达到市场标准。 韩国的W.J.Jung,等[5]首次采用连续发酵法从蟹壳中提取甲壳素,分别使用副干酪乳杆菌和粘质沙雷氏菌进行两步发酵从蟹壳中提取甲壳素,将新鲜的蟹壳2.5g放入50ml10%的葡萄糖溶液中,在恒温培养振荡器中利用副干酪乳杆菌在30条件下发酵5d,恒温培养振荡器的转速为180r min,第一步发酵结束以后,过滤沉淀物并用蒸馏水清洗,再用粘质沙雷氏菌在同样条件下发酵7d,在发酵结束后去除无机物和蛋白 质的量各达到94.3%和68.9%。2.2黑曲霉生产壳聚糖 黑曲霉是发酵工业中常用的真菌,我国有悠久的培养和使用的历史,黑曲霉又是含甲壳素最多的真菌,因此研究和开发由黑曲霉生产壳聚糖和甲壳素的技术,对促进我国甲壳素和壳聚糖的生产发展具有十分重要的作用。曹健和殷蔚申[6]用黑曲霉发酵生产壳聚糖,得率为9.72%,其培养基为含葡萄糖、玉米浆培养液,另加入Mg2+,得到的壳聚糖,结果为相对分子量为8.02104,水分为8.38%,灰分为9.24%。2.3米根霉生产壳聚糖 米根霉培养条件简单,是生产乳酸发酵产品的菌种。米根霉细胞壁含有天然壳聚糖,可以通过发酵法直接进行提取,不需经浓碱脱乙酰步骤,利用米根霉发酵生产化产生品的厂家可利用发酵后的菌丝体提取壳聚糖,这不仅有利于企业开展综合利用提高经济效益,而且可以减少下持处理过程中菌丝体对环境的排放量。陈世年[7]选用米根霉作为菌种,在32下、220r min下

相关文档
最新文档