第1课时 乘方
乘方(第1课时 乘方的概念及计算)课件(共34张PPT) 七年级数学上册(人教版2024)

还是负数?
解:(1)-7是底数;8是指数
(2)-10是底数,8是指数, − 是正数
课本练习
2.计算:
(1) −
;(2)
−
(7) −
(8)
;
解:(1)1;(2)-1
;
(3)512;(4)-125
解: 根据题意得,第1次截去后剩下的绳子长为128× 米,第2
次截去后剩下的绳子长为128×
去后剩下的绳子长为128×
米……依此类推,第7次截
=128×
=1(米).
分层练习-巩固
14. x 是有理数,下列各式中成立的是( C
)
A. (- x )2=- x2
B. (- x )3= x3
.
②已知(-3)3=-27,那么(-30)3= -27 000
(-0.3)3= -0.027
.
,
,
.
(2)观察上述计算结果,我们可以看出:
①当底数的小数点向左(右)每移动一位,平方数的小
数点向左(右)移动
两 位.
②当底数的小数点向左(右)每移动一位,立方数的小
数点向左(右)移动
三 位.
19. 【新视角·规律探究题】(1)比较下列各组中两个数的大小:(填“>”“=”
并让他自己提要求,发明者指着棋盘对国王说:“那就在棋盘的第一格中放入
一粒麦粒,第二格中放入二粒麦粒,第三格中放入四粒麦粒,第四格中放入八
粒麦粒……按这样的规律放满64格.”
国王反对说:“不、不、这么一点麦子算不上什么奖赏.”但发明者坚持如此.
第1课时有理数的乘方

有理数的乘方第1课时乘方【知识与技能】1.在现实背景下理解有理数乘方的概念.2.掌握有理数乘方的运算方法,能进行有理数的混合运算.【过程与方法】从学生熟悉的有理数乘法的基础上得出“乘方”的概念,并通过各种师生活动加深学生对“乘方”意义的理解解;从学生熟悉的有理数乘方的基础上得出“科学记数法”的概念,并通过各种师生活动加深学生对“科学记数法”的理解,体验科学记数法与乘方的联系.【情感态度】通过有理数乘方的学习,让学生在学习的过程中通过观察、比较、归纳等方法体验数学的创新思维和发散思维,发展综合运用所学知识的能力,树立坚韧不拔的精神,树立不畏困难的人生态度.【教学重点】重点是理解乘方的意义和有理数乘方的运算方法.【教学难点】难点是熟练进行有理数的乘方运算.一、情境导入,初步认识【情境1】实物投影,并呈现问题:边长为2的正方形的面积是多少?棱长为2的正方体的体积是多少?边长为a的正方形的面积是多少?棱长为a的正方体的体积是多少?在小学中我们是怎样来表示边长为a的正方形的面积的?如何读呢?【情境2】实物投影,并呈现问题:展示拉面的制作过程.思考一根拉面对折3次有几根?相当于几个2相乘,对折6次、20次呢?分别是几个2相乘?对折n次呢?有些时候,我们会遇到几个相同因数相乘的式子,要写很长,这样的式子有更简单的表示方式吗?【教学说明】学生独立思考后,小组讨论,教师注意引导学生正确理解有理数乘方的实际意义,通过问题情境,让学生通过观察,归纳乘方的概念.情境1中4、8、a×a、a×a×a,a2读做a的平方.情境2中一根拉面对折3次有8根,相当于3个2相乘,对折6次相当于6个2相乘,20次相当于20个2相乘,n 次相当于n个2相乘.【教学说明】通过现实情景再现,让学生体会数学知识间的相互联系.学生通过前面的情景引入,在老师的引导下,通过自己的观察,归纳出结论,进而体验到成功的喜悦,同时,也激发了学生学习的兴趣.二、思考探究,获取新知问题1乘方的概念是什么?如何表示呢?问题2乘方的结果叫什么?相同的因数叫什么?因数的个数叫什么?【教学说明】学生通过回顾旧知识,在经过观察、分析、类比后能得出结论.【归纳结论】求n个相同因数的积的运算叫做乘方.乘方的结果叫做幂,相同的因数叫做底数,相同因数的个数叫做指数.一般地,在a n中,a取任意有理数,n取正整数,读作a的n次方或a的n次幂.乘方是一种运算,幂是乘方运算的结果.可以利用有理数的乘法运算来进行有理数乘方的运算.问题有理数乘方的符号法则的内容是什么?【教学说明】学生通过回顾旧知识,在经过观察、分析、类比后能得出结论.【归纳结论】非0有理数的乘方,将其绝对值乘方,而结果的符号是:正数的任何次乘方都是正数,负数的偶数次乘方是正数,负数的奇数次乘方是负数,零的任何次幂都是零.问题有理数混合运算的运算顺序是什么?【教学说明】学生通过回顾旧知识,在经过观察、分析、类比后能得出结论.【归纳结论】有理数混合运算的顺序是:先乘方,再乘除,后加减,有括号的先算括号里面的.三、运用新知,深化理解1.(1)在52中,底数是____,指数是____,52读作______或读______作.(2)在(-4)2中,底数是____,指数是____,读作______或读作______,表示的意义是____________.(3)在-42中,底数是____,指数是____,表示的意义是____________..(4)a中底数是____,指数是____.2.填空:(-2)2=____,(-2)3=____,(-2)4=____,(-2)5=____,(-2)6=____.3.计算:(1)413⎛⎫- ⎪⎝⎭;(2)-26.4.计算:(1)34×127+(-22)×12÷2(2)2×(-3)3-4×(-3)+15【教学说明】通过新课的讲解以及学生的练习,充分做到讲练结合,让学生更好地巩固新知识.通过本环节的讲解与训练,让学生对有理数的乘方和混合运算有了更加明确的认识,同时也尽量让学生明白知识点不是孤立的,需要前后联系,才能更好地处理问题.【答案】1.(1)5 2 5的平方5的2次幂(2)-4 2 负4的2次方负4的2次幂2个-4相乘(3)4 2 4的平方的相反数(4)a 1-8 16 -32 643.(1)181(2)-644.(1)2(2)-27四、师生互动,课堂小结1.有理数乘方的概念是什么?有理数乘方的符号法则的内容是什么?有理数混合运算的运算顺序是什么?2.通过这节课的学习,你还有哪些疑惑,大家交流.【教学说明】引导学生自己小结本节课的知识要点及数学方法,从而将本节知识点进行很好的回顾以加深学生的印象,同时使知识系统化.1.布置作业:从教材第41页“练习”、第43页“练习”和教材第43页“”中选取.2.完成同步练习册中本课时的练习.在本节的教学中,通过联系小学知识及生活情境问题引导出乘方的概念,并通过感受实际生活中的大数,使学生亲身体会引入科学记数法的必要性.过程中注重学生在认知过程中的思维,充分发挥了学生的主动性,培养学生归纳、总结的能力,让学生体会学习数学的快乐和成功感,进而增强学习数学的信心.。
人教版七年级数学上册1.5有理数的乘方1.乘 方第1课时 乘 方

13.视察下列算式并总结规律:31=3,32=9,33=27,34=81,35 =243,36=729,37=2187,38=6561,….用你发现的规律写出3999 的末尾数字是( D ) A.1 B.3 C.9 D.7
14.视察下列各式: 13=12, 13+23=32, 13+23+33=62, 13+23+33+43=102, … 猜想13+23+33+…+103=_5_5_2_.
9.(1)(2017·湖州模拟)计算:23×(12)2=__2__; (2)一个数的平方等于它本身,这个数是__1_或__0___.
10.计算:
(1)(-5)2; (2)-(-23)3; 解:25 解:287 (3)(-10)4; (4)(-131)3. 解:10000 解:-6247
11.下列结论:①-(-2)2=4;②-5÷15×5=-5;③232=94;④(-3)2×(- 13)=3;⑤-33=9.其中错误的个数为( D ) A.2 个 B.3 个 C.4 个 D.5 个 12.若 a 为有理数,则下列各式:①(-a)2=a2;②(-a)2=-a2;③(-a)3 =a3;④|-a3|=a3.其中一定成立的有( A ) A.1 个 B.2 个 C.3 个 D.4 个
解:由题意,得26=64(根).因为28=256,所以当对折成256根面条时, 对折了8次
18.(阿凡题:1069926)若|a-1|与(b+2)2互为相反数,试求a202X+(a+b)2015的 值. 解:由题意得|a-1|+(b+2)2=0,所以a-1=0,且b+2=0.所以a=1,b=-2. 所以a202X+(a+b)2015=1202X+[1+(-2)]2015=1202X+(-1)2015=1+(-1)=0
6.计算(-18)+(-1)9的值是( C ) A.0 B.2 C.-2 D.不能确定 7.下列各组数中,相等的一组是( C ) A.23与32 B.23与(-2)3 C.32与(-3)2 D.-23与-32 8.下列说法错误的是( C ) A.-52是5的平方的相反数 B.0的任何正整数次幂都是0 C.任何有理数的偶数次幂都是正数 D.任何有理数的平方是非负数
第1课时有理数的乘方(41张PPT)数学

16
17
18
本课结束
同学们再见!
授课老师:
时间:2024年9月1日
2024课件
同学们再见!
授课老师:
时间:2024年9月1日
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
A
答案
解析
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
15.现规定一种新运算“※”:a※b=ab,如3※2=32=9,则(-2)※3=____.
解析 (-2)※3=(-2)3=-8.
-8
答案
解析
1
2
3
4
5
6
7
8
9
10
11
12
13
14
解
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
解 设S=1+2+22+23+24+…+210,将等式两边同时乘以2,得2S=2+22+23+24+…+211,将下式减去上式,得2S-S=211-1,即S=1+2+22+23+24+…+210=211-1.
1
2
3
4
5
6
7
8
9
10
11
12
13
解 第64个格子,应该底数是2,指数63,∴为263.
1.5.1乘方 第1课时 乘方的概念和性质

三、解答题(共 30 分)
18.(7 分)求下列各式的值:
(1)(-3)3; (2)(-12)2
解:-27
解:14
(3)(-121)4; (4)(21)5;
解:8116
解:312
(5)(-3)4; (6)(-10)5; 解:81 解:-100 000
(7)234(用计算器计算). 解:279 841
第一章 有理数
5.1
乘方
第1课时 乘方的概念和性质
1.求 n 个相同因数的__积____的运算,叫做乘方,乘方 __幂___.在 an 中,a 叫做__底__数____,n 叫做___指__数___,an 看 方的结果时,读作___a_的__n_次__幂_____;an 看作 a 的 n 次方的 作___a_的__n_次__乘__方______.
解:-1 解:1 解:216 解:-343
(5)(-0.2)3; (6)(-31)2; (7)103; (8)(-10)6; (9)-24; (10)-(-2)3. 解:-0.008 解:19 解:1 000 解:1 000 000 解:-16 解:8
10.(6 分)用计算器计算: (1)(-12)3; (2)134; (3)4.63; (4)(-5.8)4.
明朝未及,我只有过好每一个今天,唯一的今天。
昨日的明天是今天。明天的昨日是今天。为什么要计较于过去呢(先别急着纠正我的错误,你确实可以在评判过去中学到许多)。但是我发现有的人过分地瞻前顾后了。为 何不想想“现在”呢?为何不及时行乐呢?如果你的回答是“不”,那么是时候该重新考虑一下了。成功的最大障碍是惧怕失败。这些句子都教育我们:不要惧怕失败。如 果你失败了他不会坐下来说:“靠,我真失败,我放弃。”并且不是一个婴儿会如此做,他们都会反反复复,一次一次地尝试。如果一条路走不通,那就走走其他途径,不 断尝试。惧怕失败仅仅是社会导致的一种品质,没有人生来害怕失败,记住这一点。宁愿做事而犯错,也不要为了不犯错而什么都不做。不一定要等到时机完全成熟才动手。 开头也许艰难,但是随着时间的流逝,你会渐渐熟悉你的事业。世上往往没有完美的时机,所以当你觉得做某事还不是时候,先做起来再说吧。喜欢追梦的人,切记不要被 梦想主宰;善于谋划的人,切记空想达不到目标;拥有实干精神的人,切记选对方向比努力做事重要。太阳不会因为你的失意,明天不再升起;月亮不会因为你的抱怨,今 晚不再降落。蒙住自己的眼睛,不等于世界就漆黑一团;蒙住别人的眼睛,不等于光明就属于自己!鱼搅不浑大海,雾压不倒高山,雷声叫不倒山岗,扇子驱不散大雾。鹿 的脖子再长,总高不过它的脑袋。人的脚指头再长,也长不过他的脚板。人的行动再快也快不过思想!以前认为水不可能倒流,那是还没有找到发明抽水机的方法;现在认 为太阳不可能从西边出来,这是还没住到太阳从西边出来的星球上。这个世界只有想不到的,没有做不到的!不是井里没有水,而是挖的不够深;不是成功来的慢,而是放 弃速度快。得到一件东西需要智慧,放弃一样东西则需要勇气!终而复始,日月是也。死而复生,四时是也。奇正相生,循环无端,涨跌相生,循环无端,涨跌相生,循环 无穷。机遇孕育着挑战,挑战中孕育着机遇,这是千古验证了的定律!种子放在水泥地板上会被晒死,种子放在水里会被淹死,种子放到肥沃的土壤里就生根发芽结果。选
2.3.1乘方(第1课时)(2024人教版七年级上册第二章)

第二章 有理数的运算 2.3.1 乘方 (第一课时)
复习旧知,提出问题 问题1:边长为a的正方形的面积如何表示?
a a a2 读作a的平方
问题2:棱长为a的正方体的体积如何表示?
a a a a3 读作a的立方
追问:那么4个a相乘呢?100个a相乘呢?n个a相乘呢?
呈现背景,提出问题 在数学和实际问题中,我们经常会遇到一种特殊形式的乘法 运算,其中的各个乘数都相同,下面就来学习这种乘法运算.
(2)( 2)4 2( 2)( 2)( 2) 16
(3)( 2)3 2 ( 2)( 2) 8
3
33
3 27
先转化为乘法再计算
概念辨析,深入理解
思考1(: 4)2与 42 的意义相同吗?结果相同吗?
( 4)2表示 4( 4),结果是16 43表示 (4 4),结果是 16
思考2:( 4)3与 43 的意义相同吗?结果相同吗?
18
应用法则,熟练法则
练习4:计算
(3)(3)3 1 5 (42 ) 27
27 32 (16) 27
32 (16) 2
(4)16 (2)3 3 1 16 ( 8) 4 8
回顾反思,拓展问题 回顾反思:有理数的乘方的意义是什么?它可以解决哪些问题?
拓展问题:请你就本节课的内容提出你想继续探究的问题。
练习3:
在( 2)3, 22,( 2), 2,( 2)2中,是负数的有________________
应用法则,熟练法则
练习4:计算
(1) 24 ( 8)( 2)2 (2) 22 1 ( 3)2 ( 1)3
原式 16 ( 8) 4 8
42
2
4 1 9 ( 1) 44 8
《1.5.1 第1课时 乘方》教案、同步练习(附导学案)

1.5.1 乘方《第1课时乘方》教案【教学目标】:1.通过现实背景理解有理数乘方的意义,能进行有理数乘方的运算.2.已知一个数,会求出它的正整数指数幂,渗透转化思想.3.培养学生观察、归纳能力,以及思考问题、解决问题的能力,切实提高学生的运算能力.【教学重点】:正确理解乘方的意义,能利用乘方运算法则进行有理数乘方运算.【教学难点】:准确理解底数、指数和幂三个概念,并能进行求幂的运算.【教学过程】:(一)创设情境,导入新课提问并引导学生回答:在小学里我们学过一个数的平方和立方是如何定义的?怎样表示?a·a记作a2,读作a的平方(或a的2次方),即a2=a·a;a·a·a记作a3,读作a的立方(或a的3次方),即a3=a·a·a.(分别是边长为a的正方形的面积与棱长为a的正方体的体积)(多媒体演示细胞分裂过程)某种细胞,每过30分钟便由1个分裂成2个,经过5小时,这种细胞由1个分裂成多少个?1个细胞30分钟分裂成2个,1个小时后分裂成2×2个,1.5小时后分裂成2×2×2个,…,5小时后要分裂10次,分裂成个,为了简便可将记作210.(二)合作交流,解读探究一般地,n个相同的因数a相乘,即,记作a n,读作a的n次方.求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.在a n中,a叫做底数,n叫做指数,当a n看作a的n次方的结果时,也可读作a的n次幂.说明:(1)举例94来说明概念及读法.(2)一个数可以看作这个数本身的一次方,通常省略指数1不写.(3)因为a n就是n个a相乘,所以可以利用有理数的乘法运算来进行有理数的乘方运算.(4)乘方是一种运算,幂是乘方运算的结果.(三)应用迁移,巩固提高【例1】(1)(-4)3;(2)(-2)4;(3)-24.点拨:(1)计算时仍然是要先确定符号,再确定绝对值.(2)注意(-2)4与-24的区别.根据有理数的乘法法则得出有理数乘方的符号规律:负数的奇次幂是负数,负数的偶次幂是正数;正数的任何次幂都是正数,0的任何正整数次幂都是0.【例2】计算:(1)()3; (2)(-)3;(3)(-)4; (4)-;(5)-22×(-3)2; (6)-22+(-3)2.(四)总结反思,拓展升华1.引导学生作知识小结:理解有理数乘方的意义,运用有理数乘方运算法则进行有理数乘方的运算,熟知底数、指数和幂三个基本概念.2.教师扩展:有理数的乘方就是几个相同因数积的运算,可以运用有理数乘方法则进行符号的确定和幂的求值.乘方的含义:(1)表示一种运算;(2)表示运算的结果.乘方的读法:(1)当a n表示运算时,读作a的n次方;(2)当a n表示运算结果时,读作a的n次幂.乘方的符号法则:(1)正数的任何次幂都是正数;(2)零的任何正整数次幂都是零;(3)负数的偶次幂是正数,奇次幂是负数.注意(-a)n与-a n及()n与的区别和联系.(五)课堂跟踪反馈1.课本P42练习第1、2题.2.补充练习(1)在(-2)6中,指数为,底数为.(2)在-26中,指数为,底数为.(3)若a 2=16,则a= . (4)平方等于本身的数是 ,立方等于本身的数是 .(5)下列说法中正确的是( ) A.平方得9的数是3B.平方得-9的数是-3C.一个数的平方只能是正数D.一个数的平方不能是负数(6)下列各组数中,不相等的是( )A.(-3)2与-32B.(-3)2与32C.(-2)3与-23D.|2|3与|-23|(7)下列各式中计算不正确的是( )A.(-1)2003=-1B.-12002=1C.(-1)2n =1(n 为正整数)D.(-1)2n+1=-1(n 为正整数)(8)下列各数表示正数的是( )A.|a+1|B.(a-1)2C.-(-a)D.||1.5.1乘方《第1课时 乘方》同步练习1、填空:(1)2)3(-的底数是 ,指数是 ,结果是 ;(2)2)3(--的底数是 ,指数是 ,结果是 ;(3)33-的底数是 ,指数是 ,结果是 。
第二章有理数的运算 第1课时 乘方

2.3.1 乘方
第1课时 乘方
知识提要
1.一般地,个相同的乘数相乘,即 • • ⋯ • ,记作____,读作“
个
的次方
积
___________”.求个相同乘数的____的运算,叫作乘方,乘方的结果
幂
底数
指数
叫作____.在
中,叫作______,叫作______,当
− × × × ×
(2)把− 写成几个相同乘数的积的形式是__________________.
2. − 表示的意义是( B
)
A. −乘8
B. 8个−相乘
C. 9个8相乘的积的相反数
D. 8个9相乘的积的相反数
3.对于− ,下列叙述正确的是( C
)
A. 表示3个4相乘的积的相反数
9.用计算器计算:
−
(1) − =________.
97.336
(2). =_______.
易错点 底数是带分数时,未化为假分数而出错
10.老师出了一道计算题,计算:
−
.
嘉嘉的计算过程如下:
解:原式= −
= − ×
=
×
(第一步)
(第二步)
− .(第三步)
看作的次方
的次幂
的结果时,也可读作“__________”.
负
正
2.负数的奇次幂是____数,负数的偶次幂是____数.正数的任何次幂都
正
0
是____数,0的任何正整数次幂都是___.
知识点1 有理数乘方的意义