类型② 分式的化简求值

合集下载

分式的化简与求值

分式的化简与求值

·江苏科技版
► 类型之二 分式的基本性质的运用
命题角度: 1.利用分式的基本性质进行通分 2.利用分式的基本性质进行约分
例 2 下列运算正确的是
( C)
A. --xx+-yy=xx- +yy
B. aa2--bb22=aa+-bb
C. aa2--bb22=aa+ -bb
D. 1x--x12=x+1 1
设 S= S1+ S2+…+ Sn,则 S=___n_+__1__(用含 n 的
代数式表示,其中 n 为正整数).
[解析] Sn=1+n12+n+1 12=1+n1-n+1 12+2×nn1+1= 1+nn1+12+2×nn1+1=1+nn1+12,
(2)关于化简求值,近几年出现了一种开放型问题,题目中给 定几个数字,要考虑分母有意义的条件,不要盲目代入.
► 类型之四 分式的创新应用
命题角度: 1.探究分式中的规律问题 2.有条件的分式化简
例 6 [2011·成都] 设 S1=1+112+212,S2=1+212+312, S3=1+312+412,…,Sn=1+n12+n+1 12. n2+2n
解:原式=a-ab+ab+b+a+b2 b·a+a b=a2-a+b2+b b2·a+a b =a+a2 b·a+a b=a.
·江苏科技版
例 4 [2011·苏州] 先化简,再求值:a-1+a+2 1÷(a2+1), 其中 a= 2-1.
[解析] 分式化简时,先乘除后加减,有括号的先算括号里
(2)在进行通分和约分时,如果分式的分子或分母是多项式, 先要将这些多项式进行因式分解.
·江苏科技版
► 类型之三 分式的化简与求值 命题角度: 1.分式的加、减、乘、除、乘方运算法则 2.分式的混合运算及化简求值 例 3 [2011·泰州] 化简:a-b+a+b2 b·a+a b.

第9章 分式—分式的化简求值 22--23学年沪科版数学七年级下册

第9章 分式—分式的化简求值  22--23学年沪科版数学七年级下册

=
1
1

(代入 + = 4)
1
15
1
配方常见的式子有 + = , − = , 2 +
1
2
1
1
= ( + )2 −2 = ( − )2 +2等,要熟练掌握
并会灵活运用配方法. 次数高的要降幂,构造完
1
所以原分式的值为 15 .
全平方式,代入求值即可.
【例】若 + = 2019, + = 2020, + = 2021,且 =
分式化简的基
本理论知识
分式的基本性质:分子分母同乘除一个
不为0的整式,分式不变.
约分:把分式的分子和分母的公因式约去
通分:把异分母化成同分母
分式的四则运算
化简:用因式分解的方法化简分子分母
分式的化简求值
分式化简的
基本步骤
分式化简求值
的常见方法
通分:根据分式的基本性质,把几个异分母的
分式分别化成与原来的分式相等的同分母的分
− 2

1
将 = 4代入得
2(−)
+3 2×1+3

4

1
−2
−2
4

=
= −2, 所以原分式的值为−2
方法总结:一般题干给出条件难以得出可以直接代入的简易结论,我们可以将整个条件看成一个整体,
化简分式时向着这个式子的方向去化简,然后整体直接代入即可求值.
配方法
1

【例】已知 + =
将条件等式整
体代入即可求

方法总结:当条件式为等式时,

分式的化简求值课件

分式的化简求值课件
分式的化简求值课件
目录
• 分式化简概述 • 分式的约分 • 分式的通分 • 分式的化简求值
01
分式化简概述
分式化简的定义
总结词
分式化简是指将分式通过约分、通分、分子分母分解因式等方式,将其转化为 最简形式的过程。
详细描述
分式化简是数学中一个重要的概念,它涉及到分数的约分、通分、分子分母分 解因式等操作,目的是将分式简化到最简形式。最简形式是指分子和分母没有 公因式,且分子和分母互质的分式。
02
分式的约分
约分的定义和性质
约分的定义
约分是将一个分式化简为最简形 式的过程,通过约分可以简化分 式的计算和化简过程。
约分的性质
约分后分式的值不变,即约分前 后的分式相等;约分后的分式比 原分式更加简单明了,易于计算 和理解。
约分的步骤和方法
找出分子和分母的最大公约数
01
通过因式分解、质因数分解等方法找出分子和分母的最大公约
分式化简的意义和作用
总结词
分式化简在数学中具有重要的意义和作用,它可以帮助学生更好地理解分数和分式的概念,提高解题速度和准确 度。
详细描述
通过分式化简,学生可以更好地理解分数和分式的本质和特点,掌握其运算规则和技巧。同时,分式化简也可以 帮助学生提高解题速度和准确度,减少计算错误和混淆的可能性。此外,分式化简在数学研究和应用中也具有广 泛的应用价值,如在物理、化学、工程等领域中都有重要的应用。
02
分别对分子、分母进行 因式分解。
03
将每个分式化为最简比 的形式。
04
约分:如果分子、分母 有公因式,则约去公因 式。
通分的注意事项
注意最简公分母的选择
注意化简求值时的符号

初中数学重点梳理:分式的化简与求值

初中数学重点梳理:分式的化简与求值

分式的化简与求值知识定位分式的化简与求值是竞赛部分重要内容,要掌握分式运算的基本性质,会灵活对分式作恒等变形,能利用参数对复杂的分式进行化简与求值,另外整体法的应用也要掌握,本节对常见的题型与方法做讲解知识梳理分式的有关概念和性质与分数相类似,例如,分式的分母的值不能是零,即分式只有在分母不等于零时才有意义;也像分数一样,分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变,这一性质是分式运算中通分和约分的理论根据.在分式运算中,主要是通过约分和通分来化简分式,从而对分式进行求值.除此之外,还要根据分式的具体特征灵活变形,以使问题得到迅速准确的解答.本讲主要介绍分式的化简与求值 给出一定的条件,在此条件下求分式的值称为有条件的分式求值。

而分式的化简与求值是紧密相连的,求值之前必须先化简,化简的目的是为了求值,先化筒后求值是解有条件的分式的化简与求值的基本策略。

解有条件的分式化简与求值问题时,既要瞄准目标。

又要抓住条件,既要根据目标变换条件。

又要依据条件来调整目标,除了要用到整式化简求值的知识方法外,还常常用到如下技巧:1、恰当引入参数;2、取倒数或利用倒数关系;3、拆项变形或拆分变形;4、整体代入;5、利用比例性质等。

例题精讲◆专题一:恰当引入参数 【试题来源】“希望杯”邀请赛试题【题目】若,则的值是 。

【答案】0或2- 【解析】设k add c c b b a ====则432ak a ,ak ck b ,ak dk c ,ak d ======则14=k 则1±=k ,当1=k 时,原式等于0;当1-=k 时,原式等于2-。

【知识点】分式的化简与求值 【适用场合】当堂例题【难度系数】3【试题来源】【题目】若,求x ,y ,z(甘肃升中题)。

【答案】【解析】解:设k(k≠0), 那么x=2k、y=3k、z=4k 代入x+y-z=,得:2k+3k-4k=,解得:k=,所以:x=,y=,z=.评注:引入参数,把三个未知数转化为关于‘参数’的一元方程问题。

化简求值(解析版)--中考数学抢分秘籍(全国通用)

化简求值(解析版)--中考数学抢分秘籍(全国通用)

化简求值--中考数学抢分秘籍(全国通用)概率预测☆☆☆☆☆题型预测解答题☆☆☆☆☆考向预测①分式的化简求值②整式的化简求值化简求值题是全国中考的热点内容,更是全国中考的必考内容。

每年都有一些考生因为知识残缺、基础不牢、技能不熟、答欠规范等原因导致失分。

1.从考点频率看,加减乘除运算是数学的基础,也是高频考点、必考点,所以必须提高运算能力。

2.从题型角度看,以解答题的第一题或第二题为主,分值8分左右,着实不少!一、分式1.分式的加减乘除运算,注意去括号,添括号时判断是否需要变号,分子计算时要看作整体。

2.分式有意义、无意义的条件:因为0不能做除数,所以在分式AB中,若B≠0,则分式AB有意义;若B=0,那么分式AB没有意义.3.分式的加减法同分母的分式相加减,分母不变,把分子相加减,即ac±bc=a±bc.异分母的分式相加减,先通分,变为同分母的分式,然后相加减,即ab±cd=ad±bcbd.4.分式的乘除法分式乘以分式,用分子的积做积的分子,分母的积做积的分母,即ab·cd=acbd.分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘,即ab÷cd=ab·dc=adbc.5.分式的混合运算在分式的加减乘除混合运算中,应先算乘除,进行约分化简后,再进行加减运算,遇到有括号的,先算括号里面的.运算结果必须是最简分式或整式.二、因式分解因式分解的方法:(1)提公因式法公因式的确定:第一,确定系数(取各项整数系数的最大公约数);第二,确定字母或因式底数(取各项的相同字母);第三,确定字母或因式的指数(取各相同字母的最低次幂).(2)运用公式法①运用平方差公式:a 2-b 2=(a +b )(a -b ).②运用完全平方公式:a 2±2ab +b 2=(a ±b )2.化简求值的解法第一种是直接代入求值,已知给出了字母的值或通过已知能求出字母的值。

初中数学分式化解求值解题技巧大全

初中数学分式化解求值解题技巧大全

化简求值常用技巧在给定的条件下求分式的值,大多数条件下难以直接代入求值,它必须根据题目本身的特点,将已知条件或所求分式适当变形,然后巧妙求解.常用的变形方法大致有以下几种: 1、 应用分式的基本性质例1 如果12x x+=,则2421x x x ++的值是多少? 解:由0x ≠,将待求分式的分子、分母同时除以2x ,得 原式=.22221111112131()1x x x x===-+++-.2、倒数法例2 如果12x x+=,则2421x x x ++的值是多少? 解:将待求分式取倒数,得 ∴原式=13. 3、平方法例3已知12x x +=,则221x x+的值是多少? 解:两边同时平方,得4、设参数法例4已知0235a b c ==≠,求分式2222323ab bc aca b c +-+-的值. 解:设235a b ck ===,则2,3,5a k b k c k ===.∴原式=222222323532566.(2)2(3)3(5)5353k k k k k k k k k k k ⨯+⨯⨯-⨯⨯==-+-- 例5已知,a b c b c a ==求a b c a b c +--+的值. 解:设a b ck b c a===,则∴3c ak bk k ck k k ck ==⋅=⋅⋅=, ∴31,1k k == ∴a b c == ∴原式=1.a b ca b c+-=-+5、整体代换法例6 已知113,x y -=求2322x xy y x xy y+---的值. 解:将已知变形,得3,y x xy -=即3x y xy -=-∴原式=2()32(3)333.()23255x y xy xy xy xy x y xy xy xy xy -+⨯-+-===-----例: 例5. 已知a b +<0,且满足a a b ba b 2222++--=,求a b a b3313+-的值。

解:因为a a b ba b 2222++--= 所以()()a b a b +-+-=220 所以()()a b a b +-++=210 所以a b +=2或a b +=-1由a b +<0 故有a b +=-1所以a b a b a ba a b b a b33221313+-=+-+-()()评注:本题应先对已知条件a a b ba b 2222++--=进行变换和因式分解,并由a b +<0确定出a b +=-1,然后对所给代数式利用立方和公式化简,从而问题迎刃而解。

分式化简求值的七种类型

分式化简求值的七种类型

分式化简求值的七种类型分式的化简与求值是分式运算的重要内容,现摘取几例加以分析.㈠与因式分解相结合的单一化简例1、先化简:22221224323a a a a a a a -+-÷---,再求当3a =-时分式的值。

思路分析:题目中出现了特殊的二次三项式,注意运用多项式因式分解的方法,一般地,若二次项系数是1,一次项的系数可以看作两个数的和(或者是和的相反数),常数项可以作为上面和中的两数的乘积,即可把二次三项式分解因式.如果二次项系数不为1,则可以把二次项系数提出来.解:原式=()()()()()()()()()()()()()()()()21121211131313321222a a a a a a a a a a a a a a a a a a a +--++-+-+÷=•=-+---++ 当a=-3时,原式=()()()23142233263-+==⨯-⨯-+ 点评:注意特殊的二次三项式()()()2x a b x ab x a x b +++=++因式分解的方法,以及乘法公式、提取公因式、分组分解等方法的灵活运用,比如2221222333a b b a b a b a b-+--+÷+-+的化简,应注意分组.2221222333a b b a b a b a b -+--+÷+-+()()22133321a b a b a b a b --+=•+--+ ()()()()113121a b a b a ba b a b +--++=•+--+6a b +=。

㈡巧变幻求值型例2:设abc=1,求111a b c ab a bc b ac c ++++++++的值。

思路分析:第一个分式分母中的1可巧妙变换成abc,第3个分式的分子,分母同时乘b. 解:原式=1a b bc ab a abc bc b abc bc b++++++++ 1111111b bc bc b b bc bc b bc b bc b ++=++==++++++++ 点评:仔细分析题中的条件和所求代数式之间的关系,巧妙变幻是解决分式中较复杂运算的重要途径。

第三章分式的化简求值问题

第三章分式的化简求值问题

第三章:分式一、中考要求:1 •经历用字母表示现实情境中数量关系(分式、分式方程)的过程,了解分式、分式方程的概念,体会分式、分式方程的模型思想,进一步发展符号感.2•经历通过观察、归纳、类比、猜想、获得分式的基本性质、分式乘除运算法则、分式加减运算法则的过程,发展学生的合情推理能力与代数恒等变形能力.3•熟练掌握分式的基本性质,会进行分式的约分、通分和加减乘除四则运算,会解可化为一元一次方程的分式方程(方程中分式不超过两个)会检验分式方程的根.4.能解决一些与分式、分式方程有关的实际问题,具有一定的分析问题、解决问题的能力和应用意识.5 •通过学习,能获得学习代数知识的常用方法,能感受学习代数的价值.二、中考卷研究(一)中考对知识点的考查:本章多考查分式的意义、性质,运算也是中考热点之一,另外分式方程及其应用也是热点考题.本章还多考查方程思想和转化思想以及学生收集和处理信息的能力,获取新知识的能力、分析问题和解决问题的能力.三、中考命题趋势及复习对策本章内容是中考命题的重要内容之一,在中考中占有一定的比例,命题的形式有填空、选择、计算、解答题,占4〜12分,主要考查学生对概念的理解和运用基础知识、计算、分析判断的能力.针对中考命题趋势,在复习时应夯实基础知识,锻炼计算能力,还应在方程的应用上多下功夫、加大力度,多观察日常生活中的实际问题.★★★ (I )考点突破★★★考点1:分式的运算、考点讲解:A1.分式:整式A除以整式B,可以表示成g的形式,如果除式B中含有字母,那么称令错误!为分式. 注:(1 )若B z 0,则错误!有意义;(2)若B=0,则错误!无意义;(2)若A=0且B z0,则错误!=02 .分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变.3 .约分:把一个分式的分子和分母的公团式约去,这种变形称为分式的约分.4 .通分:根据分式的基本性质,异分母的分式可以化为同分母的分式,这一过程称为分式的通分.5 •分式的加减法法则:(1)同分母的分式相加减,分母不变,把分子相加减;(2)异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法则进行计算.6 •分式的乘除法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.7 .通分注意事项:(1 )通分的关键是确定最简公分母,最简公分母应为各分母系救的最小公倍数与所有相同因式的最高次幂的积;(2)易把通分与去分母混淆,本是通分,却成了去分母,把分式中的分母丢掉.8 .分式的混合运算顺序,先算乘方,再算乘除,最后算加减,有括号先算括号里面的.9 .对于化简求值的题型要注意解题格式,要先化简,再代人字母的值求值.二、经典考题剖析:【考题1 - 1】(2004、南宁,2分)当x 时,分式错误!有意义.解:z 1点拨:考查分式有意义的条件 1 - x z 0,即X z 1.解:一1【考题1 —2】(2004、青岛)化简: a 2.a24a 4(a 2)【考题1 - 3】(2004、贵阳,8分)先化简,再求 2值:(3x x x 1,其中 x 2 2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

类型② 分式的化简求值
,备考攻略)
分式的化简求值.
分式的性质用错,常会把分子分母同时加上同一个式子;通分时a 常会通分成a a
;添括号时不变符号;加减的两个分式进行分子分母约分;代值时容易代入使分式无意义的数.
分式的化简求值首先把分式约分、通分,再进行加减乘除运算,化简后把值代入.
通分的关键是寻找最简公分母,找分子、分母的公因式方法如下:
(1)定系数:最大公约数.
(2)定字母:相同字母取最低次幂.
(3)若分子、分母是多项式应先把分子、分母因式分解,然后确定公因式.
化简求值类一定要先化简再求值,分数线有括号的作用,去分母后分子要加括号,注意
结果一定是最简分式.化简时要有整体意识和符号意识.
,典题
精讲)
【例】(2017安徽中考)先化简,再求值:
⎝⎛⎭⎫a 2a -1+11-a ·1a
,其中a =-12. 【解析】首先将小括号内的部分进行通分,然后按照同分母分式的减法法则进行计算,再按照分式的乘法法则计算、化简,最后再代数求值即可.
【答案】
解:原式=⎝⎛⎭⎫a 2a -1-1a -1·1a

(a +1)(a -1)a -1·1a =a +1a . 当a =-12
时,原式=-1.
1.(2017南宁中考)先化简,再求值:
1-x 2-1x 2+2x +1÷x -1x
,其中x =5-1.
解:原式=1-
(x +1)(x -1)(x +1)2·x x -1
=1-x x +1

x +1-x x +1 =1x +1, 当x =5-1时,原式=15-1+1=15=55
.
2.(2017山亭中考)先化简,再求值:
⎝⎛⎭⎫3x +1-x +1÷x 2+4x +4x +1,其中x =2-2.
解:原式=⎣⎢⎡⎦
⎥⎤3x +1-(x +1)(x -1)x +1·x +1(x +2)2 =-(x +2)(x -2)x +1·x +1(x +2)2
=2-x x +2
, 当x =2-2时, 原式=2-2+22-2+2=4-22
=22-1. 3.(2017山东中考)先化简x 2-2x +1x 2-1÷⎝ ⎛⎭
⎪⎫x -1x +1-x +1,然后从-5<x <5的范围内选取一个合适的整数作为x 的值代入求值.
解:原式=(x -1)2(x +1)(x -1)÷x -1-(x -1)(x +1)x +1

x -1x +1·x +1x -1-x 2+1 =x -1-x (x -1) =-1x
, ∵-5<x <5且x +1≠0,x -1≠0,x ≠0,x 是整数, ∴x =-2或2,
当x =-2时,原式=-1-2=12
. 当x =2时,原式=-12
. 4.(2017烟台中考)先化简,再求值:
x 2+2x +12x -6÷⎝ ⎛⎭
⎪⎫x -1-3x x -3,其中x 为数据0,-1,-3,1,2的极差. 解:原式=(x +1)22(x -3)÷x (x -3)-1+3x x -3
=(x +1)22(x -3)·x -3(x +1)(x -1) =x +12x -2
, x =2-(-3)=5,
原式=5+12×5-2=68=34
.
5.(2017巴中中考)先化简,再求值:
⎝ ⎛⎭
⎪⎫x 2-2x +4x -1+2-x ÷x 2
+4x +41-x ,其中x 满足x 2-4x +3=0. 解:原式=x 2-2x +4+(2-x )(x -1)x -1÷(x +2)21-x =x 2-2x +4+2x -2-x 2+x x -1÷(x +2)21-x =x +2x -1·1-x (x +2)2 =-1x +2
, 解方程x 2-4x +3=0得,
(x -1)(x -3)=0,x 1=1,x 2=3. 当x =1时,原式无意义;
当x =3时,原式=-13+2
=-15.。

相关文档
最新文档