2020年广东省部分名校高考模拟理科数学联考试题及答案解析
2020年广东省高考数学一模试卷(理科)(附答案详解)

2020年广东省高考数学一模试卷(理科)一、单选题(本大题共12小题,共60.0分)1. 已知集合A ,B 均为全集U ={1,2,3,4,5,6,7}的子集,集合A ={1,2,3,4},则满足A ∩∁U B ={1,2}的集合B 可以是( )A. {1,2,3,4}B. {1,2,7}C. {3,4,5,6}D. {1,2,3}2. 复数z =4+3i3−4i (i 为虚数单位)的虚部为( )A. −1B. 2C. 5D. 13. 若x ,y 满足约束条件{|x −y|≤1|x|≤2,则z =2x +y 的最大值为( )A. −7B. 3C. 5D. 74. 如图,△OAB 是边长为2的正三角形,记△OAB 位于直线x =t(0<t ≤2)左侧的图形的面积为f(t),则y =f(t)的大致图象为( )A.B.C.D.5. 将函数f(x)=cos(2x −1)的图象向左平移1个单位长度,所得函数在[0,12]的零点个数是( )A. 0个B. 1个C. 2个D. 3个或以上6.某广场设置了一些石凳子供大家休息,这些石凳子是由正方体沿各棱的中点截去八个一样的正三棱锥后得到的.如果被截正方体的棱长为40cm,则石凳子的体积为()A. 1920003cm3 B. 1600003cm3 C. 160003cm3 D. 640003cm37.在某市2014年6月的高二质量检测考试中,理科学生的数学成绩服从正态分布N(98,100).已知参加本次考试的全市理科学生约9450人.某学生在这次考试中的数学成绩是108分,那么他的数学成绩大约排在全市第()名?(参考数值:P(μ−σ<X≤μ+σ)=0.6826;P(μ−2σ<X≤μ+2σ)=0.9544,P(μ−3σ<X≤μ+3σ)=0.9974)A. 1500B. 1700C. 4500D. 80008.已知(1+xm)n=a0+a1x+a2x2+⋯+a n x n,若a1=3,a2=4,则m=()A. 1B. 3C. 2D. 49.已知双曲线C:x2a2−y2b2=1(a>0,b>0)的左右焦点分别为F1,F2,A为双曲线的左顶点,以F1F2为直径的圆交双曲线的一条渐近线于P,Q两点,且∠PAQ=5π6,则该双曲线的离心率为()A. √2B. √3C. √213D. √1310.设正项数列{a n}的前n项和为S n,且满足2√S n=a n+1,则数列{a n−7}的前n项和T n的最小值为()A. −494B. −72C. 72D. −1211.已知三棱锥P−ABC满足PA=PB=PC=AB=2,AC⊥BC,则该三棱锥外接球的体积为()A. 3227√3π B. 323π C. 329√3π D. 163π12.已知f(x)是定义在(−π2,π2)上的奇函数,f(1)=0,且当x∈(0,π2)时,f(x)+f′(x)tanx>0,则不等式f(x)<0的解集为()A. (−1,0)∪(1,π2) B. (−1,0)∪(0,1)C. (−π2,−1)∪(1,π2) D. (−π2,−1)∪(0,1)二、单空题(本大题共4小题,共20.0分)13.设函数f(x)=mx2lnx,若曲线y=f(x)在点(e,f(e))处的切线与直线ex+y+2020=0平行,则m=______.14. 已知数列{a n }的前n 项和为S n ,a 1=1,a n+1=2a n ,若数列{b n }满足b n ⋅S n =1,则b 1+1b 1+b 2+1b 2+⋯+b 10+1b 10=______.15. 已知A(3,0),B(0,1),C(−1,2),若点P 满足|AP ⃗⃗⃗⃗⃗ |=1,则|OB ⃗⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ +OP ⃗⃗⃗⃗⃗ |最大值为______.16. 已知抛物线C :x 2=4y 的焦点为F ,直线l 过点F 且倾斜角为5π6.若直线l 与抛物线C 在第二象限的交点为A ,过点A 作AM 垂直于抛物线C 的准线,垂足为M ,则△AMF 外接圆上的点到直线√2x −y −3=0的距离的最小值为______. 三、解答题(本大题共7小题,共82.0分)17. 在△ABC 中,内角A ,B ,C 满足√3sin(B +C)=2sin 2A2.(1)求内角A 的大小;(2)若AB =5,BC =7,求BC 边上的高.18. 如图,已知正三棱柱ABC −A 1B 1C 1,D 是AB 的中点,E 是C 1C的中点,且AB =1,AA 1=2. (1)证明:CD//平面A 1EB ; (2)求二面角B −A 1E −D 的余弦值.19. 已知椭圆C :x 24+y 22=1,A ,B 分别为椭圆长轴的左右端点,M 为直线x =2上异于点B 的任意一点,连接AM 交椭圆于P 点. (1)求证:OP⃗⃗⃗⃗⃗ ⋅OM ⃗⃗⃗⃗⃗⃗⃗ 为定值; (2)是否存在x 轴上的定点Q 使得以MP 为直径的圆恒通过MQ 与BP 的交点.20. 已知函数f(x)=e x +(m −e)x −mx 2.(1)当m =0时,求函数f(x)的极值;(2)若函数f(x)在区间(0,1)内存在零点,求实数m 的取值范围.21. 一支担负勘探任务的队伍有若干个勘探小组和两类勘探人员,甲类人员应用某种新型勘探技术的精准率为0.6,乙类人员应用这种勘探技术的精准率为a(0<a <0.4).每个勘探小组配备1名甲类人员与2名乙类人员,假设在执行任务中每位人员均有一次应用这种技术的机会且互不影响,记在执行任务中每个勘探小组能精准应用这种新型技术的人员数量为ξ.(1)证明:在ξ各个取值对应的概率中,概率P(ξ=1)的值最大.(2)在特殊的勘探任务中,每次只能派一个勘探小组出发,工作时间不超过半小时,如果半小时内无法完成任务,则重新派另一组出发.现在有三个勘探小组A i (i =1,2,3)可派出,若小组A i能完成特殊任务的概率t;t i=P(ξ=i)(i=1,2,3),且各个小组能否完成任务相互独立.试分析以怎样的先后顺序派出勘探小组,可使在特殊勘探时所需派出的小组个数的均值达到最小.22.在平面直角坐标系xOy中,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρcosθ−2ρsinθ=1.若P为曲线C1上的动点,Q是射线OP上的一动点,且满足|OP|⋅|OQ|=2,记动点Q的轨迹为C2.(1)求C2的直角坐标方程;(2)若曲线C1与曲线C2交于M,N两点,求△OMN的面积.|x+3|−2(k∈R).23.已知函数f(x)=|x−k|+12(1)当k=1时,解不等式f(x)≤1;(2)若f(x)≥x对于任意的实数x恒成立,求实数k的取值范围.答案和解析1.【答案】C【解析】解:∵集合A ,B 均为全集U ={1,2,3,4,5,6,7}的子集,集合A ={1,2,3,4}, 要满足A ∩∁U B ={1,2}; 则1,2∉B ,故符合条件的选项为C . 故选:C .根据题意得出1,2∉B ,即可判断结论.本题考查集合了的交、并、补集的混合运算问题,是基础题.2.【答案】D【解析】解:∵z =4+3i3−4i =(4+3i)(3+4i)(3−4i)(3+4i)=25i 25=i ,∴复数z =4+3i3−4i 的虚部是1, 故选:D .利用复数的运算法则即可得出.本题考查了复数的运算法则,属于基础题.3.【答案】D【解析】解:画出x ,y 满足约束条件{|x −y|≤1|x|≤2,可行域如图阴影部分: 由{x =2x −y =−1,得A(2,3), 目标函数z =2x +y 可看做斜率为−2的动直线,其纵截距越大,z 越大,由图数形结合可得当动直线过点A 时,z 最大=2×2+3=7. 故选:D .先画出线性约束条件表示的可行域,再将目标函数赋予几何意义,最后利用数形结合即可得目标函数的最值.本题主要考查了线性规划,以及二元一次不等式组表示平面区域的知识,数形结合的思想方法,属于基础题4.【答案】B【解析】解:当0<x<1时,函数的面积递增,且递增速度越来越快,此时,CD,不合适,当1≤x≤2时,函数的面积任然递增,且递增速度逐渐变慢,排除A,故选:B.根据面积的变换趋势与t的关系进行判断即可.本题主要考查函数图象的识别和判断,利用函数递增速度与t的关系是解决本题的关键.难度不大.5.【答案】B【解析】解;设函数f(x)=cos(2x−1)的图象向左平移1个单位长度,所得函数为g(x),∴g(x)=f(x+1)=cos(2x+1)令t=2x+1,x∈[0,12],∴t∈[1,2]由g(x)=0,所以2x+1=π2,方程只有一个解.故选:B.先根据平移法则求出平移后的图象解析式,再根据零点定义即可求出.本题主要考查函数的平移法则的应用和函数零点的求法,属于基础题.6.【答案】B【解析】解:如图,正方体AC1的棱长为40cm,则截去的一个正三棱锥的体积为13×12×20×20×20=40003cm3.又正方体的体积为V=40×40×40=64000cm3,∴石凳子的体积为64000−8×40003=1600003cm 3,故选:B .由正方体的体积减去八个正三棱锥的体积求解. 本题考查多面体体积的求法,考查计算能力,是基础题.7.【答案】A【解析】解:∵考试的成绩ξ服从正态分布N(98,100).∵μ=98,σ=10, ∴P(ξ≥108)=1−P(ξ<108)=1−Φ(108−9810)=1−Φ(1)≈0.158 7,即数学成绩优秀高于108分的学生占总人数的15.87%.∴9450×15.87%≈1500故选:A .将正态总体向标准正态总体的转化,求出概率,即可得到结论.本题考查正态总体与标准正态总体的转化,解题的关键是求出ξ≥108的概率.8.【答案】B【解析】解:二项式展开式的通项为:T k+1=1m k C nk x k. 当k =1,2时,可得{a 1=1m C n 1=3a 2=1m 2C n 2=4,解得n =9,m =3. 故选:B .根据通项求出第二、三项的系数,列方程组求出m 的值.本题考查二项展开式的通项、系数的性质,同时考查学生利用方程思想解决问题的能力和计算能力.属于基础题.9.【答案】D【解析】解:如图,设双曲线的一条渐近线方程为y =ba x ,联立{y =ba x x 2+y 2=c2,解得x P =−a ,x Q =a ,∴Q(a,b),且AP ⊥x 轴, ∵∠PAQ =5π6,∴∠F 2AQ =π3,则tan π3=b2a =√3, 则b 2=c 2−a 2=12a 2,得e 2=13,即e =√13. 故选:D .由题意画出图形,联立双曲线渐近线方程与圆的方程,可得P ,Q 的坐标,得到∠F 2AQ =π3,则tan π3=b2a =√3,结合隐含条件即可求得双曲线的离心率. 本题考查双曲线的简单性质,考查计算能力,是中档题.10.【答案】D【解析】解:2√S n =a n +1, ∴S n =(a n +12)2,S n−1=(a n−1+12)2, a n =S n −S n−1=a n 2+2a n −a n−12−2a n−14,化简得:2(a n +a n−1)=a n 2−a n−12, 正项数列{a n }中,a n −a n−1=2. n =1时,2√S 1=a 1+1, ∴a 1=1.∴数列{a n }是以1为首项,2为公差的等差数列. a n =1+2×(n −1)=2n −1. a n −7=2n −8,T n =2×1−8+2×2−8+2×3−8+⋯+2n −8=2×n(n+1)2−8n =n 2−7n =(n −72)2−494,∵n ∈N ∗,n =3或n =4时,T n 的最小值为−12. 故选:D .根据a n =S n −S n−1求得数列{a n }的通项公式,则可以推出a n −7=2n −8,通过分组求和法求得数列{a n −7}的前n 项和T n ,通过二次函数的最值求得T n 的最小值. 本题主要考查数列通项公式和前n 项和的求解,利用a n =S n −S n−1求得数列{a n }的通项公式和分组求和法是解决本题的关键.11.【答案】A【解析】解:因为AC⊥BC,所以△ABC的外接圆的圆心为斜边AB的中点D,可得外接圆的半径为r=12AB=1,再由PA=PB=PC=AB=2可得PD⊥面ABC,可得PD=√PA2−AD2=√4−1=√3,可得球心O在直线PD所在的直线上,设外接球的半径为R,取OP=OA=R,在△OAD中,R2=r2+(PD−R)2,即R2=1+(√3−R)2,解得:R=2√3=2√33,所以外接球的体积V=4π3R3=32√327π,故选:A.因为AC⊥BC,所以△ABC的外接圆的圆心为斜边AB的中点D,再由PA=PB=PC可得球心O在直线PD所在的直线上,设为O,然后在直角三角形中有勾股定理可得外接球的半径,进而求出外接球的体积.本题考查三棱锥的棱长与外接球的半径之间的关系,及球的体积公式,属于中档题.12.【答案】D【解析】【分析】本题考查了利用导数研究的单调性、构造法、方程与不等式的解法,等价转化方法,考查了推理能力与计算能力,属于中档题.令g(x)=f(x)sinx,g′(x)=[f(x)+f′(x)tanx]⋅cosx,当x∈(0,π2)时,根据f(x)+f′(x)tanx>0,可得函数g(x)单调递增.又g(1)=0,判断g(x)在(0,π2)上的正负情况,根据f(x)是定义在(−π2,π2)上的奇函数,可得g(x)是定义在(−π2,π2)上的偶函数.进而得出不等式f(x)<0的解集.【解答】解:令g(x)=f(x)sinx,g′(x)=f(x)cosx+f′(x)sinx=[f(x)+f′(x)tanx]⋅cosx,当x∈(0,π2)时,f(x)+f′(x)tanx>0,∴g′(x)>0,即函数g(x)单调递增.又g(1)=0,∴x∈(0,1)时,g(x)=f(x)sinx<0,又sinx>0,所以f(x)<0.x∈(1,π2)时,g(x)=f(x)sinx>0,又sinx>0,所以f(x)>0.x=0时,f(0)=0,舍去.∵f(x)是定义在(−π2,π2)上的奇函数,∴g(x)是定义在(−π2,π2)上的偶函数.则g(x)在(−π2,0)上单调递减,且g(−1)=0,故x∈(−π2,−1)时,g(x)=f(x)sinx>0,又sinx<0,所以f(x)<0.x∈(−1,0)时,g(x)=f(x)sinx<0,又sinx<0,所以f(x)>0.∴不等式f(x)<0的解集为(−π2,−1)∪(0,1).故选:D.13.【答案】−13【解析】解:f′(x)=m(2xlnx+x),又曲线y=f(x)在点(e,f(e))处的切线与直线ex+y+2020=0平行,∴f′(e)=3em=−e,解得m=−13.故答案为:−13.求出f(x)的导数,然后根据切线与直线ex+y+2020=0平行,得f′(e)=−e,列出关于m的方程,解出m的值.本题考查导数的几何意义和切线方程的求法,同时考查学生运用方程思想解题的能力和运算能力.14.【答案】2046【解析】解:数列{a n}的前n项和为S n,a1=1,a n+1=2a n,∴S n=2n−12−1=2n−1.若数列{b n}满足b n⋅S n=1,∴b n=1Sn =12n−1.∴b n +1b n =2n . 则b 1+1b 1+b 2+1b 2+⋯+b 10+1b 10=2+22+⋯ (210)2(210−1)2−1=211−2=2046.故答案为:2046.数列{a n }的前n 项和为S n ,a 1=1,a n+1=2a n ,利用求和公式:S n .由数列{b n }满足b n ⋅S n =1,可得b n =1S n.进而得出b n +1b n,再利用等比数列的求和公式即可得出.本题考查了等比数列的求和公式,考查了推理能力与计算能力,属于中档题.15.【答案】√13+1【解析】解:由题,点P 满足|AP ⃗⃗⃗⃗⃗ |=1,说明P 点在以A(3,0)为圆心,1为半径的圆上, 设P(3+cosθ,sinθ),则OB ⃗⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ +OP ⃗⃗⃗⃗⃗ =(2+cosθ,3+sinθ),∴∣OB ⃗⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ +OP ⃗⃗⃗⃗⃗ ∣=√(2+cosθ)2+(3+sinθ)2=√14+2√13sin(θ+φ)(tanφ=23),根据三角函数的值域,可知|OB ⃗⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ +OP ⃗⃗⃗⃗⃗ |最大值为√13+1. 故答案为:√13+1.根据|AP ⃗⃗⃗⃗⃗ |=1,易知P 点在以A(3,0)为圆心,1为半径的圆上,设P(3+cosθ,sinθ),通过坐标表示出OB ⃗⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ +OP ⃗⃗⃗⃗⃗ ,再根据模长公式求解.本题主要考查平面向量的模长公式,以及辅助角公式的最值问题,考查学生转化的思想,属于中档题.16.【答案】4√23【解析】解:由抛物线的方程可得焦点F(0,1),准线方程y =−1, 因为直线l 过点F 且倾斜角为5π6,则直线l 的方程为:y =−√33x +1,直线与抛物线联立{y =−√33x +1x 2=4y,整理可得x 2+4√33x −4=0,解得x 1=√3,x 2=√3,可得y 1=13,y 2=3, 即√33),由题意可得√3−1),可得△AMF 的外接圆的圆心N 在线段AM 的中垂线y =1上,也在线段AF 的中垂线上,而AF 的中点(−√3,2),∴线段AF 的中垂线方程为y −2=√3(x +√3),即y =√3x +5, 联立{y =1y =√3x +5解得:√31),所以圆心坐标为√31),半径r =4√33,圆心到直线√2x −y −3=0的距离d =|−√2√3√3=4√23+4√33, 所以外接圆上的点到直线√2x −y −3=0的距离的最小距离为d −r =4√23, 故答案为:4√23. 由抛物线的方程可得焦点F 的坐标,由题意求出直线l 的方程,代入抛物线的方程求出A ,B 的坐标,由题意求出M 的坐标,求出线段AF 的中垂线,及AM 的中垂线,两条直线的交点为三角形AMF 的外接圆的圆心,及半径,求出圆心到直线√2x −y −3=0的距离d ,则可得圆上的点到直线√2x −y −3=0的最小距离为d −r .本题考查抛物线的性质及直线与抛物线的综合,及求三角形外接圆的圆心和半径,属于中档题.17.【答案】解:(1)在△ABC 中,sin(B +C)=sinA ,内角A ,B ,C 满足√3sin(B +C)=2sin 2A2.所以√3sinA =1−cosA ,则:sin(A +π6)=12,由于A ∈(0,π), 所以A +π6∈(π6,7π6),则:A =2π3.(2)由于A =2π3,AB =5,BC =7,由余弦定理得:72=AC 2+52−10AC ⋅cos 2π3,解得AC =3(−8舍去).则:S △ABC =12×AB ×AC ×sin2π3=15√34. 设BC 边上的高为ℎ,所以12×BC ×ℎ=15√34,解得ℎ=15√314.【解析】(1)直接利用三角函数关系式的恒等变换和三角函数的值的应用求出结果. (2)利用余弦定理和三角形的面积公式的应用求出结果.本题考查的知识要点:三角函数关系式的恒等变换,正弦定理、余弦定理和三角形面积公式的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.18.【答案】解:(1)证明:取A 1B 的中点F ,连结EF 、DF ,∵D 、F 分别是AB ,A 1B 的中点,∴DF−//12A 1A ,∵A 1A−//C 1C ,E 是C 1C 的中点,∴DF−//EC ,∴四边形CDEF 是平行四边形,∴CD−//EF ,∵CD ⊄平面A 1EB ,EF ⊂平面A 1EB , ∴CD//平面A 1EB .(2)解:∵△ABC 是正三角形,D 是AB 的中点,∴CD ⊥AB , ∵在正三棱柱ABC −A 1B 1C 1中,A 1A ⊥平面ABC , ∴A 1A ⊥CD ,由(1)知DF//A 1A ,∴CD 、BD 、DF 两两垂直,∴以D 为原点,DB 、DC 、DF 所在直线分别为x ,y ,z 轴,建立空间直角坐标系,则D(0,0,0),B(12,0,0),E(0,√32,1),A 1(−12,0,2),∴BE ⃗⃗⃗⃗⃗ =(−12,√32,1),DE ⃗⃗⃗⃗⃗⃗ =(0,√32,1),A 1E ⃗⃗⃗⃗⃗⃗⃗ =(12,√32,−1), 设平面A 1DE 的法向量n⃗ =(x,y,z), 则{n ⃗ ⋅A 1E ⃗⃗⃗⃗⃗⃗⃗ =12x +√32y −z =0n ⃗ ⋅DE ⃗⃗⃗⃗⃗⃗ =√32y +z =0,取z =√3,得n ⃗ =(4√3,−2,√3), 设平面A 1BE 的法向量m⃗⃗⃗ =(a,b,c), 则{m ⃗⃗⃗ ⋅A 1E ⃗⃗⃗⃗⃗⃗⃗ =12a +√32b −c =0m⃗⃗⃗ ⋅BE ⃗⃗⃗⃗⃗ =−12a +√32b +c =0,取c =1,得m⃗⃗⃗ =(2,0,1), 设二面角B −A 1E −D 的平面角为θ, 则cosθ=|m ⃗⃗⃗ ⋅n ⃗⃗ ||m ⃗⃗⃗ |⋅|n ⃗⃗ |=9√3355.∴二面角B −A 1E −D 的余弦值为9√3355.【解析】(1)取A 1B 的中点F ,连结EF 、DF ,推导出四边形CDEF 是平行四边形,从而CD−//EF ,由此能证明CD//平面A 1EB .(2)推导出CD 、BD 、DF 两两垂直,以D 为原点,DB 、DC 、DF 所在直线分别为x ,y ,z 轴,建立空间直角坐标系,利用向量法能求出二面角B −A 1E −D 的余弦值.本题考查线面平行的证明,考查二面角和余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力以及化归与转化思想,是中档题.19.【答案】解:(1)证明:由椭圆的方程可得:A(−2,0),B(2,0),设M(2,m),P(x 0,y 0),(m ≠0,x 0≠±2), 则x 024+y 022=1,得y 02=−x 02−42,又k AP =y 0x+2=k AM =m−02−(−2)=m4,k BP =y0x 0−2, 所以k AP ⋅k BP =y 02x 02−4=−12, 又m4⋅y 0x−2=−12,整理可得2x 0+my 0=4, 所以OP ⃗⃗⃗⃗⃗ ⋅OM⃗⃗⃗⃗⃗⃗⃗ =2x 0+my 0=4为定值. (2)假设存在定点Q(n,0)满足要求,设M(2,m),P(x 0,y 0),(m ≠0,x 0≠±2), 则以MP 为直径的圆恒通过MQ 与BP 的交点可得MQ⃗⃗⃗⃗⃗⃗⃗ ⋅BP ⃗⃗⃗⃗⃗ =0, 所以(n −2,−m)⋅(x 0−2,y 0)=nx 0−2n −2x 0+4−my 0=0,① 由(1)得2x 0+my 0=4,②,由①②可得n(x 0−2)=0,因为x 0≠2,解得n =0,所以存在x 轴上的定点Q(0,0),使得以MP 为直径的圆恒通过MQ 与BP 的交点.【解析】(1)由椭圆的方程可得A ,B 的坐标,设M ,P 的坐标,可得AP ,AM 的斜率相等,求出数量积OP ⃗⃗⃗⃗⃗ ⋅OM ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,由k AP ⋅k BP =y 02x 02−4=−12,可得M ,P 的坐标的关系,进而可得OP ⃗⃗⃗⃗⃗ ⋅OM⃗⃗⃗⃗⃗⃗⃗ 为定值. (2)假设存在Q 满足条件,因为以MP 为直径的圆恒通过MQ 与BP 的交点可得MQ ⃗⃗⃗⃗⃗⃗⃗ ⋅BP ⃗⃗⃗⃗⃗ =0,由(1)可得整理得n(x 0−2)=0,再由x 0≠2可得n =0,本题考查椭圆的性质,及以线段的端点为直径的圆的性质,属于中档题.20.【答案】解:(1)当m =0时,f(x)=e x −ex ,f′(x)=e x −e ,又f′(x)是增函数,且f′(1)=0,∴当x >1时,f′(x)>0,当x <1时,f′(x)<0,∴f(x)在(−∞,1)上单调递减,在(1,+∞)上单调递增,∴当x=1时,f(x)取得极小值f(1)=0,无极大值;(2)f′(x)=e x−2mx+m−e,令g(x)=f′(x)=e x−2mx+m−e,则g′(x)=e x−2m,①当m=0时,f(1)=0,由(1)知f(x)在区间(0,1)上没有零点;②当m<0时,则g′(x)>0,故g(x)=f′(x)在(0,1)上单调递增,又g(0)=f′(0)=1+m−e<0,g(1)=f′(1)=−m>0,∴存在x0∈(0,1),使得g(x0)=f′(x0)=0,且当x∈(0,x0)时,f′(x)<0,f(x)是减函数,当x∈(x0,1)时,f′(x)>0,f(x)是增函数,又∵f(0)=1,f(1)=0,∴f(x)在(0,1)上存在零点;③当m>0,x∈(0,1)时,令ℎ(x)=e x−ex,则ℎ′(x)=e x−e,∵在x∈(0,1)上,ℎ′(x)<0,ℎ(x)是减函数,∴ℎ(x)>ℎ(1)=0,即e x>ex,∴f(x)=e x+(m−e)x−mx2>ex+(m−e)x−mx2=m(x−x2)>0,∴f(x)在(0,1)上没有零点;综上,要使f(x)在(0,1)上内存在零点,则m的取值范围为(−∞,0).【解析】(1)将m=0带入,求导得f′(x)=e x−e,再求出函数f(x)的单调性,进而求得极值;(2)求导得f′(x)=e x−2mx+m−e,令g(x)=f′(x),对函数g(x)求导后,分m=0,m<0及m>0讨论,m=0时容易得出结论,m<0时运用零点存在性定理可得出结论,m>0时运用放缩思想,先证明e x>ex,进而可得f(x)>0在(0,1)上恒成立,由此得出结论,以上情况综合,即可求得实数m的取值范围.本题主要考查利用导数研究函数的极值及函数的零点,考查分类讨论思想及运算求解能力,属于中档题.21.【答案】解:(1)由已知,ξ的所有可能取值为0,1,2,3,P(ξ=0)=(1−0.6)⋅(1−a)2=0.4(1−a)2,P(ξ=1)=0.6(1−a)2+(1−0.6)⋅C21a(1−a)=0.2(1−a)(3+a),P(ξ=2)=0.6⋅C21a(1−a)+(1−0.6)a2=0.4a(3−2a),P(ξ=3)=0.6a2.∵0<a<0.4,∴P(ξ=1)−P(ξ=0)=0.2(1−a)(1+3a)>0,P(ξ=1)−P(ξ=2)=0.2(3a2−8a+3)>0,P(ξ=1)−P(ξ=3)=−0.2(4a2+2a−3)>0,∴概率P(ξ=1)的值最大.(2)由(1)可知,当0<a<0.4时,有t1=P(ξ=1)的值最大,且t2−t3=P(ξ=2)−P(ξ=3)=0.2a(6−7a)>0,∴t1>t2>t3,∴应当以A1,A2,A3的顺序派出勘探小组,可使在特殊勘探时所需派出的小组个数的均值达到最小,即优先派出完成任务概率大的小组可减少所需派出的小组个数的均值.证明如下:假定p1,p2,p3为t1,t2,t3(t1>t2>t3)的任意一个排列,即若三个小组A i(i=1,2,3)按照某顺序派出,该顺序下三个小组能完成特殊任务的概率依次为p1,p2,p3,记在特殊勘探时所需派出的小组个数为η,则η=1,2,3,且η的分布列为∴数学期望E(η)=p1+2(1−p1)p2+3(1−p1)(1−p2)=3−2p1−p2+p1p2下面证明E(η)=3−2p1−p2+p1p2≥3−2t1−t2+t1t2成立,∵(3−2p1−p2+p1p2)−(3−2t1−t2+t1t2)=2(t1−p1)+(t2−p2)+p1p2−p1t2+p1t2−t1t2=2(t1−p1)+(t2−p2)+p1(p2−t2)+t2(p1−t1)=(2−t2)(t1−p1)+(1−p1)(t2−p2)≥(1−p1)(t1−p1)+(1−p1)(t2−p2)=(1−p1)[(t1+t2)−(p1+p2)]≥0,∴按照完成任务概率从大到小的A1,A2,A3的先后顺序派出勘探小组,可使在特殊勘探时所需派出的小组个数的均值达到最小.【解析】(1)每个勘探小组共有3名人员,故ξ的所有可能取值为0,1,2,3,再依据相互独立事件的概率求出每个ξ的取值所对应的概率,并用作差法逐一比较P(ξ=1)与P(ξ=0)、P(ξ=2)、P(ξ=3)的大小关系即可得证;(2)先根据(1)中的结论比较P(ξ=2)和P(ξ=3)的大小,可得到t1>t2>t3,故而可猜想出结论,再进行证明.证明时,设三个小组A i (i =1,2,3)按照某顺序派出,该顺序下三个小组能完成特殊任务的概率依次为p 1,p 2,p 3,记在特殊勘探时所需派出的小组个数为η,则η=1,2,3,然后求出η的分布列和数学期望,只需证明数学期望E(η)=3−2p 1−p 2+p 1p 2≥3−2t 1−t 2+t 1t 2成立即可,这一过程采用的是作差法,其中用到了因式分解的相关技巧.本题考查相互独立事件的概率、离散型随机变量的分布列和数学期望,以及期望的实际应用等,考查学生对数据的分析能力和运算能力,属于难题.22.【答案】解:(1)曲线C 1的极坐标方程为ρcosθ−2ρsinθ=1.若P 为曲线C 1上的动点,Q 是射线OP 上的一动点,且满足|OP|⋅|OQ|=2,记动点Q 的轨迹为C 2.设P(ρ1,θ),Q(ρ,θ),则:ρ1cosθ−2ρ1sinθ=1,即ρ1=1cosθ−2sinθ, 由于|OP|⋅|OQ|=2,所以ρ=2cosθ−4sinθ,整理得ρ2=2ρcosθ−4ρsinθ,转换为直角坐标方程为:(x −1)2+(y +2)2=5(原点除外).(2)曲线C 1的极坐标方程为ρcosθ−2ρsinθ=1转换为直角坐标方程为:x −2y −1=0. 曲线C 2的圆心为(1,−2),半径为√5, 所以圆心到直线C 1的距离d =√1+(−2)2=√5.所以|MN|=2√(√5)2−(√5)2=√5.由于点O 到C 1的距离d 2=√12+(−2)2=√5 所以S △OMN =12×|MN|×d 2=12√5√5=35.【解析】(1)直接利用转换关系,把参数方程极坐标方程和直角坐标方程之间进行转换. (2)利用点到直线的距离公式的应用和三角形的面积公式的应用求出结果.本题考查的知识要点:参数方程、极坐标方程和直角坐标方程之间的转换,点到直线的,三角形面积公式的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.23.【答案】解:(1)当k =1时,不等式f(x)≤1即为|x −1|+12|x +3|≤3,等价为{x ≥1x −1+12x +32≤3或{−3<x <11−x +12x +32≤3或{x ≤−31−x −12x −32≤3,解得1≤x ≤53或−1≤x <1或x ∈⌀, 则原不等式的解集为[−1,53];(2)f(x)≥x 对于任意的实数x 恒成立,即为|x −k|+12|x +3|≥x +2恒成立. 当x ≤−2时,|x −k|+12|x +3|≥0≥x +2恒成立; 当x >−2时,|x −k|+12|x +3|≥x +2恒成立等价为|x −k|+x+32≥x +2,即|x −k|≥x+12恒成立,当−2<x ≤−1时,|x −k|≥x+12恒成立;当x >−1时,|x −k|≥x+12恒成立等价为x −k ≥x+12或x −k ≤−x+12恒成立.即x ≥2k +1或x ≤23(k −12)恒成立, 则2k +1≤−1解得k ≤−1, 所以k 的取值范围是(−∞,−1].【解析】(1)由题意可得|x −1|+12|x +3|≤3,由零点分区间法和绝对值的定义,去绝对值,解不等式,求并集,可得所求解集;(2)由题意可得|x −k|+12|x +3|≥x +2恒成立.讨论x ≤−2恒成立,x >−2时,可得|x −k|≥x+12恒成立,讨论−2<x ≤−1,x >−1时,结合绝对值不等式的解法和恒成立思想,可得所求范围.本题考查绝对值不等式的解法,注意运用分类讨论思想,考查不等式恒成立问题解法,注意运用转化思想和分类讨论思想,考查化简运算能力和推理能力,属于中档题.。
广东省2020届高三六校第一次联考数学(理)试题Word版含解析

广东省2020届高三六校第一次联考数学(理)试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合,,则()A. B. C. D.2.若复数满足,则的共轭复数的虚部为()A. B. C. D.3.记为等差数列的前项和,若,,则()A. B. C. D.4.在区间上随机取两个实数,记向量,,则的概率为()A. B. C. D.5.已知直线的倾斜角为,直线与双曲线的左、右两支分别交于、两点,且、都垂直于轴(其中、分别为双曲线的左、右焦点),则该双曲线的离心率为()A. B. C. D.6.在△中,为的中点,点满足,则()A. B.C. D.7.某几何体的三视图如图所示,数量单位为,它的体积是()A. B. C. D.8.已知是函数的最大值,若存在实数使得对任意实数总有成立,则的最小值为()A. B. C. D.9.定义在上的函数满足及,且在上有,则()A. B. C. D.10.抛物线上有一动弦,中点为,且弦的长度为,则点的纵坐标的最小值为()A. B. C. D.11.已知三棱锥中,,,,,且二面角的大小为,则三棱锥外接球的表面积为()A. B. C. D.12.已知数列满足.设,为数列的前项和.若(常数),,则的最小值是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。
13.若满足约束条件则的最大值为______________.14.若,则的展开式中常数项为______________.15.已知点及圆,一光线从点出发,经轴上一点反射后与圆相切于点,则的值为______________.16.已知函数满足,则的单调递减区间是______________.三、解答题:共70分。
解答应写出文字说明、证明过程或演算步骤。
第17~21题为必考题,每个试题考生都必须作答。
第22、23题为选考题,考生根据要求作答。
17.在△中,角,,的对边分别为,,,且.(1)求角;(2)若,,求△的面积.18.如图甲,设正方形的边长为3,点、分别在、上,且满足,.如图乙,将直角梯形沿折到的位置,使得点在平面上的射影恰好在上.(1)证明:平面;(2)求平面与平面所成二面角的余弦值.19.某市大力推广纯电动汽车,对购买用户依照车辆出厂续驶里程的行业标准,予以地方财政补贴.其补贴标准如下表:2017年底随机调査该市1000辆纯电动汽车,统计其出厂续驶里程,得到频率分布直方图如上图所示.用样本估计总体,频率估计概率,解决如下问题:(1)求该市每辆纯电动汽车2017年地方财政补贴的均值;(2)某企业统计2017年其充电站100天中各天充电车辆数,得如下的频数分布表:(同一组数据用该区间的中点值作代表)2018年2月,国家出台政策,将纯电动汽车财政补贴逐步转移到充电基础设施建设上来.该企业拟将转移补贴资金用于添置新型充电设备.现有直流、交流两种充电桩可供购置.直流充电桩5万元/台,每台每天最多可以充电30辆车,每天维护费用500元/台;交流充电桩1万元/台,每台每天最多可以充电4辆车,每天维护费用80元/台.该企业现有两种购置方案:方案一:购买100台直流充电桩和900台交流充电桩;方案二:购买200台直流充电桩和400台交流充电桩.假设车辆充电时优先使用新设备,且充电一辆车产生25元的收入,用2017年的统计数据,分别估计该企业在两种方案下新设备产生的日利润.(日利润日收入日维护费用).20.已知圆与定点,动圆过点且与圆相切.(1)求动圆圆心的轨迹的方程;(2)若过定点的直线交轨迹于不同的两点、,求弦长的最大值.21.已知函数.(1)求函数在上的值域;(2)若,恒成立,求实数的取值范围.22.在平面直角坐标系中,将曲线向左平移2个单位,再将得到的曲线上的每一个点的横坐标保持不变,纵坐标缩短为原来的,得到曲线,以坐标原点为极点,轴的正半轴为极轴,建立极坐标系,的极坐标方程为.(1)求曲线的参数方程;(2)已知点在第一象限,四边形是曲线的内接矩形,求内接矩形周长的最大值,并求周长最大时点的坐标.23.已知,.(1)当时,求不等式的解集;(2)若,且当时,恒成立,求的取值范围.广东省2020届高三六校第一次联考数学(理)试题参考答案一、选择题:本题共12小题,每小题5分,共60分。
2020年广东省六校联盟高考数学第四次联考试卷(理科)(含解析)

2020年广东省六校联盟高考数学第四次联考试卷(理科)一、选择题(本大题共12小题,共60.0分)1.若复数z满足z(1+i)=|1+√3i|,则z的共轭复数在复平面内对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限2.已知全集U=R,集合A={x|x(x−3)≥0},B={x|y=√2−x},则(∁U A)∩B等于()A. (0,2)B. (0,3)C. ⌀D. (0,2]3.某工厂对一批产品进行了抽样检测,如图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106],则这组数据中众数的估计值是()A. 100B. 101C. 102D. 1034.我国古代有着辉煌的数学研究成果,其中文献《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、《缉古算经》等5部专著便是代表.这5部专著中有3部产生于汉、魏晋、南北朝时期.某中学拟从这5部专著中选择2部作为“数学文化”校本课程学习内容,则所选2部专著中至少有一部是汉、魏晋、南北朝时期专著的概率为()A. 35B. 710C. 45D. 9105.已知sin(π6−α)=√33,则cos(2α+2018π3)=()A. 23B. 13C. −23D. −136.函数f(x)=e xx的图象大致为()A. B.C. D.7.中国古代数学著作《算法统宗》中有这样一个“九儿问甲歌”问题:一个公公九个儿,若问生年总不知,自长排来差三岁,共年二百又零七,借问长儿多少岁,各儿岁数要详推.在这个问题中,记这位公公的第n个儿子的年龄为a n,则a3+a4+a6+a6+a7−a1−a9=_____A. 46B. 69C. 92D. 1388.某车间分批生产某种产品,每批的生产准备费用为800元若每批生产x件,则平均仓储时间为x8天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品()A. 60件B. 80件C. 100件D. 120件9.设F为双曲线C:x2a2−y2b2=1(a>0,b>0)的左焦点,过坐标原点的直线依次与双曲线C的左、右支交于点P,Q,若|FQ|=√3|PF|,∠FPQ=60°,则该双曲线的离心率为()A. √3B. 1+√3C. 2+√3D. 3+2√310.如图,在四边形ABCD中,AB=BC=2,∠ABC=90∘,DA=DC=√6现沿对角线AC折起,使得平面DAC⊥平面ABC,此时点A,B,C,D在同一个球面上,则该球的体积是()A. 92π B. 8√23π C. 272π D. 12π11. 已知将函数f(x)=tan(ωx +π3)(2<ω<10)的图象向左平移π4个单位之后与f(x)的图象重合,则ω=( )A. 4B. 6C. 7D. 912. 已知函数f(x)=e 4x−1,g(x)=12+ln(2x),若f(m)=g(n)成立,则n −m 的最小值为( )A.1−ln24B.1+2ln23C.2ln2−13D.1+ln24二、填空题(本大题共4小题,共20.0分)13. 如图,在△ABC 中,∠BAC =90°,AB =6,D 在斜边BC 上,且CD =2DB ,则AB ⃗⃗⃗⃗⃗ ⋅AD⃗⃗⃗⃗⃗⃗ 的值为______ . 14. 二项式(x 3−1x )8的展开式中常数项为______ .15. 数列{a n }的各项排成如图所示的三角形形状,其中每一行比上一行增加两项,若a n =a n (a ≠0),则位于第10行的第1列的项等于______,a 2018在图中位于______.(填第几行的第几列)16. 如图,在长方体ABCD −A 1B 1C 1D 1中,AB =AD =3cm ,四棱锥A −BB 1D 1D 的体积为6cm 3,则AA 1= .三、解答题(本大题共7小题,共82.0分)17. 如图,在△ABC 中,已知点D 在边AB 上,AD =3DB ,cosA =45,cos∠ACB =513,BC =13.(1)求cos B 的值; (2)求CD 的长.18.在如图所示的几何体中,四边形ABCD是等腰梯形,AB//BD,∠DAB=60°,AE⊥BD,CB=CD=AE=DE=1;(Ⅰ)求证:BD⊥平面AED;(2)求直线AB与平面BDE所成角的正弦值.19.已知动圆M过点P(2,0)且与直线x+2=0相切.(Ⅰ)求动圆圆心M的轨迹C的方程;(Ⅱ)斜率为k(k≠0)的直线l经过点P(2,0)且与曲线C交于A,B两点,线段AB的中垂线交x 的值.轴于点N,求|AB||NP|20.求函数f(x)=x3−12x的极值.21.从某地区一次中学生知识竞赛中,随机抽取了30名学生的成绩,绘成如图所示的2×2列联表:(1)试问有没有90%的把握认为优秀一般与性别有关;(2)用样本估计总体,把频率作为概率,若从该地区所有的中学(人数很多)中随机抽取3人,用ξ,表示所选3人中优秀的人数,试写出ξ的分布列,并求出ξ的数学期望.K2=n(ad−bc)2(a+b)(a+d)(a+c)(b+d)其中n=a+b+c+d.独立性检验临界表:22.在直角坐标系xOy中,直线l的参数方程为{x=2+tcosαy=tsinα(t参数,α为常数),以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρsin2θ2=1.(1)求曲线C的直角坐标方程;(2)设直线l与曲线C的交点为P,Q两点,曲线C和x轴交点为A,若△APQ面积为6√6,求tanα的值.23.已知函数f(x)=|x+2a|+|x−a|.(1)当a=1时,求不等式f(x)≥4−|x+2|的解集;(2)设a>0,b>0,f(x)的最小值为t,若t+3b=3,求1a +2b的最小值。
2020年广东省高考数学一模试卷答案解析

2020年广东省高考数学一模试卷答案解析一、选择题(共12题,共60分)1.已知集合A={0,1,2,3},B={x|x2﹣2x﹣3<0},则A∪B=()A.(﹣1,3)B.(﹣1,3]C.(0,3)D.(0,3]【解答】解:集合A={0,1,2,3},B={x|x2﹣2x﹣3<0}=(﹣1,3),则A∪B=(﹣1,3],故选:B.2.设z=,则z的虚部为()A.﹣1B.1C.﹣2D.2【解答】解:∵z==,∴z的虚部为1.故选:B.3.某工厂生产的30个零件编号为01,02,…,19,30,现利用如下随机数表从中抽取5个进行检测.若从表中第1行第5列的数字开始,从左往右依次读取数字,则抽取的第5个零件编号为()34 57 07 86 36 04 68 96 08 23 23 45 78 89 07 84 42 12 53 31 25 30 07 32 8632 21 18 34 29 78 64 54 07 32 52 42 06 44 38 12 23 43 56 77 35 78 90 56 42A.25B.23C.12D.07【解答】解:根据随机数的定义,1行的第5列数字开始由左向右依次选取两个数字,依次为07,04,08,23,12,则抽取的第5个零件编号为,12,故选:C.4.记S n为等差数列{a n}的前n项和,若a2=3,a5=9,则S6为()A.36B.32C.28D.24【解答】解:S6==3×(3+9)=36.故选:A.5.若双曲线(a>0,b>0)的一条渐近线经过点(1,﹣2),则该双曲线的离心率为()A.B.C.D.2【解答】解:∵双曲线(a>0,b>0)的一条渐近线经过点(1,﹣2),∴点(1,﹣2)在直线上,∴.则该双曲线的离心率为e=.故选:C.6.已知tanα=﹣3,则=()A.B.C.D.【解答】解:因为tanα=﹣3,则=cos2α====.故选:D.7.的展开式中x3的系数为()A.168B.84C.42D.21【解答】解:由于的展开式的通项公式为T r+1=•(﹣2)r x7﹣2r,则令7﹣2r=3,求得r=2,可得展开式中x3的系数为•4=84,故选:B.8.函数f(x)=ln|e2x﹣1|﹣x的图象大致为()A.B.C.D.【解答】解:,故排除CD;f(﹣1)=ln|e﹣2﹣1|+1=ln(1﹣e﹣2)+lne=,故排除B.故选:A.9.如图,网格纸上小正方形的边长为1,粗线画出的是某四面体的三视图,则该四面体的外接球表面积为()A.B.32πC.36πD.48π【解答】解:根据几何体的三视图转换为几何体为三棱锥体A﹣BCD:如图所示:设外接球的半径为r,则:(2r)2=42+42+42,解得r2=12,所以:S=4π×12=48π.故选:D.10.已知动点M在以F1,F2为焦点的椭圆上,动点N在以M为圆心,半径长为|MF1|的圆上,则|NF2|的最大值为()A.2B.4C.8D.16【解答】解:由椭圆的方程可得焦点在y轴上,a2=4,即a=2,由题意可得|NF2|≤|F2M|+|MN|=|F2M|+|MF1|,当N,M,F2三点共线时取得最大值而|F2M|+|MF1|=2a=4,所以|NF2|的最大值为4,故选:B.11.著名数学家欧拉提出了如下定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半.此直线被称为三角形的欧拉线,该定理则被称为欧拉线定理.设点O,H分别是△ABC的外心、垂心,且M为BC中点,则()A.B.C.D.【解答】解:如图所示的Rt△ABC,其中角B为直角,则垂心H与B重合,∵O为△ABC的外心,∴OA=OC,即O为斜边AC的中点,又∵M为BC中点,∴,∵M为BC中点,∴===.故选:D.12.已知定义在[0,]上的函数f(x)=sin(ωx﹣)(ω>0)的最大值为,则正实数ω的取值个数最多为()A.4B.3C.2D.1【解答】解:∵定义在[0,]上的函数f(x)=sin(ωx﹣)(ω>0)的最大值为,∴0<≤1,解得0<ω≤3,∴≤ωx﹣≤.①0<ω≤时,则sin(ω﹣)=,令g(ω)=sin(ω﹣)﹣,y=sin(ω﹣)在(0,]上单调递增,∵g(0)=﹣<0,g()=1﹣=>0,因此存在唯一实数ω,使得sin(ω﹣)=.②<ω≤3,sin(ωx﹣)=1,必须ω=3,x=.综上可得:正实数ω的取值个数最多为2个.故选:C.二、填空题(共4题,共20分)13.若x,y满足约束条件,则z=x﹣2y的最小值为﹣3.【解答】解:画出x,y满足约束条件,表示的平面区域,如图所示;结合图象知目标函数z=x﹣2y过A时,z取得最小值,由,解得A(1,2),所以z的最小值为z=1﹣2×2=﹣3.故答案为:﹣3.14.设数列{a n}的前n项和为S n,若S n=2a n﹣n,则a6=63.【解答】解:数列{a n}的前n项和为S n,由于S n=2a n﹣n,①所以当n≥2时,S n﹣1=2a n﹣1﹣(n﹣1)②,①﹣②得:a n=2a n﹣1+1,整理得(a n+1)=2(a n﹣1+1),所以(常数),所以数列{a n+1}是以2为首项,2为公比的等比数列.所以,整理得.所以.故答案为:6315.很多网站利用验证码来防止恶意登录,以提升网络安全.某马拉松赛事报名网站的登录验证码由0,1,2,…,9中的四个数字随机组成,将从左往右数字依次增大的验证码称为“递增型验证码”(如0123),已知某人收到了一个“递增型验证码”,则该验证码的首位数字是1的概率为.【解答】解:基本事件的总数为,其中该验证码的首位数字是1的包括的事件个数为.∴该验证码的首位数字是1的概率==.故答案为:.16.已知点M(m,m﹣)和点N(n,n﹣)(m≠n),若线段MN上的任意一点P都满足:经过点P的所有直线中恰好有两条直线与曲线C:y=+x(﹣1≤x≤3)相切,则|m﹣n|的最大值为.【解答】解:由点M(m,m﹣)和点N(n,n﹣),可得M,N在直线y=x﹣上,联立曲线C:y=+x(﹣1≤x≤3),可得x2=﹣,无实数解,由y=+x的导数为y′=x+1,可得曲线C在x=﹣1处的切线的斜率为0,可得切线的方程为y=﹣,即有与直线y=x﹣的交点E(0,﹣),同样可得曲线C在x=3处切线的斜率为4,切线的方程为y=4x﹣,联立直线y=x﹣,可得交点F(,),此时可设M(0,﹣),N(,),则由图象可得|m﹣n|的最大值为﹣0=,故答案为:.三、解答题(共70分)17.已知△ABC的内角A,B,C的对边分别为a,b,c,△ABC的面积为S,a2+b2﹣c2=2S.(1)求cos C;(2)若a cos B+b sin A=c,,求b.【解答】解:(1)∵a2+b2﹣c2=2S,所以2ab cos C=ab sin C,即sin C=2cos C>0,sin2C+cos2C=1,cos C>0,解可得,cos C=,(2)∵a cos B+b sin A=c,由正弦定理可得,sin A cos B+sin B sin A=sin C=sin(A+B),故sin A cos B+sin B sin A=sin A cos B+sin B cos A,所以sin A=cos A,∵A∈(0,π),所以A=,所以sin B=sin(A+C)=sin()==,由正弦定理可得,b===3.18.如图,在直四棱柱ABCD﹣A1B1C1D1中,底面ABCD是平行四边形,点M,N分别在棱C1C,A1A上,且C1M=2MC,A1N=2NA.(1)求证:NC1∥平面BMD;(2)若A1A=3,AB=2AD=2,∠DAB=,求二面角N﹣BD﹣M的正弦值.【解答】解:(1)连接BD,AC交于E,取C1M的中点F,连接AF,ME,由C1M=2MC,A1N=2NA,故C1F=AN,以且C1F∥AN,故平行四边形C1F AN,所以C1N∥F A,根据中位线定理,ME∥AF,由ME⊂平面MDB,F A⊄平面MDB,所以F A∥平面MDB,NC1∥F A,故NC1∥平面BMD;(2)AB=2AD=2,∠DAB=,由DB2=1+4﹣2×1×2×cos=3,由AB2=AD2+DB2,得AD⊥BD,以D为原点,以DA,DB,DD₁分别为x,y,z轴建立空间直角坐标系,D(0,0,0),B(0,,0),M(﹣1,,1),N(1,0,1),=(0,,0),=(﹣1,,1),=(1,0,1),设平面MBD的一个法向量为=(x,y,z),由,令x=1,得=(1,0,1),设平面NBD的一个法向量为=(a,b,c),由,得,由cos<>=,所以二面角N﹣BD﹣M为,正弦值为1.19.已知以F为焦点的抛物线C:y2=2px(p>0)过点P(1,﹣2),直线l与C交于A,B两点,M为AB中点,且.(1)当λ=3时,求点M的坐标;(2)当=12时,求直线l的方程.【解答】解:(1)将P(1,﹣2)代入抛物线C:y2=2px方程,得p=2,所以C的方程为y2=4x,焦点F(1,0),设M(x0,y0),当λ=3时,,可得M(2,2).(2)方法一:设A(x1,y1),B(x2,y2),M(x0,y0),由.可得(x0+1,y0﹣2)=(λ,0),所以y0=2,所以直线l的斜率存在且斜率,设直线l的方程为y=x+b,联立,消去y,整理得x2+(2b﹣4)x+b2=0,△=(2b﹣4)2﹣4b2=16﹣16b>0,可得b<1,则x1+x2=4﹣2b,,,所以,解得b=﹣6,b=2(舍),所以直线l的方程为y=x﹣6.方法二:设直线l的方程为x=my+n,设A(x1,y1),B(x2,y2),M(x0,y0),联立方程组,消去x,整理得y2﹣4my﹣4n=0,△=16m2+16n>0,则y1+y2=4m,y1y2=﹣4n,则,则M(2m2+n,2m),由.得(2m2+n+1,2m﹣2)=(λ,0),所以m=1,所以直线l的方程为x=y+n,由△=16+16n>0,可得n>﹣1,由y1y2=﹣4n,得,所以,解得n=6或n=﹣2,(舍去)所以直线l的方程为y=x﹣6.20.在传染病学中,通常把从致病刺激物侵入机体或者对机体发生作用起,到机体出现反应或开始呈现该疾病对应的相关症状时止的这一阶段称为潜伏期.一研究团队统计了某地区1000名患者的相关信息,得到如下表格:潜伏期(单位:天)[0,2](2,4](4,6](6,8](8,10](10,12](12,14]人数85205310250130155(1)求这1000名患者的潜伏期的样本平均数(同一组中的数据用该组区间的中点值作代表);(2)该传染病的潜伏期受诸多因素的影响,为研究潜伏期与患者年龄的关系,以潜伏期是否超过6天为标准进行分层抽样,从上述1000名患者中抽取200人,得到如下列联表.请将列联表补充完整,并根据列联表判断是否有95%的把握认为潜伏期与患者年龄有关;潜伏期≤6天潜伏期>6天总计50岁以上(含50岁)10050岁以下55总计200(3)以这1000名患者的潜伏期超过6天的频率,代替该地区1名患者潜伏期超过6天发生的概率,每名患者的潜伏期是否超过6天相互独立.为了深入研究,该研究团队随机调查了20名患者,其中潜伏期超过6天的人数最有可能(即概率最大)是多少?附:P(K2≥k0)0.050.0250.010k0 3.841 5.024 6.635,其中n=a+b+c+d.【解答】解:(1)根据统计数据,计算平均数为=×(1×85+3×205+5×310+7×250+9×130+11×15+13×5)=5.4(天);(2)根据题意,补充完整列联表如下;潜伏期<6天潜伏期≥6天总计50岁以上(含50岁)653510050岁以下5545100总计12080200根据列联表计算K2==≈2.083<3.841,所以没有95%的把握认为潜伏期与年龄有关;(3)根据题意得,该地区每1名患者潜伏期超过6天发生的概率为=,设调查的20名患者中潜伏期超过6天的人数为X,则X~B(20,),P(X=k)=••,k=0,1,2, (20)由,得,化简得,解得≤k≤;又k∈N,所以k=8,即这20名患者中潜伏期超过6天的人数最有可能是8人.21.已知函数f(x)=e x﹣aln(x﹣1).(其中常数e=2.71828…,是自然对数的底数)(1)若a∈R,求函数f(x)的极值点个数;(2)若函数f(x)在区间(1,1+e﹣a)上不单调,证明:+>a.【解答】解:(1)易知,①若a≤0,则f′(x)>0,函数f(x)在(1,+∞)上单调递增,∴函数f(x)无极值点,即此时极值点个数为0;②若a>0,易知函数y=e x的图象与的图象有唯一交点M(x0,y0),∴,∴当x∈(1,x0)时,f′(x)<0,函数f(x)在(1,x0)上单调递减,当x∈(x0,+∞)时,f′(x)>0,函数f(x)在(x0,+∞)上单调递增,∴函数f(x)有较小值点x0,即此时函数f(x)的极值点个数为1;综上所述,当a≤0时,函数f(x)的极值点个数为0;当a>0时,函数f(x)的极值点个数为1;(2)证明:∵函数f(x)在区间(1,1+e﹣a)上不单调,∴存在为函数f(x)的极值点,由(1)可知,a>0,且,即,两边取自然对数得1﹣a+e﹣a>lna,即1+e﹣a﹣lna>a,要证+>a,不妨考虑证,又易知e x≥1+x,∴,即,又,∴,∴,即,∴,∴+>a.22.在直角坐标系xOy中,直线C1的参数方程为(t为参数,α为倾斜角),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=4sinθ.(1)求C2的直角坐标方程;(2)直线C1与C2相交于E,F两个不同的点,点P的极坐标为,若2|EF|=|PE|+|PF|,求直线C1的普通方程.【解答】解:(1)曲线C2的极坐标方程为ρ=4sinθ.即ρ2=4ρsinθ,可得普通方程:x2+y2=4y.(2)点P的极坐标为,可得直角坐标为(﹣2,0).把直线C1的参数方程为(t为参数,α为倾斜角),代入C2方程可得:t2﹣(4cosα+4sinα)t+12=0,△=﹣48>0,可得:sin(α+)>,或sin(α+)<﹣,由α为锐角.可得:sin(α+)>,解得:0<α<.则t1+t2=4cosα+4sinα,t1t2=12.∴|EF|==4,|PE|+|PF|=|t1|+|t2|=|t1+t2|=8|sin(α+)|,∴8=8|sin(α+)|,∴化为:sin(α+)=1,∴α=+2kπ,k∈Z.α满足0<α<.可得α=.∴直线C1的参数方程为:,可得普通方程:x﹣y+2=0.23.已知a,b,c为正数,且满足a+b+c=1.证明:(1)≥9;(2)ac+bc+ab﹣abc≤.【解答】证明:(1)=,当且仅当时,等号成立;(2)∵a,b,c为正数,且满足a+b+c=1,∴c=1﹣a﹣b,1﹣a>0,1﹣b>0,1﹣c>0,∴ac+bc+ab﹣abc=(a+b﹣ab)c+ab=(a+b﹣ab)(1﹣a﹣b)+ab=(b﹣1)(a﹣1)(a+b)=(1﹣a)(1﹣b)(1﹣c),∴ac+bc+ab﹣abc≤,当且仅当时,等号成立.。
2020年广东省广州市高考数学一模试卷(理科) (含答案解析)

2020年广东省广州市高考数学一模试卷(理科)一、选择题(本大题共12小题,共60.0分)1.设集合M={x|x<2},集合N={x|0<x<1},则M∩N=()A. {x|1<x<2}B. {x|0<x<1}C. {x|x<2}D. R2.设复数z=1−i,则z3=()A. −2+2iB. 2+2iC. −2−2iD. 2−2i3.若直线y=x+b与圆x2+y2−4x+2y+3=0有公共点,则实数b的取值范围是()A. [−2,2]B. [−3,1]C. [−4,0]D. [−5,−1]4.条件p:|x−m|≤2,条件q:−1≤x≤n,若p是q的充要条件,则m+n=()A. 2B. 3C. 4D. 55.当0≤x≤π2时,函数f(x)=sinx+√3cosx的()A. 最大值是√3,最小值是12B. 最大值是√3,最小值是1C. 最大值是2,最小值是1D. 最大值是2,最小值是126.如图,在直三棱柱ABC−A1B1C1中,若四边形AA1C1C是边长为4的正方形,且AB=3,BC=5,,M是AA1的中点,则三棱锥A1−MBC1的体积为()A. 5B. 4C. 3D. 27.同文中学在高一年级进行“三城同创”演讲比赛,如果高一(8)班从3男1女4位同学中选派2位同学参加此次演讲比赛,那么选派的都是男生的概率是().A. 34B. 14C. 23D. 128.直线l:y=k(x−1)与抛物线C:y2=4x交于A、B两点,若线段AB的中点横坐标为3,则|AB|的值为()A. 8B. 8√3C. 6√3D. 69.若等差数列{a n}的前n项和为S n,a4=1,a8+a9=9,则S9=()A. 15B. 16C. 17D. 1810.曲线y=3x−lnx在点(1,3)处的切线方程为()A. y=−2x−1B. y=−2x+5C. y=2x+1D. y=2x−111.已知O为坐标原点,F1,F2是双曲线x2a2−y2b2=1(a>0,b>0)的左、右焦点,P是双曲线右支上一点,PM为∠F1PF2的角平分线,过F1作PM的垂线交PM于点M,则|OM|的长度为()A. aB. bC. a2D. b212.函数f(x)=x2−x−2的零点是()A. –2,–1B. 2,–1C. 1,2D. 1,–2二、填空题(本大题共4小题,共20.0分)13.如图,是一个几何体的三视图,其中正视图与侧视图完全相同,均为等边三角形与矩形的组合,俯视图为圆,若已知该几何体的表面积为16π,则x=______ .14.已知(2+x2)(ax+1a)6展开式中含x4项的系数为45,则正实数a的值为______.15.设单位向量e1⃗⃗⃗ ,e2⃗⃗⃗ 的夹角是2π3,若(e1⃗⃗⃗ −2e2⃗⃗⃗ )⊥(k e1⃗⃗⃗ +e2⃗⃗⃗ ),则实数k的值是______ .16.已知数列{a n}的前n项和S n=n3,则a6+a7+a8=______ .三、解答题(本大题共7小题,共82.0分)17.已知△ABC的内角A,B,C的对边分别为a,b,c,且满足sin(2A+B)sinA=2+2cos(A+B).(1)证明:b=2a;(2)若c=√7a,求∠C大小.18.“一本书,一碗面,一条河,一座桥”曾是兰州的城市名片,而现在“兰州马拉松”又成为了兰州的另一张名片,随着全民运动健康意识的提高,马拉松运动不仅在兰州,而且在全国各大城市逐渐兴起,参与马拉松训练与比赛的人口逐年增加.为此,某市对人们参加马拉松运动的情况进行了统计调查.其中一项调查是调查人员从参与马拉松运动的人中随机抽取200人,对其每周参与马拉松长跑训练的天数进行统计,得到以下统计表:若某人平均每周进行长跑训练天数不少于5天,则称其为“热烈参与者”,否则称为“非热烈参与者”.(1)经调查,该市约有2万人参与马拉松运动,试估计其中“热烈参与者”的人数;(2)某调查人员在调查这200人时,有3张周末的马拉松训练活动体验卡要向他们发放,若被调查者为“热烈参与者”,即送其1张体验卡,否则不予送出.调查人员顺次调查完前3人后,剩余的体验卡数量为ξ,试根据统计表的数据,以200人中“热烈参与者”的频率作为概率,求ξ的分布列及期望.19.如图,三棱柱ABC−A1B1C1的所有棱长都是2,AA1⊥平面ABC,D,E分别是AC,CC1的中点.(1)求证:AE⊥平面A1BD;(2)求二面角D−BE−B1的余弦值.20.已知定点A(−3,0)、B(3,0),直线AM、BM相交于点M,且它们的斜率之积为−1,记动点M的9轨迹为曲线C.(Ⅰ)求曲线C的方程;(Ⅱ)过点T(1,0)的直线l与曲线C交于P、Q两点,是否存在定点S(s,0),使得直线SP与SQ斜率之积为定值,若存在求出S坐标;若不存在请说明理由.21. 已知函数f(x)=ln(x +a)−x ,a ∈R .(1)当a =−1时,求f(x)的单调区间;(2)若x ≥1时,不等式e f(x)+a 2x 2>1恒成立,求实数a 的取值范围.22. 在平面直角坐标系xOy 中,已知直线l :{x =1+12t y =√32t(t 为参数),曲线C 1:{x =√2cosθy =sinθ(θ为参数).(1)设l 与C 1相交于A ,B 两点,求|AB|;(2)若Q 是曲线C 2:{x =cosαy =3+sinα(α为参数)上的一个动点,设点P 是曲线C 1上的一个动点,求|PQ|的最大值.23. 设f(x)=|x +1|−|2x −1|,(1)求不等式f(x)≤x +2的解集;(2)若不等式满足f(x)≤|x|(|a −1|+|a +1|)对任意实数x ≠0恒成立,求实数a 的取值范围.-------- 答案与解析 --------1.答案:B解析:本题考查交集的运算,属于基础题.求出集合M,N,即可求解.解:∵集合M={x|x<2},集合N={x|0<x<1},∴M∩N={x|0<x<1}.故选B.2.答案:C解析:本题考查了复数的运算法则、考查了计算能力,属于基础题.利用复数的运算法则求解即可.解:,故选C.3.答案:D解析:本题考查了直线与圆的位置关系,属于基础题.将圆的一般方程转化为标准方程,根据题意可知圆心(2,−1)到直线x−y+b=0的距离小于等于半径√2,即可求得b的取值范围.解:圆x2+y2−4x+2y+3=0转化成标准方程为(x−2)2+(y+1)2=2,圆心为(2,−1),半径为√2,因为直线y=x+b与圆x2+y2−4x+2y+3=0有公共点,≤√2,解得−5≤b≤−1,所以√1+1故选:D.4.答案:C解析:解:条件p:|x−m|≤2,解出m−2≤x≤m+2.条件q:−1≤x≤n,由p是q的充要条件,∴m−2=−1,m+2=n,解得m=1,n=3.则m+n=4.故选:C.条件p:|x−m|≤2,解出m−2≤x≤m+2.条件q:−1≤x≤n,由p是q的充要条件,可得m−2=−1,m+2=n,解出即可得出.本题考查了不等式与方程的解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.5.答案:C解析:利用辅助角公式将函数f(x)化简,根据三角函数的有界限求解即可.本题考查三角函数的图象及性质的运用,考查转化思想以及计算能力.解:函数f(x)=sinx+√3cosx=2sin(x+π3).当0≤x≤π2时,则π3≤x+π3≤5π6,那么:当x+π3=5π6时,函数f(x)取得最小值为1.当x+π3=π2时,函数f(x)取得最大值为2.故选C.6.答案:B解析:本题考查三棱柱体积的求法,属于基础题.根据题意可得sin∠MA1B=35,A1B=5,,A1M=2,即可得到S△A1MB,进而求出三棱锥A1−MBC1的体积.解:直三棱柱ABC−A1B1C1中,四边形AA1C1C是边长为4的正方形,且AB=3,BC=5,M是AA1的中点,则sin∠MA1B=35,A1B=5,,A1M=2,所以S△A1MB =12·A1M·A1B·sin∠MA1B=12×2×5×35=3,所以棱锥A1−MBC1的体积为 VA1−MBC1=VC−A1MB=13×C1A1·S△A1MB=13×4×3=4.7.答案:D解析:本题考查概率的求法,考查古典概型等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.基本事件总数n=C42=6,选派的都是男生包含的基本事件个数m=C32=3,由此能求出选派的都是男生的概率.解:高二8班从3男1女4位同学中选派2位同学参加某演讲比赛,三男一女分别记为A,B,C,D,则4位同学中选派2位同学的结果有AB,AC,AD,BC,BD,CD,共6种,选派的都是男生包含的结果有AB,AC,BC,共三种,∴选派的都是男生的概率p=36=12.故选D.8.答案:A解析:本题考查抛物线的性质和应用,正确运用抛物线的定义是关键.线段AB的中点到准线的距离为4,设A,B两点到准线的距离分别为d1,d2,由抛物线的定义知|AB|的值.解:由题设知直线l:y=k(x−1)经过抛物线C:y2=4x的焦点坐标,线段AB的中点到准线的距离为3+1=4,设A,B两点到准线的距离分别为d1,d2,由抛物线的定义知:|AB|=|AF|+|BF|=d1+d2=2×4=8.故选:A.9.答案:B解析:本题考查等差数列的通项公式及前n 项和公式,属于基础题.由a 8+a 9=9,a 4=1联立解方程组即可求出等差数列的的公差和首项,然后代入求和公式. 解:因为{a n }是等差数列,所以可设a n =a 1+(n −1)d ,所以a 4=a 1+3d =1,a 8+a 9=2a 4+9d =9,所以d =79,a 1=−43,所以S 9=9×(−43)+9×82×79=16. 故选B . 10.答案:C解析:本题考查曲线的切线方程,考查导数的几何意义,属于基础题.求导数,确定切线的斜率,即可求出曲线y =3x −lnx 在点(1,3)处的切线方程. 解:由题意,y ′=3−1x ,所以曲线过点(1,3)处的切线斜率为k =3−1=2,所以切线方程为y −3=2(x −1),即y =2x +1,故选C . 11.答案:A解析:解:依题意如图,延长F 1M ,交PF 2于点T ,∵PM 是∠F 1PF 2的角分线.TF 1是PM 的垂线,∴PM 是TF 1的中垂线,∴|PF 1|=|PT|,∵P为双曲线x2a2−y2b2=1上一点,∴|PF1|−|PF2|=2a,∴|TF2|=2a,在三角形F1F2T中,MO是中位线,∴|OM|=a.故选:A.先画出双曲线和焦点三角形,由题意可知PM是TF1的中垂线,再利用双曲线的定义,数形结合即可得结论.本题考查了双曲线的定义的运用以及双曲线标准方程的意义,解题时要善于运用曲线定义,数形结合的思想解决问题.12.答案:B解析:本题主要考查函数零点的判定定理.由方程的根与函数零点的关系可知,求方程的根,就是确定函数的零点,也就是求函数的图象与x轴的交点的横坐标.令f(x)=0,由二次方程的解法,运用因式分解解方程即可得到所求函数的零点.解:令f(x)=0,即x2−x−2=0,即有(x−2)(x+1)=0,解得x=2或x=−1.即函数f(x)的零点为2或−1.故选B.13.答案:2√3解析:解:由三视图可知此几何体是组合体:上面是圆锥、下面是圆柱,∵正视图与侧视图完全相同,均为等边三角形与矩形的组合,∴圆锥的高是x,则半径为xtan60°=√3,母线长是xsin60°=2√3x3,则圆柱的底面半径是√3,高是1,∵该几何体的表面积为16π,∴π×(√3)2+2π×√3×1+π√3× 2√3x 3=16π,化简得,√3x 2+2x −16√3=0, 解得x =2√3或x =3舍去), 故答案为:2√3.由三视图可知此几何体是组合体:上面是圆锥、下面是圆柱,由条件和直角三角形的三角函数求出半径、圆锥母线长,利用圆柱、圆锥的表面积公式列出方程求出x 的值.本题考查了由三视图求几何体的表面积,由三视图正确复原几何体是解题的关键,考查空间想象能力,计算能力.14.答案:√22或1解析:本题考查了二项式定理的应用以及利用二项展开式的通项公式求展开式中某项系数的问题,是综合性题目,属于基础题.根据(ax +1a )6展开式的通项公式求出展开式中含x 4与x 2,从而求出(2+x 2)(ax +1a )6展开式中含x 4项的系数,列出方程求出正实数a 的值. 解:∵(ax +1a )6展开式的通项公式为:T r+1=C 6r ⋅(ax)6−r ⋅(1a )r =C 6r⋅a 6−2r ⋅x 6−r ,令6−r =4,得r =2,∴T 2+1=C 62⋅a 2⋅x 4=15a 2x 4,令6−r =2,得r =4,∴T 4+1=C 64⋅a −2⋅x 2=15a −2x 2,∴(2+x 2)(ax +1a )6展开式中含x 4项的系数为: 2×15a 2+15a −2=45, 整理得2a 4−3a 2+1=0, 解得a 2=1或a 2=12, ∴正实数a =1或a =√22.故答案为√22或1.15.答案:54解析:本题考查了平面向量的数量积公式的应用以及向量垂直的性质;属于常规题.首先求出单位向量e1⃗⃗⃗ ,e2⃗⃗⃗ 的数量积,再根据(e1⃗⃗⃗ −2e2⃗⃗⃗ )·(k e1⃗⃗⃗ +e2⃗⃗⃗ )=0,得到关于k的方程解之即可.解:因为单位向量e1⃗⃗⃗ ,e2⃗⃗⃗ 的夹角是2π3,所以e1⃗⃗⃗ ⋅e2⃗⃗⃗ =1×1×cos2π3=−12,并且(e1⃗⃗⃗ −2e2⃗⃗⃗ )⊥(k e1⃗⃗⃗ +e2⃗⃗⃗ ),所以(e1⃗⃗⃗ −2e2⃗⃗⃗ )⋅(k e1⃗⃗⃗ +e2⃗⃗⃗ )=0,展开得k e1⃗⃗⃗ 2−2e2⃗⃗⃗ 2+(1−2k)e1⃗⃗⃗ ⋅e2⃗⃗⃗ =0,即k−2−12(1−2k)=0,解得k=54.故答案为:54.16.答案:387解析:本题考查数列递推式,考查了由数列的前n项和求数列部分项的和,是基础的计算题.由已知数列的前n项和,利用a6+a7+a8=S8−S5求得结果.解:由S n=n3,得a6+a7+a8=S8−S5=83−53=387.故答案为:387.17.答案:解:(1)sin(2A+B)sinA=2+2cos(A+B).∴sin(2A+B)=2sinA+2sinAcos(A+B),∴sinAcos(A+B)+cosAsin(A+B)=2sinA+2sinAcos(A+B),∴−sinAcos(A+B)+cosAsin(A+B)=2sinA,即sinB=2sinA,故由正弦定理可得b=2a.(2)由余弦定理可得cosC =a 2+b 2−c 22ab=a 2+4a 2−7a 24a 2=−12,因为∠C 是△ABC 的内角, 故∠C =2π3.解析:(1)等式可化简为sinB =2sinA ,故由正弦定理可得b =2a ; (2)由余弦定理可得cosC =−12,∠C 是△ABC 的内角,故可得∠C =2π3.本题主要考查了余弦定理的综合应用,属于基础题.18.答案:解:(1)以200人中,“热烈参与者”的频率作为概率,则估计该市“热烈参与者”的人数约为:20000×15=4000; (2)根据题意可知,ξ~B(3,45),P(ξ=0)=C 30×(15)3=1125, P(ξ=1)=C 31×45×(15)2=12125, P(ξ=2)=C 32×(45)2×15=48125, P(ξ=3)=C 33×(45)3=64125,∴ξ的分布列为:E(ξ)=3×45=125.解析:本题考查离散型随机变量的分布列、数学期望的求法,考查二项分布的性质等基础知识,考查运算求解能力,是中档题.(1)以200人中,“热烈参与者”的频率作为概率,可估计该市“热烈参与者”的人数; (2)根据题意可知,ξ~B(3,45),由此能求出ξ的分布列和E(ξ).19.答案:证明:(1)∵AB =BC =CA ,D 是AC 的中点,∴BD ⊥AC ,∵AA 1⊥平面ABC ,AA 1⊂平面AA 1C 1C ,∴平面AA 1C 1C ⊥平面ABC ,又平面AA 1C 1C ∩平面ABC =AC ,BD ⊂平面ABC , ∴BD ⊥平面AA 1C 1C , 又AE ⊂平面AA 1C 1C , ∴BD ⊥AE .又∵在正方形AA 1C 1C 中,D ,E 分别是AC ,CC 1的中点, 根据相似三角形,易得A 1D ⊥AE . 又A 1D ∩BD =D ,A 1D 、BD ⊂平面A 1BD , ∴AE ⊥平面A 1BD .解:(2)因为BD ⊥平面AA 1C 1C ,根据题意,取A 1C 1中点F ,以DF ,DA ,DB 为x ,y ,z 轴建立空间直角坐标系, D(0,0,0),E(1,−1,0),B(0,0,√3),B 1(2,0,√3),DB ⃗⃗⃗⃗⃗⃗ =(0,0,√3),DE ⃗⃗⃗⃗⃗⃗ =(1,−1,0),BB 1⃗⃗⃗⃗⃗⃗⃗ =(2,0,0),EB 1⃗⃗⃗⃗⃗⃗⃗ =(1,1,√3), 设平面DBE 的一个法向量为m⃗⃗⃗ =(x,y ,z), 则{DB ⃗⃗⃗⃗⃗⃗ ⋅m ⃗⃗⃗ =√3z =0DE ⃗⃗⃗⃗⃗⃗ ⋅m ⃗⃗⃗ =x −y =0,令x =1,则m⃗⃗⃗ =(1,1,0), 设平面BB 1E 的一个法向量为n⃗ =(a,b ,c), 则{BB 1⃗⃗⃗⃗⃗⃗⃗ ⋅n ⃗ =2a =0EB 1⃗⃗⃗⃗⃗⃗⃗ ⋅n ⃗ =a +b +√3c =0,令c =√3,则n ⃗ =(0,−3,√3) 设二面角D −BE −B 1的平面角为θ,观察可知θ为钝角, cos <m ⃗⃗⃗ ,n ⃗ >=m ⃗⃗⃗ ⋅n ⃗⃗|m ⃗⃗⃗ |⋅|n ⃗⃗ |=−√64,∴cosθ=−√64,故二面角D −BE −B 1的余弦值为−√64.解析:本题考查线面垂直的证明,考查向量法求解二面角的余弦值,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.(1)推导出BD ⊥AC ,从而平面AA 1C 1C ⊥平面ABC ,进而BD ⊥平面AA 1C 1C ,BD ⊥AE ,再求出A 1D ⊥AE ,由此能证明AE ⊥平面A 1BD .(2)取A 1C 1中点F ,以DF ,DA ,DB 为x ,y ,z 轴建立空间直角坐标系,利用向量法能求出二面角D −BE −B 1的余弦值.20.答案:解:(Ⅰ)设动点M(x,y),则k MA =yx+3,k MB =yx−3(x ≠±3), ∵k MA k MB =−19,即yx+3⋅yx−3=−19. 化简得x 29+y 2=1,由已知x ≠±3, 故曲线C 的方程为x 29+y 2=1(x ≠±3).(Ⅱ)由已知直线l 过点T(1,0), 设l 的方程为x =my +1, 则联立方程组{x =my +1x 2+9y 2=9,消去x 得 (m 2+9)y 2+2my −8=0, 设P(x 1,y 1),Q(x 2,y 2),则{y 1+y 2=−2mm 2+9y 1y 2=−8m 2+9, 直线SP 与SQ 斜率分别为k SP =y 1x 1−s =y 1my 1+1−s ,k SQ =y 2x 2−s =y2my 2+1−s ,k SP k SQ =y 1y 2(my 1+1−s)(my 2+1−s)=y 1y 2m 2y 1y 2+m(1−s)(y 1+y 2)+(1−s)2=−8(s 2−9)m 2+9(1−s)2.当s =3时,k SP k SQ =−89(1−s)2=−29; 当s =−3时,k SP k SQ =−89(1−s)2=−118.所以存在定点S(±3,0),使得直线SP 与SQ 斜率之积为定值.解析:本题考查轨迹方程的求法,直线与椭圆的位置关系的综合应用,考查计算能力,属于较难题. (Ⅰ)设动点M(x,y),则k MA =yx+3,k MB =yx−3(x ≠±3),利用k MA k MB =−19,求出曲线C 的方程. (Ⅱ)由已知直线l 过点T(1,0),设l 的方程为x =my +1,则联立方程组{x =my +1x 2+9y 2=9,消去x 得(m 2+9)y 2+2my −8=0,设P(x 1,y 1),Q(x 2,y 2)利用韦达定理求解直线的斜率,然后化简即可推出结果.21.答案:解:(1)当a =−1时,f(x)=ln(x −1)−x ,x >1,f′(x)=1x−1−1=2−xx−1,当1<x <2时,f′(x)>0,f(x)递增, 当x >2时,f′(x)<0,f(x)递减, 故f(x)在(1,2)递增,在(2,+∞)递减;(2)由题意得:x ≥1时,x +a >0恒成立,故a >−1,①, 不等式e f(x)+a2x 2>1恒成立, 即a2x 2+x+a e x −1>0对任意的x ≥1恒成立,设g(x)=a2x 2+x+a e x−1,x ≥1,g′(x)=ae x x−x+1−ae x,a ≤0时,g(2)=a(2+1e 2)−1+2e 2<0,不合题意, a >0时,要使x ≥1时,不等式e f(x)+a2x 2>1恒成立, 只需g(1)=a(12+1e )−1+1e >0,即a >2(e−1)e+2,a >2(e−1)e+2时,ae x x −x +1−a =a(e x x −1)+1−x >2(e−1)e+2(e x x −1)+1−x ,设ℎ(x)=2(e−1)e+2(e x x −1)+1−x ,x ≥1,ℎ′(x)=2(e−1)e+2e x x +2(e−1)e+2e x −1,x ≥1,显然ℎ′(x)在(1,+∞)递增,∴ℎ′(x)>ℎ′(1)=4e 2−5e−2e+2>0,∴ℎ(x)在(1,+∞)递增,ℎ(x)>ℎ(1)=2(e−1)2e+2>0,即ae x x −x +1−a >0,②, 由①②得:a >2(e−1)e+2时,满足题意.解析:(1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可; (2)问题转化为a2x 2+x+a e x−1>0对任意的x ≥1恒成立,设g(x)=a 2x 2+x+a e x−1,x ≥1,通过求导得到g(x)的单调性,从而求出a 的范围即可.本题考查了函数的单调性、最值问题,考查导数的应用以及函数恒成立问题,是一道综合题.22.答案:解:(1)由曲线C 1:{x =√2cosθy =sinθ(θ为参数),消去参数θ,可得普通方程为x 22+y 2=1.把直线l 的参数方程代入为x 22+y 2=1,得7t 2+4t −4=0.则t 1+t 2=−47,t 1t 2=−47.∴|AB|=|t 1−t 2|=√(t 1+t 2)2−4t 1t 2=8√27; (2)设点P(x,y)是曲线C 1上的一个动点,化曲线C 2:{x =cosαy =3+sinα(α为参数)为x 2+(y −3)2=1. ∴|PC 2|=√x 2+(y −3)2=√−(y +3)2+20, ∵−1≤y ≤1, ∴|PC 2|的最大值为4, 则|PQ|的最大值为5.解析:(1)化曲线C 1的参数方程为普通方程,把直线的参数方程代入,化为关于t 的一元二次方程,利用根与系数的关系及此时t 的几何意义求解;(2)点P(x,y)是曲线C 1上的一个动点,化曲线C 2的参数方程为普通方程,由两点间的距离公式写出|PC 2|,利用二次函数求其最大值,进一步得到|PQ|的最大值.本题考查简单曲线的极坐标方程,考查参数方程化普通方程,训练了圆与椭圆位置关系的应用,是中档题.23.答案:解:(1)根据题意可得,当x <−1时,−x −1+2x −1≤x +2,解得−2<2,所以x <−1;…(1分) 当−1≤x ≤12时,x +1+2x −1≤x +2,解得x ≤1,所以−1≤x ≤12;…(2分) 当x >12时,x +1−2x +1≤x +2,解得x ≥0,所以x >12;…(3分) 综上,不等式f(x)≤x +2的解集为R …(5分) (2)不等式f(x)≤|x|(|a −1|+|a +1|)等价于|x+1|−|2x−1||x|≤|a −1|+|a +1|,…(6分)因为||x+1|−|2x−1||x||=||1+1x|−|2−1x||≤|1+1x+2−1x|=3,…(8分)当且仅当(1+1x )(2−1x )≤0时取等号, 因为|x+1|−|2x−1||x|≤|a −1|+|a +1|,所以|a −1|+|a +1|≥3,解得a ≤−32或a ≥32,故实数a 的取值范围为(−∞,−32]∪[32,+∞)…(10分)解析:(1)利用x 的范围去掉绝对值符号,然后求解不等式的解集即可. (2)不等式f(x)≤|x|(|a −1|+|a +1|)等价于|x+1|−|2x−1||x|≤|a −1|+|a +1|,利用绝对值不等式的几何意义求解左侧的最值,然后求解a 的范围即可.本题考查不等式恒成立,绝对值不等式的解法,考查转化思想以及分类讨论思想的应用.。
2020年高考模拟广东省广州市高考(理科)数学第一次模拟测试试卷 含解析

2020年高考数学第一次模拟测试试卷(理科)一、选择题1.已知复数z满足(1+i)z=2i,则|z|=()A.B.1C.D.2.已知集合A={0,1,2,3},B={x|x=n2﹣1,n∈A},P=A∩B,则P的子集共有()A.2个B.4个C.6个D.8个3.sin80°cos50°+cos140°sin10°=()A.﹣B.C.﹣D.4.已知命题p:∀x∈R,x2﹣x+1<0;命题q:∃x∈R,x2>x3,则下列命题中为真命题的是()A.p∧q B.¬p∧q C.p∧¬q D.¬p∧¬q5.已知函数f(x)满足f(1﹣x)=f(1+x),当x≥1时,f(x)=x﹣,则{x|f(x+2)>1}=()A.{x|x<﹣3或x>0}B.{x|x<0或x>2}C.{x|x<﹣2或x>0}D.{x|x<2或x>4}6.如图,圆O的半径为1,A,B是圆上的定点,OB⊥OA,P是圆上的动点,点P关于直线OB的对称点为P',角x的始边为射线OA,终边为射线OP,将|﹣|表示为x 的函数f(x),则y=f(x)在[0,π]上的图象大致为()A.B.C.D.7.陀螺是中国民间最早的娱乐工具,也称陀罗.如图,网格纸上小正方形的边长为1,粗线画出的是某个陀螺的三视图,则该陀螺的表面积为()A.(7+2)πB.(10+2)πC.(10+4)πD.(11+4)π8.某人造地球卫星的运行轨道是以地心为一个焦点的椭圆,其轨道的离心率为e,设地球半径为R,该卫星近地点离地面的距离为r,则该卫星远地点离地面的距离为()A.r+R B.r+RC.r+R D.r+R9.羽毛球混合双打比赛每队由一男一女两名运动员组成.某班级从3名男生A1,A2,A3和3名女生B1,B2,B3中各随机选出两名,把选出的4人随机分成两队进行羽毛球混合双打比赛,则A1和B1两人组成一队参加比赛的概率为()A.B.C.D.10.已知F1,F2是双曲线C:﹣y2=1(a>0)的两个焦点,过点F1且垂直于x轴的直线与C相交于A,B两点,若|AB|=,则△ABF2的内切圆的半径为()A.B.C.D.11.已知函数f(x)的导函数为f′(x),记f1(x)=f′(x),f2(x)=f1′(x),…,f n+1(x)=f n′(x)(n∈N*).若f(x)=x sin x,则f2019(x)+f2021(x)=()A.﹣2cos x B.﹣2sin x C.2cos x D.2sin x12.已知正方体ABCD﹣A1B1C1D1的棱长为2,E,F,G分别是棱AD,CC1,C1D1的中点,给出下列四个命题:①EF⊥B1C;②直线FG与直线A1D所成角为60°;③过E,F,G三点的平面截该正方体所得的截面为六边形;④三棱锥B﹣EFG的体积为.其中,正确命题的个数为()A.1B.2C.3D.4二、填空题13.设向量=(m,1),=(2,1),且•=(2+2),则m=.14.某种产品的质量指标值Z服从正态分布N(μ,σ2),且P(μ﹣3σ<Z<μ+3σ)=0.9974.某用户购买了10000件这种产品,则这10000件产品中质量指标值位于区间(μ﹣3σ,μ+3σ)之外的产品件数为.15.(3x2﹣2x﹣1)5的展开式中,x2的系数是.(用数字填写答案)16.已知△ABC的三个内角为A,B,C,且sin A,sin B,sin C成等差数列,则sin2B+2cos B 的最小值为,最大值为.三、解答题17.记S n为数列{a n}的前n项和,2S n﹣a n=(n∈N*).(1)求a n+a n+1;(2)令b n=a n+2﹣a n,证明数列{b n}是等比数列,并求其前n项和T n.18.如图,三棱锥P﹣ABC中,PA=PC,AB=BC,∠APC=120°,∠ABC=90°,AC =PB.(1)求证:AC⊥PB;(2)求直线AC与平面PAB所成角的正弦值.19.某企业质量检验员为了检测生产线上零件的质量情况,从生产线上随机抽取了80个零件进行测量,根据所测量的零件尺寸(单位:mm),得到如图的频率分布直方图:(1)根据频率分布直方图,求这80个零件尺寸的中位数(结果精确到0.01);(2)若从这80个零件中尺寸位于[62.5,64.5)之外的零件中随机抽取4个,设X表示尺寸在[64.5,65]上的零件个数,求X的分布列及数学期望EX;(3)已知尺寸在[63.0,64.5)上的零件为一等品,否则为二等品,将这80个零件尺寸的样本频率视为概率.现对生产线上生产的零件进行成箱包装出售,每箱100个.企业在交付买家之前需要决策是否对每箱的所有零件进行检验,已知每个零件的检验费用为99元.若检验,则将检验出的二等品更换为一等品;若不检验,如果有二等品进入买家手中,企业要向买家对每个二等品支付500元的赔偿费用.现对一箱零件随机抽检了11个,结果有1个二等品,以整箱检验费用与赔偿费用之和的期望值作为决策依据,该企业是否对该箱余下的所有零件进行检验?请说明理由.20.已知函数f(x)=alnx﹣,曲线y=f(x)在点(1,f(1))处的切线方程为2x ﹣y﹣2﹣e=0.(1)求a,b的值;(2)证明函数f(x)存在唯一的极大值点x0,且f(x0)<2ln2﹣2.21.已知点P是抛物线C:y=﹣3的顶点,A,B是C上的两个动点,且•=﹣4.(1)判断点D(0,1)是否在直线AB上?说明理由;(2)设点M是△PAB的外接圆的圆心,点M到x轴的距离为d,点N(1,0),求|MN|﹣d的最大值.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.已知曲线C1的参数方程为(t为参数),曲线C2的参数方程为(θ为参数).(1)求C1与C2的普通方程;(2)若C1与C2相交于A,B两点,且|AB|=,求sinα的值.[选修4-5:不等式选讲]23.已知a>0,b>0,且a+b=1.(1)求+的最小值;(2)证明:<.参考答案一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z满足(1+i)z=2i,则|z|=()A.B.1C.D.【分析】把已知等式变形,利用复数代数形式的乘除运算化简,代入复数模的计算公式得答案.解:∵(1+i)z=2i,∴,∴.故选:A.2.已知集合A={0,1,2,3},B={x|x=n2﹣1,n∈A},P=A∩B,则P的子集共有()A.2个B.4个C.6个D.8个【分析】求出集合A,B,从而求出P=A∩B,由此能求出P的子集的个数.解:∵集合A={0,1,2,3},B={x|x=n2﹣1,n∈A}={﹣1,0,3,8},∴P=A∩B={0,3},∴P的子集共有22=4个.故选:B.3.sin80°cos50°+cos140°sin10°=()A.﹣B.C.﹣D.【分析】直接利用三角函数关系式的变换的应用求出结果.解:sin80°cos50°+cos140°sin10°=cos10°cos50°﹣sin50°sin10°=cos(50°+10°)=cos60°=.故选:D.4.已知命题p:∀x∈R,x2﹣x+1<0;命题q:∃x∈R,x2>x3,则下列命题中为真命题的是()A.p∧q B.¬p∧q C.p∧¬q D.¬p∧¬q【分析】根据条件判断命题p,q的真假,结合复合命题真假关系进行判断即可.解:x2﹣x+1=(x﹣)2+>0恒成立,故命题p:∀x∈R,x2﹣x+1<0为假命题,当x=﹣1时,x2>x3,成立,即命题q:∃x∈R,x2>x3,为真命题,则¬p∧q为真,其余为假命题,故选:B.5.已知函数f(x)满足f(1﹣x)=f(1+x),当x≥1时,f(x)=x﹣,则{x|f(x+2)>1}=()A.{x|x<﹣3或x>0}B.{x|x<0或x>2}C.{x|x<﹣2或x>0}D.{x|x<2或x>4}【分析】根据条件判断函数的对称性和单调性,结合不等式先求出f(x)>1的解,然后求出f(x+2)>1的解即可.解:由f(1﹣x)=f(1+x),得函数关于x=1对称,当x≥1时,f(x)=x﹣,则f(x)为增函数,且f(2)=2﹣1=1,由f(x)>1得x>2,由对称性知当x<1时,由f(x)>1得x<0,综上f(x)>1得x>2或x<0,由f(x+2)>1得x+2>2或x+2<0,得x>0或x<﹣2,即不等式的解集为{x|x<﹣2或x>0},故选:C.6.如图,圆O的半径为1,A,B是圆上的定点,OB⊥OA,P是圆上的动点,点P关于直线OB的对称点为P',角x的始边为射线OA,终边为射线OP,将|﹣|表示为x 的函数f(x),则y=f(x)在[0,π]上的图象大致为()A.B.C.D.【分析】设PP'的中点为M,则|﹣|=,当x∈[0,]时,在Rt△OMP中,利用三角函数可知,|PM|=cos x,所以f(x)=2cos x,从而得解.解:设PP'的中点为M,则|﹣|=,当x∈[0,]时,在Rt△OMP中,|OP|=1,∠OPM=∠POA=x,所以cos x=,所以|PM|=cos x,|﹣|=2cos x,即f(x)=2cos x,x∈[0,].从四个选项可知,只有选项A正确,故选:A.7.陀螺是中国民间最早的娱乐工具,也称陀罗.如图,网格纸上小正方形的边长为1,粗线画出的是某个陀螺的三视图,则该陀螺的表面积为()A.(7+2)πB.(10+2)πC.(10+4)πD.(11+4)π【分析】画出几何体的直观图,利用三视图的数据求解几何体的表面积即可.解:由题意可知几何体的直观图如图:上部是圆柱,下部是圆锥,几何体的表面积为:=(10+4)π.故选:C.8.某人造地球卫星的运行轨道是以地心为一个焦点的椭圆,其轨道的离心率为e,设地球半径为R,该卫星近地点离地面的距离为r,则该卫星远地点离地面的距离为()A.r+R B.r+RC.r+R D.r+R【分析】由题意画出图形,结合椭圆的定义,结合椭圆的离心率,求出椭圆的长半轴a,半焦距c,即可确定该卫星远地点离地面的距离.解:椭圆的离心率:e=∈(0,1),(c为半焦距;a为长半轴)只要求出椭圆的c和a,设卫星近地点,远地点离地面距离分别为m,n,由题意,结合图形可知,a﹣c=r+R,远地点离地面的距离为:n=a+c﹣R,m=a﹣c﹣R,a=,c=,所以远地点离地面的距离为:n=a+c﹣R==.故选:A.9.羽毛球混合双打比赛每队由一男一女两名运动员组成.某班级从3名男生A1,A2,A3和3名女生B1,B2,B3中各随机选出两名,把选出的4人随机分成两队进行羽毛球混合双打比赛,则A1和B1两人组成一队参加比赛的概率为()A.B.C.D.【分析】分别计算出选出的4人随机分成两队进行羽毛球混合双打比赛的基本事件总数和满足A1和B1两人组成一队的基本事件个数,代入古典概型概率计算公式,可得答案解:从3名男生A1,A2,A3和3名女生B1,B2,B3中各随机选出两名,共有C32C32=9,选出的4人随机分成两队进行羽毛球混合双打比赛有C21C21=4,故总的事件个数为9×4=36种,其中A1和B1两人组成一队有C21C21=4种,故则A1和B1两人组成一队参加比赛的概率为=,故选:A.10.已知F1,F2是双曲线C:﹣y2=1(a>0)的两个焦点,过点F1且垂直于x轴的直线与C相交于A,B两点,若|AB|=,则△ABF2的内切圆的半径为()A.B.C.D.【分析】设左焦点F1的坐标,由过F1垂直于x轴的直线与椭圆联立可得弦长AB,再由椭圆可得a的值,进而可得双曲线的方程,及左右焦点的坐标,进而求出三角形ABF2的面积,再由三角形被内切圆的圆心分割3个三角形的面积之和可得内切圆的半径.解:由双曲线的方程可设左焦点F1(﹣c,0),由题意可得AB==,再由b =1,可得a=,所以双曲线的方程为:﹣y2=1,所以F1(﹣,0),F2(,0),所以S=•F1F2==,三角形ABF2的周长为C=AB+AF2+BF2=AB+(2a+AF1)+(2a+BF1)=4a+2AB=4+2=6,设内切圆的半径为r,所以三角形的面积S===3,所以3=,解得:r=,故选:B.11.已知函数f(x)的导函数为f′(x),记f1(x)=f′(x),f2(x)=f1′(x),…,f n+1(x)=f n′(x)(n∈N*).若f(x)=x sin x,则f2019(x)+f2021(x)=()A.﹣2cos x B.﹣2sin x C.2cos x D.2sin x【分析】求出函数的导数,结合函数的导数寻找规律进行计算即可.解:f(x)=x sin x,则f1(x)=f′(x)=sin x+x cos x,f2(x)=f1′(x)=cos x+cos x﹣x sin x=2cos x﹣x sin x,f3(x)=f2′(x)=﹣2sin x﹣sin x﹣x cos x=﹣3sin x﹣x cos xf4(x)=f3′(x)=﹣3cos x﹣cos x+x sin x=﹣4cos x+x sin xf5(x)=f4′(x)=4sin x+sin x+x cos x=5sin x+x cos xf6(x)=f5′(x)=5cos+cos x﹣x sin x=6cos x﹣x sin x,f7(x)=f6′(x)=﹣6sin x﹣sin x﹣x cos x=﹣7sin x﹣x cos x…,则f1(x)+f3(x)=sin x+x cos x﹣3sin x﹣x cos x=﹣2sin x,f3(x)+f5(x)=﹣3sin x﹣x cos x+5sin x+x cos x=2sin x,f5(x)+f7(x)=5sin x+x cos x﹣7sin x﹣x cos x=﹣2sin x,即f4n+1(x)+f4n+3(x)=﹣2sin x,f4n+3(x)+f4n+5(x)=2sin x则f2019(x)+f2021(x)=2sin x,故选:D.12.已知正方体ABCD﹣A1B1C1D1的棱长为2,E,F,G分别是棱AD,CC1,C1D1的中点,给出下列四个命题:①EF⊥B1C;②直线FG与直线A1D所成角为60°;③过E,F,G三点的平面截该正方体所得的截面为六边形;④三棱锥B﹣EFG的体积为.其中,正确命题的个数为()A.1B.2C.3D.4【分析】画出几何体的图形,然后转化判断四个命题的真假即可.解:如图;连接相关点的线段,O为BC的中点,连接EFO,因为F是中点,可知B1C ⊥OF,EO⊥B1C,可知B1C⊥平面EFO,即可证明B1C⊥EF,所以①正确;直线FG与直线A1D所成角就是直线A1B与直线A1D所成角为60°;正确;过E,F,G三点的平面截该正方体所得的截面为五边形;如图:是五边形ENFGI.所以③不正确;三棱锥B﹣EFG的体积为:V G﹣EBM==.V F﹣EBM==.所以三棱锥B﹣EFG的体积为.④正确;故选:C.二、填空题:本题共4小题,每小题5分,共20分.13.设向量=(m,1),=(2,1),且•=(2+2),则m=2.【分析】根据•=(2+2),整理得=0;进而求得结论.解:因为向量=(m,1),=(2,1),且•=(2+2),∴﹣2•+=0⇒=0;∴=;∴m=2;故答案为:2.14.某种产品的质量指标值Z服从正态分布N(μ,σ2),且P(μ﹣3σ<Z<μ+3σ)=0.9974.某用户购买了10000件这种产品,则这10000件产品中质量指标值位于区间(μ﹣3σ,μ+3σ)之外的产品件数为26.【分析】直接利用P(μ﹣3σ<Z<μ+3σ)=0.9974以及其对立面即可求解.解:因为某种产品的质量指标值Z服从正态分布N(μ,σ2),且P(μ﹣3σ<Z<μ+3σ)=0.9974.所以10000件产品中质量指标值位于区间(μ﹣3σ,μ+3σ)之外的产品件数为:10000×(1﹣0.9974)=26;故答案为:26.15.(3x2﹣2x﹣1)5的展开式中,x2的系数是25.(用数字填写答案)【分析】把原式化简成二项式结构,利用通项公式可得答案解:因为:(3x2﹣2x﹣1)5=[3x2﹣(2x+1)]5;其展开式的通项公式为:T r+1=(3x2)5﹣r•[﹣(2x+1)]r;∵要求x2的系数;所以:当5﹣r=0,即r=5时,需求[﹣(2x+1)]5的展开式的x2项,故此时x2的系数是:×(﹣1)2×22×13=40;当5﹣r=1,即r=4时,需求[﹣(2x+1)]5的展开式的常数项,故此时x2的系数是:×3×(﹣1)5××15=﹣15;综上可得:x2的系数是:40﹣15=25.故答案为:25.16.已知△ABC的三个内角为A,B,C,且sin A,sin B,sin C成等差数列,则sin2B+2cos B 的最小值为,最大值为.【分析】利用等差中项以及正弦定理得到2b=a+c,再结合余弦定理及基本不等式,余弦函数的性质可得,构造函数,利用导数得到函数f(B)的单调性情况,进而求得最值.解:∵sin A,sin B,sin C成等差数列,∴2sin B=sin A+sin C,由正弦定理可得,2b=a+c,由余弦定理有,=(当且仅当a=b=c时取等号),又B为三角形ABC内角,故,设,则f′(B)=2cos2B﹣2sin B=﹣4sin2B﹣2sin B+2,令f′(B)>0,解得,令f′(B)<0,解得,故函数f(B)在单调递增,在单调递减,∴,.故答案为:.三、解答题:共70分.解答应写出文字说明、证明过程和演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.记S n为数列{a n}的前n项和,2S n﹣a n=(n∈N*).(1)求a n+a n+1;(2)令b n=a n+2﹣a n,证明数列{b n}是等比数列,并求其前n项和T n.【分析】(1)运用数列的递推式:n=1时,a1=S1,n≥2时,a n=S n﹣S n﹣1,化简变形可得a n+a n﹣1=﹣,进而得到所求;(2)由(1)的结论,将n换为n+1,两式相减,结合等比数列的定义和求和公式,即可得到所求.解:(1)由2S n﹣a n=,可得n=1时,a1=S1,又2S1﹣a1=1,即a1=1;n≥2时,a n=S n﹣S n﹣1,2S n﹣1﹣a n﹣1=,又2S n﹣a n=,两式相减可得a n+a n﹣1=﹣,即有a n+a n+1=﹣;(2)证明:由(1)可得a n+a n+1=﹣,即有a n+1+a n+2=﹣,两式相减可得b n=a n+2﹣a n=,则==,可得数列{b n}是首项为,公比为的等比数列,前n项和T n==﹣.18.如图,三棱锥P﹣ABC中,PA=PC,AB=BC,∠APC=120°,∠ABC=90°,AC =PB.(1)求证:AC⊥PB;(2)求直线AC与平面PAB所成角的正弦值.【分析】(1)取AC中点O,连结PO,BO,推导出PO⊥AC,BO⊥AC,从而AC⊥平面PBO,由此能证明AC⊥PB.(2)推导出PO⊥BO,以O为原点,OB为x轴,OC为y轴,OP为z轴,建立空间直角坐标系,利用向量法能求出直线AC与平面PAB所成角的正弦值.解:(1)证明:取AC中点O,连结PO,BO,∵PA=PC,AB=BC,∴PO⊥AC,BO⊥AC,∵PO∩BO=O,∴AC⊥平面PBO,∵PB⊂平面PBO,∴AC⊥PB.(2)解:设AC=2,则PO=1,PA=PC=PB=2,BO=,∴PO2+BO2=PB2,∴PO⊥BO,以O为原点,OB为x轴,OC为y轴,OP为z轴,建立空间直角坐标系,则A(0,﹣,0),C(0,,0),P(0,0,1),B(,0,0),=(0,2,0),=(0,﹣,﹣1),=(,0,﹣1),设平面PAB的法向量=(x,y,z),则,取x=1,得=(1,﹣1,),设直线AC与平面PAB所成角为θ,则直线AC与平面PAB所成角的正弦值为:sinθ===.19.某企业质量检验员为了检测生产线上零件的质量情况,从生产线上随机抽取了80个零件进行测量,根据所测量的零件尺寸(单位:mm),得到如图的频率分布直方图:(1)根据频率分布直方图,求这80个零件尺寸的中位数(结果精确到0.01);(2)若从这80个零件中尺寸位于[62.5,64.5)之外的零件中随机抽取4个,设X表示尺寸在[64.5,65]上的零件个数,求X的分布列及数学期望EX;(3)已知尺寸在[63.0,64.5)上的零件为一等品,否则为二等品,将这80个零件尺寸的样本频率视为概率.现对生产线上生产的零件进行成箱包装出售,每箱100个.企业在交付买家之前需要决策是否对每箱的所有零件进行检验,已知每个零件的检验费用为99元.若检验,则将检验出的二等品更换为一等品;若不检验,如果有二等品进入买家手中,企业要向买家对每个二等品支付500元的赔偿费用.现对一箱零件随机抽检了11个,结果有1个二等品,以整箱检验费用与赔偿费用之和的期望值作为决策依据,该企业是否对该箱余下的所有零件进行检验?请说明理由.【分析】(1)求出中位数即可;(2)这80个零件中尺寸位于[62.5,64.5)之外的零件共有7个,其中尺寸位于[62.0,62.5)内的有3个,位于[64.5,65)共有4个,随机抽取4个,则X=1,2,3,4,求出分布列求出期望;(3)根据题意,设余下的89个零件中二等品的个数为Y~B(89,0.2),求出EY,若不对余下的零件作检验,设检验费用与赔偿费用的和为S,以整箱检验费用与赔偿费用之和的期望值作为决策依据,则ES=11×99+500EY=9989,若对余下的零件作检验,则这一箱检验费用为9900元,比较判断即可.解:(1)由于[62.0,63.0)内的频率为(0.075+0.225)×0.5=0.15,[63.0,63.5)内的频率为0.75×0.5=0.375,设中位数为x∈[63.0,63.5),由0.15+(x﹣63)×0.75=0.5,得x≈63.47,故中位数为63.47;(2)这80个零件中尺寸位于[62.5,64.5)之外的零件共有7个,其中尺寸位于[62.0,62.5)内的有3个,位于[64.5,65)共有4个,随机抽取4个,则X=1,2,3,4,P(X=1)=,P(X=2)=,P(X=3)=,P(X=4)=,X1234PEX=;(3)根据图象,每个零件是二等品的概率为P=(0.075+0.225+0.100)×0.5=0.2,设余下的89个零件中二等品的个数为Y~B(89,0.2),由二项分布公式,EY=89×0.2=17.8,若不对余下的零件作检验,设检验费用与赔偿费用的和为S,S=11×99+500Y=1089+500Y,若对余下的零件作检验,则这一箱检验费用为9900元,以整箱检验费用与赔偿费用之和的期望值作为决策依据,则ES=11×99+500EY=9989,因为ES>9900,所以应该对余下的零件作检验.(或者ES=9989与9900相差不大,可以不做检验都行.)20.已知函数f(x)=alnx﹣,曲线y=f(x)在点(1,f(1))处的切线方程为2x﹣y﹣2﹣e=0.(1)求a,b的值;(2)证明函数f(x)存在唯一的极大值点x0,且f(x0)<2ln2﹣2.【分析】(1)求导,可得f′(1)=a,f(1)=﹣be,结合已知切线方程即可求得a,b的值;(2)利用导数可得,x0∈(1,2),再构造新函数,利用导数求其最值即可得证.解:(1)函数的定义域为(0,+∞),,则f′(1)=a,f(1)=﹣be,故曲线y=f(x)在点(1,f(1))处的切线方程为ax﹣y﹣a﹣be=0,又曲线y=f(x)在点(1,f(1))处的切线方程为2x﹣y﹣2﹣e=0,∴a=2,b=1;(2)证明:由(1)知,,则,令g(x)=2x﹣xe x+e x,则g′(x)=2﹣xe x,易知g′(x)在(0,+∞)单调递减,又g′(0)=2>0,g′(1)=2﹣e<0,故存在x1∈(0,1),使得g′(x1)=0,且当x∈(0,x1)时,g′(x)>0,g(x)单调递增,当x∈(x1,+∞)时,g′(x)<0,g(x)单调递减,由于g(0)=1>0,g(1)=2>0,g(2)=4﹣e2<0,故存在x0∈(1,2),使得g(x0)=0,且当x∈(0,x0)时,g(x)>0,f′(x)>0,f(x)单调递增,当x∈(x0,+∞)时,g(x)<0,f′(x)<0,f(x)单调递减,故函数存在唯一的极大值点x0,且,即,则,令,则,故h(x)在(1,2)上单调递增,由于x0∈(1,2),故h(x0)<h(2)=2ln2﹣2,即,∴f(x0)<2ln2﹣2.21.已知点P是抛物线C:y=﹣3的顶点,A,B是C上的两个动点,且•=﹣4.(1)判断点D(0,1)是否在直线AB上?说明理由;(2)设点M是△PAB的外接圆的圆心,点M到x轴的距离为d,点N(1,0),求|MN|﹣d的最大值.【分析】(1)抛物线的方程可得顶点P的坐标,设直线AB的方程与抛物线联立,求出两根之和及两根之积,求出数量积•,再由题意可得参数b的值,即可得直线恒过定点,进而判断出D不在直线上;(2)设A,B的坐标,可得线段PA,PB的中点的坐标,进而可得线段PA,PB的中垂线的方程,两个方程联立可得交点M的坐标,消参数可得M的轨迹方程为抛物线,再由抛物线的性质可得到焦点的距离等于到准线的距离,可得|MN|﹣d的最大值.解:(1)由抛物线的方程可得顶点P(0,﹣3),由题意可得直线AB的斜率存在,设直线AB的方程为:y=kx+4,设A(x1,y1),B(x2,y2)联立直线与抛物线的方程:,整理可得:x2﹣4kx﹣4(b+3)=0,△=16k2+16(3+b)>0,即k2+3+b>0,x1+x2=4k,x1x2=﹣4(b+3),y1y2=k2x1x2+kb(x1+x2)+b2=﹣4k2(b+3)+4k2b+b2=b2﹣12k2,y1+y2=k(x1+x2)+2b=4k2+2b,因为=(x1,y1+3)(x2,y2+3)=x1x2+y1y2+3(y1+y2)+9=﹣4(b+3)+b2﹣12k2+3(4k2+2b)+9=b2+2b﹣3,而=﹣4,所以b2+2b﹣3=﹣4,解得b=﹣1,m满足判别式大于0,即直线方程为y=kx﹣1,所以恒过(0,﹣1)可得点D(0,1)不在直线AB上.(2)因为点M是△PAB的外接圆的圆心,所以点M是三角形PAB三条边的中垂线的交点,设线段PA的中点为F,线段PB的中点为为E,因为P(0,﹣3),设A(x1,y1),B(x2,y2)所以F(,),E(,),k PA=,k PB=,所以线段PA的中垂线的方程为:y﹣=﹣(x﹣),而A在抛物线上,所以y1=x12﹣3,所以线段PA的中垂线的方程为:y=﹣x+﹣1,同理可得线段PB的中垂线的方程为:y=﹣x+﹣1,联立方程解得x=﹣,y=,由(1)得x1+x2=4k,x1x2=﹣4(b+3)=﹣8,所以x M=﹣=k,y M===2k2,即点M的轨迹方程为:x2=y;可得焦点F(0,),准线方程为:y=﹣连接NF交抛物线于M0,由抛物线的性质,到焦点的距离等于到准线的距离,|MN|﹣d≤|NF|﹣|NM0|﹣(|M0F|﹣)=|NF|+=+=,所以|MN|﹣d的最大值为.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.已知曲线C1的参数方程为(t为参数),曲线C2的参数方程为(θ为参数).(1)求C1与C2的普通方程;(2)若C1与C2相交于A,B两点,且|AB|=,求sinα的值.【分析】(1)分别把两曲线参数方程中的参数消去,即可得到普通方程;(2)把直线的参数方程代入C2的普通方程,化为关于t的一元二次方程,再由根与系数的关系及此时t的几何意义求解.解:(1)由曲线C1的参数方程为(t为参数),消去参数t,可得y=x tanα+1;由曲线C2的参数方程为(θ为参数),消去参数θ,可得,即(y≥0).(2)把(t为参数)代入,得(1+cos2α)t2+2t sinα﹣1=0.∴,.∴|AB|=|t1﹣t2|==.解得:cos2α=1,即cosα=±1,满足△>0.∴sinα=0.[选修4-5:不等式选讲]23.已知a>0,b>0,且a+b=1.(1)求+的最小值;(2)证明:<.【分析】(1)利用基本不等式即可求得最小值;(2)关键是配凑系数,进而利用基本不等式得证.解:(1),当且仅当“”时取等号,故+的最小值为;(2)证明:,当且仅当时取等号,此时a+b≠1.故<.。
2020年广东省高考理科数学模拟试卷及答案解析

(2)设点P(0,2),直线C1交曲线C2于M,N两点,求|PM|2+|PN|2的值.
五.解答题(共1小题)
23.(1)解不等式:|x﹣1|+|x+3|>6;
(2)若a>0,b>0,a+b=2,证明:( ﹣1)( ﹣1)≥9
2020年广东省高考理科数学模拟试卷
参考答案与试题解析
13.函数y=x+lnx在x=1处的切线方程是.
14.在等比数列{an}中,a2=1,a5=8,则数列{an}的前n项和Sn=.
15.从装有3个黑球,2个白球的不透明箱子中不放回地摸球,每次只摸出一个,则摸完两次后箱中仅剩下黑球的概率为.
16.已知双曲线 的右焦点为F,过点F向双曲线的一条渐近线引垂线,垂足为A,再反向延长交另一条渐近线于点B,若 ,则双曲线C的离心率为.
2020年广东省高考理科数学模拟试卷
一.选择题(共12小题,满分60分,每小题5分)
1.设全集U=R,已知集合A={x|x≥1},B={x|(x+2)(x﹣1)<0},则( )
A.A∪B=UB.A∩B=∅C.∁UB⊆AD.∁UA⊆B
2.已知复数z满足|z﹣i|+|z+i|=3(i是虚数单位),若在复平面内复数z对应的点为Z,则点Z的轨迹为( )
20.(12分)已知函数f(x)=x2+aln(x+1).
(Ⅰ)若函数y=f(x)在区间[2,+∞)上是单调递增函数,求实数a的取值范围;
(Ⅱ)若函数y=f(x)有两个极值点x1,x2且x1<x2,求证
21.(12分)设A(x1,y1),B(x2,y2)是函数f(x)= +log2 图象上任意两点,M为线段AB的中点.已知点M的横坐标为 .若Sn=f( )+f( )+…+f( ),n∈N*,且n≥2.
2020年广东省广州市高考理科数学模拟试卷及答案解析

2020年广东省广州市高考理科数学模拟试卷一.选择题(共12小题,满分60分,每小题5分)1.已知集合A={﹣3,﹣2,﹣1},B={x|x2+x﹣2>0},则A∩∁R B=()A.{﹣3,﹣2,﹣1}B.{﹣2,﹣1}C.{﹣3}D.{﹣1}2.已知a+bi(a,b∈R )是的共轭复数,则a+b=()A.﹣1B .﹣C .D.13.已知向量=(cos20°,sin20°),=(sin10°,cos10°).若t 为实数,且=+t,则||的最小值为()A .B.1C .D .4.将3名教师和3名学生共6人平均分成3个小组,分别安排到三个社区参加社会实践活动,则每个小组恰好有1名教师和1名学生的概率为()A .B .C .D .5.使得(3x +)n(n∈N*)的展开式中含有常数项的最小的n为()A.4B.5C.6D.76.已知等比数列{a n}的前n项和为S n ,若,a2=2,则S3=()A.8B.7C.6D.47.已知命题:p:函数y=x2﹣x﹣1有两个不同的零点:命题q:函数y=cos x的图象关于直线x =对称.在下列四个命题中,真命题是()A.(¬p)∨q B.p∧q C.(¬p)∧(¬q)D.(¬p)∨(¬q)8.若.则sin x•cos(π+x)=()A .B .﹣C .D .9.已知点A(2,0),抛物线C:x2=4y的焦点为F,射线F A与抛物线C相交于点M,与其准线相交于点N,则|FM|:|MN|=()A.2:B.1:2C.1:D.1:310.在三棱锥P﹣ABC中,P A=PB=PC=2,AB=AC=BC=2,则三棱锥P﹣ABC 外接球的体积是()第1 页共21 页。