高考数学总复习教案:函数与方程
江苏高三数学高考一轮复习 函数与方程 教案

江苏高三数学高考一轮复习函数与方程教案江苏高三数学高考一轮复习函数与方程教案江苏高三数学高考一轮复习函数与方程教案一.知识梳理1.一元二次方程与相应二次函数的图象关系如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)y=f(x)在区间(a,b)内有零点,即存c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根。
定理推论:如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且在闭区间的两个端点上的函数值互异即f(a)·f(b)二.课堂练习1.已知函数满足,且当时,,则当时,方程的实数解的个数为A.0B.1C.2D.32.已知函数与的图象上存在关于x轴对称的点,则a的取值范围是A.B.C.D.3.对于函数和,设,,若存在,使得,则称与互为“零点相邻函数”若函数与互为“零点相邻函数”,则实数a的取值范围是A.B.C.D.4.已知函数,函数有四个不同的零点、、、,且满足:,则的取值范围是A.B.C.D.5.函数的零点个数为.6.若方程有两个不同的实数解,则b的取值范围是_____.7.设函数,若方程有三个相异的实根,则实数k的取值范围是______.8.已知函数,若函数恰有4个零点,则实数a的取值范围是.9.已知函数,且曲线在处的切线经过点.求实数的值;若函数,试判断函数的零点个数并证明.10.已知函数.求函数在上的零点之和;证明:在上只有1个极值点.三.例题选讲[例1]已知函数是自然对数的底数求的单调递减区间;若函数,证明在上只有两个零点.参考数据:[参考]解:,定义域为R.由得,解得Z的单调递减区间为Z证明:,令,当时,当时,.在上单调递增,在上单调递减,又,,,,,使得,,且当或时,当时,,在和上单调递减,在上单调递增.,.,,又,由零点存在性定理得,在和内各有一个零点,函数在上有两个零点.[解析]本题主要考查学生运用导数研究函数的单调性及函数的零点问题[例2]已知函数.当时,判断函数的单调性;讨论零点的个数.[参考]解:因为,所以,又,设,又,所以在为单调递增,在为单调递减,所以的最大值为,所以,所以在单调递减;因为,所以是一个零点,设,所以的零点个数等价于中不等于1的零点个数再加上1,当时,由可知,单调递减,又是零点,所以此时有且只有一个零点;当时,单调递增,又,,又,所以,综上可知,在有一个零点且,所以此时有两个零点;又,所以当,在单调递增,在单调递减,的最大值为,又,,又,所以在有一个零点,在也有一个零点且,所以此时,共有3个零点;又,所以当时,在单调递增,在单调递减,的最大值为,所以没有零点,此时,共有1个零点.综上所述,当时,共有1个零点;当0时,共有3个零点;当时,有两个零点.[解析]本题考查学生利用导数研究函数的单调性,函数的零点与方程根的关系,分类讨论思想,化归与转化思想,考查运算化简的能力和逻辑推理能力[例3]已知,解不等式;若方程有三个不同的解,求实数a的取值范围.[答案]解:,当时,解不等式得:,当时,解不等式得:,综合得:不等式的解集为:.,即.作出函数的图象如图所示:当直线与函数的图象有三个公共点时,方程有三个解,所以.所以实数a的取值范围是.[解析]本题考查了分段函数及数形结合的思想方法四.反思与总结在复习过程中,我掌握了,还存在等问题.自我知识梳理:。
高考数学专题复习函数与方程思想教案

高考数学专题复习——函数与方程思想一、教学目标1. 理解函数与方程的关系,掌握函数与方程的基本思想。
2. 熟练运用函数与方程解决实际问题,提高解决问题的能力。
3. 培养学生的逻辑思维能力,提高学生的数学素养。
二、教学内容1. 函数与方程的概念及关系2. 函数与方程的性质3. 函数与方程的解法4. 函数与方程在实际问题中的应用5. 典型例题分析与练习三、教学重点与难点1. 函数与方程的关系及其性质2. 函数与方程的解法3. 实际问题中函数与方程的运用四、教学方法1. 采用讲解、讨论、练习相结合的方式进行教学。
2. 利用多媒体课件辅助教学,提高学生的学习兴趣。
3. 注重启发式教学,引导学生主动探索、积极思考。
五、教学过程1. 导入:回顾函数与方程的基本概念,引导学生思考函数与方程之间的关系。
2. 讲解:详细讲解函数与方程的性质,结合实际例子阐述函数与方程的解法。
3. 讨论:分组讨论实际问题中的函数与方程应用,分享解题心得。
4. 练习:布置针对性的练习题,巩固所学知识。
5. 总结:对本节课的内容进行总结,强调函数与方程在数学中的重要性。
教案仅供参考,具体实施时可根据学生实际情况进行调整。
六、教学评估1. 课后作业:布置相关的习题,巩固课堂所学知识。
2. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
3. 小组讨论:评估学生在小组讨论中的表现,包括合作意识、交流能力等。
七、教学拓展1. 引入高等数学中的函数与方程理论,提高学生的数学素养。
2. 组织数学竞赛或讲座,激发学生对函数与方程的兴趣。
3. 推荐相关书籍或网络资源,引导学生深入研究函数与方程。
八、教学反思1. 反思教学内容:是否全面讲解了函数与方程的基本概念、性质和解法。
2. 反思教学方法:是否有效地引导学生思考、探索和解决问题。
3. 反思教学效果:学生对函数与方程的理解程度以及实际应用能力的提升。
九、教学案例1. 案例一:讲解一次函数与一元一次方程的关系,引导学生理解函数与方程的解法。
高中数学单元复习教案

高中数学单元复习教案
主题:函数
目标:通过本次复习,学生能够掌握函数的基本概念、性质和解题方法。
一、函数的基本概念
1. 函数的定义和表示方法
2. 函数的定义域和值域
3. 函数的图像和性质
二、函数的性质
1. 奇函数和偶函数的性质
2. 函数的单调性和最值
3. 函数的周期性和奇偶性
三、函数的解题方法
1. 求函数的导数和导函数
2. 求函数的极值和拐点
3. 求函数的零点和不等式解法
四、综合练习
1. 完成选择题、填空题和解答题
2. 解答实际问题中的函数应用题
五、作业布置
1. 完成课堂上的习题
2. 预习下节课的内容
六、自主学习
1. 利用课外时间复习函数相关知识
2. 尝试解决一些较难的函数题目
备注:本次复习教案主要围绕函数这一重要概念展开,学生需要掌握函数的基本定义和性质,能够熟练运用函数的解题方法。
希望学生能够认真复习,做到知识点全面掌握,能够灵活运用。
高三数学一轮复习教案:函数与方程 必修一

必修Ⅰ—08 函数与方程1、函数的零点与方程的根:一般地,对于函数()f x ,如果存在实数c ,当x c =时,()0f c =,那么把x c = 叫做函数()f x 的零点.解方程()0f x =,即得()f x 的所有零点.2、二分法的基本思想:(1)先找到a b 、,使(),()f a f b 异号,说明在区间()a b 、内一定有零点,然后求()2a b f +. (2)假设()0,()0,f a f b a b <><,如果()2a b f +=0,该点就是零点;如果()2a b f +<0,则在区间(,)2a b b +内有零点,如果()2a b f +>0,则在区间(,)2a b a +内有零点, (3)按上述方法再求该区间中点的函数值,这样就可以不断接近零点.通过每次把()f x 的零点所在小区间收缩一半的方法,使区间的两个端点逐步逼近函数的零点,以求得零点的近似值,这种方法叫做二分法.3、函数的零点存在性:如果函数()f x 在区间(,)a b 上是连续不间断的,且()()0f a f b ⋅<,则函数()f x 在区间(,)a b 上存在实数c ,当x c =时,()0f c =, x c =称为函数()f x 在区间(,)a b 上的一个零点.它只能判定函数在区间上有零点,但不能判定具体个数.例1、 已知函数2()log f x x =,问方程()0f x =在区间1,44⎡⎤⎢⎥⎣⎦上有没有实数根,为什么?例2、 用二分法求函数3()3f x x =-的一个正实数零点(精确到0.1).例3、 若函数2()f x x ax b =++的两零点为—2和3,则方程(2)0f x -=的解是 .例4、 已知二次函数2()f x ax bx c =++.若,a b c >>且(1)0f =,试证明()f x 必有两个零点.。
2025年高考数学总复习课件16第二章第八节函数与方程

核心考点 提升“四能”
课时质量评价
函数零点个数的判断方法 (1)直接求零点:令f (x)=0,有几个解就有几个零点. (2)函数零点存在定理:要求函数f (x)在区间[a,b]上是连续不断的曲线,且f (a)·f (b)<0,再结合函数的图象与性质确定函数的零点个数. (3)利用函数图象:作出两函数的图象,观察其交点个数即得零点个数.
A.(0,1)
B.(1,2)
√C.(2,3)
D.(3,4)
C 解析:(方法一)因为函数f (x)是增函数,且f (2)=ln 2-1<0,f (3)=ln 3>0, 所以由函数零点存在定理,得函数f (x)的零点位于区间(2,3)上.故选C. (方法二)函数f (x)=x+ln x-3的零点所在区间转化为g(x)=ln x,h(x)=-x+3的 图象的交点横坐标所在的范围.如图所示,可知函数f (x)的零点在(2,3)内.
b]上一定有实根
D.“二分法”对连续不断的函数的所有零点都有效
BC 解析:由结论知A错误,B正确,由函数零点存在定理可得C正确.由于
“二分法”是针对连续不断的函数的变号零点而言的,所以D错误.故选BC.
第八节 函数与方程
核心考点
提升“四能”
判断函数零点所在的区间
1.函数f (x)=x+ln x-3的零点所在的区间为( )
必备知识 落实“四基”
核心考点 提升“四能”
课时质量评价
自查自测 知识点二 函数零点存在定理 1.(教材改编题)下列函数图象与x轴均有交点,其中不能用二分法求图中的函数 零点的是( C )
第八节 函数与方程
必备知识 落实“四基”
核心考点 提升“四能”
课时质量评价
人教版高考总复习一轮数学精品课件 主题二 函数 第三章 函数与基本初等函数-第八节 函数与方程

2.用二分法求方程 + lg − 3 = 0的近似解,以下区间可以作为初始区间的是() B
A.[1,2]B.[2,3]C.[3,4]D.[4,5]
[解析]设 = + − ,显然函数图象是连续的,且 = − < ,
= − < , = > , = + > , = + > ,
[解析]因为函数 =
−
ቤተ መጻሕፍቲ ባይዱ
− 在区间 , 上单调递增,又函数
= − − 的一个零点在区间 , 内,则有 ⋅ < ,所以
− − − < ,即 − < ,所以 < < .故选C.
4.已知函数 = e − e− + 4,若方程 = + 4 > 0 有三个不同的实根1 ,
= 或 = ,作出 的图象,如图所示:
观察图象可知, = − 无解, = 有3个解, = 有1个解.综上所述,函数
的零点个数为4.故答案为4.
[对点训练3](1)已知函数 =
实根个数为() A
A.3
2 +1
൞ 2
−1
B.4
定理得函数 的零点位于区间 , 内.故选C.
法二(数形结合):
函数 = + − 的零点所在区间转化为 = ,
= − + 的图象的交点横坐标所在范围.如图所示,可知
的零点在 , 内.故选C.
[对点训练1] (多选题)下列函数中,在区间[−1,3]上存在唯一零点的有() BCD
高三第一轮复习教案函数与方程

高三第一轮复习教案—函数与方程一.考试说明:1.了解函数零点的概念,结合二次函数的图像,了解函数的零点与方程根的联系。
2.理解并掌握连续函数在某个区间上存在零点的判定方法。
能利用函数的图象和性质判别函数零点的个数。
二.命题走向函数与方程的理论是高中新课标教材中新增的知识点,特别是“二分法”求方程的近似解也一定会是高考的考点。
从近几年高考的形势来看,十分注重对三个“二次”(即一元二次函数、一元二次方程、一元二次不等式)的考察力度,同时也研究了它的许多重要的结论,并付诸应用。
高考试题中有近一半的试题与这三个“二次”问题有关。
预计高考对本讲的要求是:以二分法为重点、以二次函数为载体、以考察函数与方程的关系为目标来考察学生的能力。
(1)题型可为选择、填空和解答;(2)高考试题中可能出现复合了函数性质与函数零点的综合题,同时考察函数方程的思想。
三.要点精讲1.方程的根与函数的零点(1)函数零点概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。
函数零点的意义:函数)(x f y =的零点就是方程0)(=x f 实数根,亦即函数)(x f y =的图象与x 轴交点的横坐标。
即:方程0)(=x f 有实数根⇔函数)(x f y =的图象与x 轴有交点⇔函数)(x f y =有零点。
二次函数)0(2≠++=a c bx ax y 的零点:1)△>0,方程02=++c bx ax 有两不等实根,二次函数的图象与x 轴有两个交点,二次函数有两个零点;2)△=0,方程02=++c bx ax 有两相等实根(二重根),二次函数的图象与x 轴有一个交点,二次函数有一个二重零点或二阶零点;3)△<0,方程02=++c bx ax 无实根,二次函数的图象与x 轴无交点,二次函数无零点。
零点存在性定理:如果函数)(x f y =在区间],[b a 上的图象是连续不断的一条曲线,并且有0)()(<b f a f ,那么函数)(x f y =在区间),(b a 内有零点。
2025版高考数学一轮总复习第2章函数概念与基本初等函数Ⅰ第8讲函数与方程课件

解法二:(图象法)函数 f(x)的图象如图所示,
由图象知函数 f(x)共有 2 个零点.
2.已知函数y=f(x)是周期为2的周期函数,且当x∈[-1,1]时,f(x)
=2|x|-1,则函数g(x)=f(x)-|lg x|的零点个数是( B )
A.9
B.10
C.11
D.18
[解析] 由函数y=f(x)的性质,画出函数y=f(x)的图象,如图,再
考向 2 函数零点个数的确定——师生共研
x2+x-2,x≤0, 1.函数 f(x)=-1+ln x,x>0 的零点个数为( B )
A.3
B.2
C.7
D.0
[解析] 解法一:(直接法)由 f(x)=0 得
x≤0,
x>0,
x2+x-2=0 或-1+ln x=0,
解得 x=-2 或 x=e.
因此函数 f(x)共有 2 个零点.
2.几个等价关系 方程f(x)=0有实数根⇔函数y=f(x)的图象与__x_轴__有交点⇔函数y= f(x)有__零__点____.
3.函数零点的判定(零点存在性定理)
如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并 且有___f_(_a_)f_(_b_)<__0_____,那么函数y=f(x)在区间(a,b)内有零点,即存 在c∈(a,b),使得___f_(c_)_=__0__,这个c也就是方程f(x)=0的根.
点所在的大致区间是( C )
1
A.e,1
C.(2,e)
B.(1,2) D.(e,+∞)
2 [解析] y=f(x)=ln x-x的定义域为(0,+∞),因为 y=ln x 与 y=
2
2
-x在(0,+∞)上单调递增,所以 f(x)=ln x-x在(0,+∞)上单调递增,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章函数与导数第10课时函数与方程(对应学生用书(文)、(理)26~27页)考情分析考点新知① 函数与方程中函数的零点及二分法在高考中必将有所考查.②以难度较低的填空题为主,考查函数的图象及根的存在性问题.了解二分法求方程近似解的方法,体会函数的零点与方程根之间的联系,形成用函数观点处理问题的能力.②会利用函数的图象求方程的解的个数以及研究一元二次方程的根的分布.1. (必修1P43练习2改编)若一次函数f(x)=ax+b有一个零点2,那么函数g(x)=bx2-ax的零点是________.答案:0、-12解析:由题意可得,b=-2a且a≠0,由g(x)=-2ax2-ax=0,得x=0或x=-12.2. (必修1P111复习13改编)已知函数f(x)=2x-3x,则函数f(x)的零点个数________.答案:2解析:(解法1)令f(x)=0,则2x=3x,在同一坐标系中分别作出y=2x和y=3x的图象,由图知函数y=2x和y=3x的图象有2个交点,所以函数f(x)的零点个数为2.(解法2)由f(0)>0,f(1)<0,f(3)<0,f(4)>0,…,所以有2个零点,分别在区间(0,1)和(3,4)内.3. (必修1P96练习2改编)方程lgx=2-x在区间(n,n+1)(n∈Z)有解,则n的值为________.答案:1解析:令f(x)=lgx+x-2,由f(1)=-1<0,f(2)=lg2>0,知f(x)=0的根介于1和2之间,即n =1.4. (必修1P97习题8)若关于x的方程7x2-(m+13)x-m-2=0的一个根在区间(0,1)上,另一个在区间(1,2)上,则实数m的取值范围为________.答案:(-4,-2)解析:设f(x)=7x2-(m+13)x-m-2,则⎩⎪⎨⎪⎧f(0)>0,f(1)<0,f(2)>0,解得-4<m<-2.5. (必修1P96练习5改编)若函数f(x)=x3+x2-2x-2的一个正数零点附近的函数值用二分法计算,其参考数据如下:f(1)=-2 f(1.5) =0.625 f(1.25) =-0.984f(1.375)=-0.260 f(1.4375)=0.162 f(1.40625)=-0.054答案:1.4解析:f(1.40625)=-0.054<0,f(1.4375)=0.162>0且都接近0,由二分法可知其根近似于1.4.1. 函数零点的定义(1) 方程f(x)=0的实数根又叫y=f(x)的零点.(2) 方程f(x)=0有实根函数y=f(x)的图象与x 轴有交点对函数f(x)=0有零点.2. 函数零点的判定如果函数y=f(x)在区间(a,b)上的图象是一条不间断的曲线,且f(a)·f(b)<0,则函数y=f(x)在区间上有零点,即存在x0∈(a,b),使得f(x0)=0,这个x0也就是函数f(x)=0的零点.我们不妨把这一结论称为零点存在性定理.3. 与零点的关系Δ=b2-4ac Δ>0Δ=0 Δ<0二次函数y=ax2+bx+c(a>0)的图象与x轴的交点两个交点一个交点无交点零点个数 2 1 0第一步,确定区间(a,b),验证f(a)f(b)<0;第二步,求区间(a,b)的中点x1;第三步,计算f(x1);①若f(x1)=0,则x1就是函数的零点;②若f(x1)f(a)<0,则令b=x1 (此时零点x0∈(a,x1));③若f(x1)f(a)>0,则令a=x1 (此时零点x0∈(x1,b));第四步,判断是否满足要求的条件,否则重复第二、三、四步.[备课札记]题型1零点的求法及零点的个数例1 (1) 求函数f(x)=x3-2x2-x +2的零点;(2) 已知函数f(x)=ln(x +1)-1x ,试求函数的零点个数.解:(1) ∵ f(x)=x3-2x2-x +2=x2(x -2)-(x -2)=(x -2)(x +1)(x -1).令f(x)=0,得x =±1,2,∴ 函数f(x)的零点是-1,1,2.(2) 令f(x)=0,即ln(x +1)=1x ,在同一坐标系中画出y =ln(x +1)和y =1x 的图象,可知两个图象有两个交点,所以f(x)有两个零点.备选变式(教师专享)(1) 已知函数f(x)=x2+ax +b 的两个零点是-2和3,解不等式bf(ax)>0; (2) 已知f(x)=2x ,g(x)=3-x2,试判断函数y =f(x)-g(x)的零点个数. 解:(1)由题意,得f ()x =(x +2)(x -3)=x2-x -6,所以a =-1,b =-6,所以不等式bf(ax)>0,即为f(-x)<0,即x2+x -6<0,解得-3<x<2,所以解集为(-3,2). (2)在同一坐标系内作出函数f(x)=2x 与g(x)=3-x2的图象,两图象有两个交点, ∴ 函数y =f(x)-g(x)有两个零点. 题型2 二次函数的零点问题例2 (1) 已知α、β是方程x2+(2m -1)x +4-2m =0的两个实根,且α<2<β,求m 的取值范围;(2) 若方程x2+ax +2=0的两根都小于-1,求a 的取值范围. 解:(1) 设f(x)=x2+(2m -1)x +4-2m.∵ α、β是方程f(x)=0的两个根,且α<2<β, ∴ f(2)<0,即22+2(2m -1)+4-2m<0,得m<-3.(2) 设f(x)=x2+ax +2, f(-1)=1-a +2,Δ=a2-8.由题意,得⎩⎪⎨⎪⎧f (-1)>0,Δ≥0,-a 2<-1,∴ 22≤a<3.变式训练已知关于x 的二次方程x2+2mx +2m +1=0.(1) 若方程有两根,其中一根在区间(-1,0)内,另一根在区间(1,2)内,求实数m 的取值范围;(2) 若方程两根均在区间(0,1)内,求实数m 的取值范围.解:设二次方程x2+2mx +2m +1=0所对应的函数为f(x)=x2+2mx +2m +1.(1) 要使方程的一根在区间(-1,0)内,另一根在区间(1,2)内,则结合函数图象(如图),有⎩⎪⎨⎪⎧f (0)=2m +1<0,f (-1)=2>0,f (1) =4m +2<0,f (2)=6m +5>0,解得-56<m<-12.(2) 要使方程两根均在区间(0,1)内,则结合函数图象(如图),有⎩⎪⎨⎪⎧f (0)=2m +1>0,f (1)=4m +2>0,Δ≥0,0<-m<1,解得⎩⎪⎨⎪⎧m>-12,m ≤1-2或m≥1+2,-1<m<0,即-12<m ≤1- 2.题型3 函数与方程的相互转换例3 设函数f(x)=|x|x +2-ax2,a ∈R.(1) 当a =2时,求函数f(x)的零点;(2) 当a>0时,求证:函数f(x)在(0,+∞)内有且仅有一个零点; (3) 若函数f(x)有四个不同的零点,求a 的取值范围.(1) 解:当x≥0时,由f(x)=0,得xx +2-2x2=0,即x(2x2+4x -1)=0,解得x =0或x =-2±62(舍负);当x<0时,由f(x)=0,得-xx +2-2x2=0,即x(2x2+4x +1)=0(x≠-2),解得x =-2±22.综上所述,函数f(x)的零点为0,x =-2+62,x =-2+22,x =-2-22. (2) 证明:当a>0且x>0时,由f(x)=0,得x x +2-ax2=0,即ax2+2ax -1=0.记g(x)=ax2+2ax -1,则函数g(x)的图象是开口向上的抛物线. 又g(0)=-1<0,所以函数g(x)在(0,+∞)内有且仅有一个零点, 即函数f(x)在区间(0,+∞)内有且仅有一个零点. (3) 解:易知0是函数f(x)的零点.对于x>0,由(2)知,当a>0时,函数f(x)在区间(0,+∞)内有且仅有一个零点; 当a≤0时,g(x)=ax2+2ax -1<0恒成立,因此函数f(x)在区间(0,+∞)内无零点.于是,要使函数f(x)有四个不同的零点,函数f(x)在区间(-∞,0)内就要有两个不同的零点. 当x<0时,由f(x)=0,得-xx +2-ax2=0,即ax2+2ax +1=0(x≠-2).①因为a =0不符合题意,所以①式可化为x2+2x +1a =0(x≠-2),即x2+2x =-1a =0. 作出函数h(x)=x2+2x(x<0)的图象便知-1<-1a <0,得a>1,综上所述,a 的取值范围是(1,+∞). 备选变式(教师专享)设a 是实数,讨论关于x 的方程lg(x -1)+lg(3-x)=lg(a -x)的实数解的个数.解:原方程等价于方程组⎩⎪⎨⎪⎧1<x<3,(x -1)(3-x )=a -x ,即⎩⎪⎨⎪⎧1<x<3,a =-x2+5x -3.在同一坐标系下作直线y =a 与抛物线y =-x2+5x -3(1<x<3)的图象,由图可知,当1<a≤3或a =134时,原方程只有一个实数解;当3<a<134时,原方程有两个不同的实数解.1. (2013·天津)函数f ()x =2x ||log0.5x -1的零点个数是________. 答案:2解析:令f(x)=2x|log0.5x|-1=0,可得|log0.5x|=⎝⎛⎭⎫12x.设g(x)=|log0.5x|,h(x)=⎝⎛⎭⎫12x,在同一坐标系下分别画出函数g(x)、h(x)的图象,可以发现两个函数图象一定有2个交点,因此,函数f(x)有2个零点. 2. (2013·南通二模)函数f(x)=(x -1)sin πx -1(-1<x <3)的所有零点之和为________. 答案:4解析:令f(x)=(x -1)sin πx -1=0,则sin πx =1x -1,在同一坐标系中作出函数y =sin πx 与y=1x -1的图象如图所示,易知此两函数的图象都关于点(1,0)中心对称,且它们有四个交点,即函数f(x)有四个零点,又对称的两交点横坐标之和为2,故四个零点之和为4.3. 若{}x =x -[]x ([]x 表示不超过x 的最大整数),则方程12 013-2 013x ={}x 的实数解的个数是________. 答案:2解析:方程可化为12 013+[x]=2 013x ,可以构造两个函数:y =12 013+[x],y =2 013x ,由图可知,两函数图象有2个交点,故方程有两个根.4. (2013·常州期末)已知函数f(x)=⎩⎪⎨⎪⎧2x ,x ≥2,(x -1)3,0<x <2,若关于x 的方程f(x)=kx 有两个不同的实根,则实数k 的取值范围是________.答案:⎝⎛⎭⎫0,12 解析:在同一个直角坐标系中作出函数y =f(x)、y =kx 的图象,函数y =f(x)图象最高点坐标为A(2,1),过点O 、A 的直线斜率为2,x ≥2时,f(x)=2x 单调减且f(x)>0,直线y =kx 过原点,所以斜率0<k <2时,两个函数的图象恰有两个交点.1. 函数f(x)=2x +x3-2在区间(0,1)内的零点个数是________. 答案:1解析:因为函数f(x)=2x +x3-2的导数为f′(x)=2xln2+3x2≥0,所以函数f(x)单调递增,f(0)=1-2=-1<0,f(1)=2+1-2=1>0,所以根据根的存在定理可知在区间(0,1)内函数的零点个数为1个.2. 若关于x 的方程|x|x -1=kx2有四个不同的实数根,则实数k 的取值范围是________.答案:k<-4解析:显然,x =0是方程的一个实数根.当x≠0时,方程可化为1k =|x|(x -1),设f(x)=1k ,g(x)=|x|(x -1),题意即为f(x)与g(x)图象有三个不同的交点,由g(x)=⎩⎪⎨⎪⎧x (x -1),x>0,-x (x -1),x<0,结合图象知,-14<1k <0,所以k<-4.3. 已知关于x 的方程x2+2alog2(x2+2)+a2-3=0有唯一解,则实数a 的值为________. 答案:1解析:设f(x)=x2+2alog2(x2+2)+a2-3,由f(-x)=f(x),知f(x)是偶函数.若方程f(x)=0有唯一解,则f(0)=0,代入得a =1或a =-3.令t =x2,则f(x)=g(t)=t +2alog2(t +2)+a2-3.当a=1时,g(t)=t+2log2(t+2)-2,由于g(t)≥g(0)=0,当且仅当x=0时取等号,符合条件;当a=-3时,g(t)=t-6log2(t+2)+6,由g(30)=30-6×5+6>0,g(14)=14-6×4+6<0,知f(x)至少有三个根,不符合.所以,符合条件的实数a的值为1.4. 对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点,已知函数f(x)=ax2+(b+1)x+b-1(a≠0).(1) 当a=1,b=-2时,求f(x)的不动点;(2) 若对任意实数b,函数f(x)恒有两个相异的不动点,求a的取值范围.解:(1) 当a=1,b=-2时,f(x)=x2-x-3,由题意可知x=x2-x-3,得x1=-1,x2=3,故当a=1,b=-2时,f(x)的不动点是-1,3.(2) ∵ f(x)=ax2+(b+1)x+b-1(a≠0)恒有两个不动点,∴x=ax2+(b+1)x+b-1,即ax2+bx +b-1=0恒有两相异实根,∴Δ=b2-4ab+4a>0(b∈R)恒成立.于是Δ′=(4a)2-16a<0,解得0<a<1,故当b∈R,f(x)恒有两个相异的不动点时,0<a<1.1. 一元二次方程根的分布问题通常有两种解法:一是方程思想,利用根与系数的关系;二是函数思想,构造二次函数利用其图象分析,但要重视条件的严谨.2. 涉及函数零点的问题,通常有三种转化:一是用零点的定义转化为方程问题;二是利用零点存在性定理转化为函数问题;三是利用数形结合思想转化为函数图象问题.请使用课时训练(A)第10课时(见活页).[备课札记]。