数字信号处理方勇第一章习题答案
数字信号处理(第三版)第1章习题答案

第 1 章 时域离散信号和时域离散系统
1.1.1
(1) 信号: 模拟信号、 时域离散信号、 数字信号三 者之间的区别; 常用的时域离散信号; 如何判断信号是周期 性的, 其周期如何计算等。
(2) 系统: 什么是系统的线性、 时不变性以及因果 性、 稳定性; 线性、 时不变系统输入和输出之 间的关系; 求解线性卷积的图解法(列表法)、 解析法, 以及用MATLAB工具箱函数求解; 线性常系数差分方程的递
x(n-n0)=x(n)*δ(n-n0)
(3)
Xˆ n ( j )
Байду номын сангаас
1 T
X a ( j
k
jks )
这是关于采样定理的重要公式, 根据该公式要求对
信号的采样频率要大于等于该信号的最高频率的两倍以上,
才能得到不失真的采样信号。
xa
(t
)
n
xa
(nt
)
sin[π(t nT ) / T π(t nT ) / T
第 1 章 时域离散信号和时域离散系统
第1章 时域离散信号和时域离散系统
1.1 学习要点与重要公式 1.2 解线性卷积的方法 1.3 例题 1.4 习题与上机题解答
第 1 章 时域离散信号和时域离散系统
1.1 学习要点与重要公式
本章内容是全书的基础。 学生从学习模拟信号分析与处 理到学习数字信号处理, 要建立许多新的概念。 数字信号 和数字系统与原来的模拟信号和模拟系统不同, 尤其是处理 方法上有本质的区别。 模拟系统用许多模拟器件实现, 数 字系统则通过运算方法实现。 如果读者对本章关于时域离散 信号与系统的若干基本概念不清楚, 则学到数字滤波器时, 会感到“数字信号处理”这门课不好掌握, 总觉得学习的不 踏实。 因此学好本章是极其重要的。
数字信号处理第一章课后答案

第 1 章 时域离散信号和时域离散系统
n
(7) y(n)= x(m) 令输入为m0
x(n-n0)
输出为
n
y′(n)= =0[DD)]x(m-n0)
m0
nn0
y(n-n0)= x(m)≠y′(n) m0
故系统是时变系统。 由于
n
T[ax1(n)+bx2(n)]=
[ax1(m)+bx2(m)
第 1 章 时域离散信号和时域离散系统
解:
x(n)=δ(n+4)+2δ(n+2)-δ(n+1)+2δ(n)+δ(n-1)
+2δ(n-2)+4δ(n-3)+0.5δ(n-4)+2δ(n-6)
2. 给定信号:
2n+5
-4≤n≤-1
(x(n)= 6 0
0≤n≤4 其它
(1) 画出x(n)序列的波形, 标上各序列值;
(2) y(n)=x(n)+x(n+1)
n n0
(3) y(n)= x(k) k nn0
(4) y(n)=x(n-n0) (5) y(n)=ex(n)
第 1 章 时域离散信号和时域离散系统
解:(1)只要N≥1, 该系统就是因果系统, 因为输出 只与n时刻的和n时刻以前的输入有关。
如果|x(n)|≤M, 则|y(n)|≤M, (2) 该系统是非因果系统, 因为n时间的输出还和n时间以 后((n+1)时间)的输入有关。如果|x(n)|≤M, 则 |y(n)|≤|x(n)|+|x(n+1)|≤2M,
第 1 章 时域离散信号和时域离散系统 题2解图(四)
数字信号处理课后答案

k = n0
∑
n
x[ k ]
(B) T {x[n]} =
∑
x[k ]
(C) T {x[ n]} = 0.5
x[ n ]
(D) T {x[n]} = x[− n]
1-5 有一系统输入为 x[n] ,输出为 y[n] ,满足关系 y[n] = ( x[n] ∗ u[n + 2])u[n] ,则系统是(A) (A)线性的 (B)时不变的 (C)因果的 (D)稳定的 解:
(a) T { x[ n ]} = h[ n] + x[ n ], (c) T {x[ n]} = ∑ x[ n − k ]
δ [n] + aδ [n − n0 ] ,单位阶跃响应 s[n] = u[n] + au[n − n0 ] 。
1-15 线性常系数差分方程为 y[n] − y[n − 1] +
y[n] = 0 , n < 0 , 则 y[3] = 0.5 。 解: y[0] = y[ −1] − 0.25 y[ −2] + x[0] = 1 y[1] = y[0] − 0.25 y[ −1] + x[1] = 1 y[2] = y[1] − 0.25 y[0] + x[2] = 0.75 y[3] = y[2] − 0.25 y[1] + x[3] = 0.5
∞ ∞ k =−∞ n '=−∞
解: (a)
n =−∞
∑ y[n] = ∑ ∑ x[k ]h[n − k ] = ∑ x[k ] ∑ h[n − k ] = ∑ x[k ] ∑ h[n ']
n =−∞ k =−∞ k =−∞ n =−∞
∞
∞
∞
《数字信号处理》课后答案

数字信号处理课后答案 1.2 教材第一章习题解答1. 用单位脉冲序列()n δ及其加权和表示题1图所示的序列。
解:()(4)2(2)(1)2()(1)2(2)4(3) 0.5(4)2(6)x n n n n n n n n n n δδδδδδδδδ=+++-+++-+-+-+-+-2. 给定信号:25,41()6,040,n n x n n +-≤≤-⎧⎪=≤≤⎨⎪⎩其它(1)画出()x n 序列的波形,标上各序列的值; (2)试用延迟单位脉冲序列及其加权和表示()x n 序列; (3)令1()2(2)x n x n =-,试画出1()x n 波形; (4)令2()2(2)x n x n =+,试画出2()x n 波形; (5)令3()2(2)x n x n =-,试画出3()x n 波形。
解:(1)x(n)的波形如题2解图(一)所示。
(2)()3(4)(3)(2)3(1)6() 6(1)6(2)6(3)6(4)x n n n n n n n n n n δδδδδδδδδ=-+-+++++++-+-+-+-(3)1()x n 的波形是x(n)的波形右移2位,在乘以2,画出图形如题2解图(二)所示。
(4)2()x n 的波形是x(n)的波形左移2位,在乘以2,画出图形如题2解图(三)所示。
(5)画3()x n 时,先画x(-n)的波形,然后再右移2位,3()x n 波形如题2解图(四)所示。
3. 判断下面的序列是否是周期的,若是周期的,确定其周期。
(1)3()cos()78x n A n ππ=-,A 是常数;(2)1()8()j n x n e π-=。
解:(1)3214,73w w ππ==,这是有理数,因此是周期序列,周期是T=14; (2)12,168w wππ==,这是无理数,因此是非周期序列。
5. 设系统分别用下面的差分方程描述,()x n 与()y n 分别表示系统输入和输出,判断系统是否是线性非时变的。
数字信号处理-第1章习题答案

解:
2 i 14i i 3 , N min 14 (1) N 0 3 / 7 3 (2) i 7, j 4, N min 56 2 j 2 j 14 j N2 0 / 7 2 i 8i N1 0 / 4 2 i
0
20
40
60 n
80
100
120
1 3 绘出如下序列的波形。 1.3
(1) x(n) 3 (n 3) 2 (n 1) 4 (n 1) 2 (n 2) (2) x(n) 0.5n R5 (n)
解 (1)
3
2
1
0 x(n n) -1 -2 2 -3 -4 -4
因此,T[.]为线性系统;
T x( n n1 ) nx ( n n1 ) T x( n n1 ) y ( n n1 ) y ( n n1 ) ( n n1 ) x ( n n1 )
因此 T[.]为时变系统。 因此, 为时变系统
1 16 确定下列系统的因果性与稳定性。 1.16
(2) 收敛区域为|z|>a,即圆|z|=a的外部。
1 0.8 0.6 0.4 Imagina ary Part 0.2 0 -0.2 -0.4 -0.6 -0.8 -1 -1 -0.5 0 Real Part 0.5 1 1.5
j 1 1 2 e a c 1 2 a cos a 1 j (3) H (e ) j 2 e a d a 1 2a cos a
2 i
3 x(n) cos n 4 7
1 0.8 0.6 04 0.4 0.2 x(n) 0 -0.2 -0.4 -0 0.6 6 -0.8 -1
数字信号处理作业答案(参考版-第一章)

1-2习题1-2图所示为一个理想采样—恢复系统,采样频率Ωs =8π,采样后经过理想低通G jΩ 还原。
解:(1)根据余弦函数傅里叶变换知:)]2()2([)]2[cos(πδπδππ-Ω++Ω=t F ,)]6()6([)]6[cos(πδπδππ-Ω++Ω=t F 。
又根据抽样后频谱公式:∑∞-∞=∧Ω-Ω=Ωk s a a jk j X T j X )(1)(,得到14T= ∑∞-∞=∧--Ω+-+Ω=Ωk a k k j X )]82()82([4)(1ππδππδπ∑∞-∞=∧--Ω+-+Ω=Ωk a k k j X )]86()86([4)(2ππδππδπ所以,)(1t x a ∧频谱如下所示)(2t x a ∧频谱如下所示(2))(1t y a 是由)(1t x a ∧经过理想低通滤波器)(Ωj G 得到,)]2()2([)()()]([11πδπδπ-Ω++Ω=ΩΩ=∧j G j X t y F a a ,故)2cos()(1t t y a π=(4π) (4π) (4π)(4π)(4π) (4π) Ω-6π-10π-2π 2π0 6π10π)(1Ω∧j X a Ω10π-10π -6π-2π 0 2π6π-14π 14π(4π)(4π) (4π)(4π) (4π) (4π)(4π) (4π))(2Ω∧j X a同理,)]2()2([)()()]([22πδπδπ-Ω++Ω=ΩΩ=∧j G j X t y F a a 故)2cos()(2t t y a π=(3)由题(2)可知,无失真,有失真。
原因是根据采样定理,采样频率满足信号)(1t x a 的采样率,而不满足)(2t x a 的,发生了频谱混叠。
1-3判断下列序列是否为周期序列,对周期序列确定其周期。
(1)()5cos 86x n A ππ⎛⎫=+ ⎪⎝⎭(2)()8n j x n eπ⎛⎫- ⎪⎝⎭=(3)()3sin 43x n A ππ⎛⎫=+ ⎪⎝⎭解:(1)85πω=,5162=ωπ为有理数,是周期序列,.16=N (2)πωπω162,81==,为无理数,是非周期序列; (3)382,43==ωππω,为有理数,是周期序列,8=N 。
数字信号处理(第三版)第1章习题答案

面两个不等式:
0≤m≤3
m-3≤m≤n
上面公式表明m的取值和n的取值有关, 需要将n作分段的假设。 按 照上式, 当n变化时, m应该按下式取值:
第九页,共105页。
max{0, n-3}≤m≤min{3, n}
当0≤n≤3时, 下限应该是0, 上限应该是n; 当4≤n≤6时, 下限应该是
y(n)=
n 1 y(n) 7 n
0
0≤n≤3
4≤n≤6
其它
第十一页,共105页。
在封闭式求解过程中, 有时候决定求和的上下限有些麻烦, 可借助于 非零值区间的示意图确定求和限。 在该例题中, 非零值区间的示意图如图
1.2.1所示。 在图1.2.1(b)中, 当n<0时, 图形向左移动, 图形不可能 和图1.2.1(a)的图形有重叠部分, 因此y(n)=0。 当图形向右移动时, 0≤n≤3, 图形如图1.2.1(c)所示, 对照图1.2.1(a), 重叠部分的上下限自 然是0≤m≤n。 当图形再向右移动时, 4≤n≤6, 如图1.2.1(d)所示, 重 叠部分的上下限是n-3≤m≤3。 当图形再向右移动时, 7≤n, 图形不可能和
(1) x(n) Acos 3 πn A是常数
第二十二页,共105页。
图1.3.2
第二十三页,共105页。
[例1.3.5]已知x1(n)=δ(n)+3δ(n-1)+2δ(n-2),x2(n)=u(n)-u(n-3),
试求信号x(n), 它满足x(n)=x1(n)*x2(n), 并画出x(n)的波形。
解: 这是一个简单的计算线性卷积的题目。
x(n)=x1(n)*x2(n) =[δ(n)+3δ(n-1)+2δ(n-2)]*[u(n)-u(n-3)
数字信号处理方勇第一章习题答案

习 题1-1 有一个连续信号)2cos()(ψπ+=ft t x a ,式中Hz f 20=,2πψ=,(1) 求出)(t x a 的周期;(2) 用采样间隔s T 02.0=对)(t x a 进行采样,写出采样信号)(ˆt xa 的表达式; (3) 画出对应)(ˆt xa 的时域离散信号(序列))(n x 的波形,并求出)(n x 的周期。
解:(1))(t x a 的周期是s fT a 05.01==(2)∑∞-∞=-+=n a nT t fnT t x)()2cos()(ˆδψπ∑∞-∞=-+=n nT t nT )()40cos(δψπ(3))(n x 的数字频率为πω8.0=,252=ωπ周期5=N 。
)28.0cos()(ππ+=n n x ,画出其波形如题1-1图所示。
题1-1图 1-2 设)sin()(t t x a π=,()()sin()a s s x n x nT nT π==,其中s T 为采样周期。
(1))(t x a 信号的模拟频率Ω为多少? (2)Ω和ω的关系是什么?(3)当s T s 5.0=时,)(n x 的数字频率ω为多少? 解:(1))(t x a 的模拟频率s rad /π=Ω。
(2)Ω和ω的关系是:s T ⋅Ω=ω。
(3)当s T s 5.0=时,rad πω5.0=。
1-3 判断下面的序列是否是周期的,若是周期的,确定其周期。
(1))873cos()(ππ-=n A n x ,A 为常数;(2))81()(π-=n j e n x 。
解: (1)πω73=,3142=ωπ,这是有理数,因此是周期序列,周期是14=T ; (2)81=ω,πωπ162=,这是无理数,因此是非周期序列。
1-4 研究一个线性时不变系统,其单位脉冲响应为指数序列)()(n u a n h n =,10<<a 。
对于矩阵输入序列,1,01()0N n N R n ≤≤-⎧=⎨⎩,其他 求出输出序列,并用MATLAB 计算,比较其结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习 题1-1 有一个连续信号)2cos()(ψπ+=ft t x a ,式中Hz f 20=,2πψ=,(1) 求出)(t x a 的周期;(2) 用采样间隔s T 02.0=对)(t x a 进行采样,写出采样信号)(ˆt xa 的表达式; (3) 画出对应)(ˆt xa 的时域离散信号(序列))(n x 的波形,并求出)(n x 的周期。
解:(1))(t x a 的周期是s fT a 05.01==(2)∑∞-∞=-+=n a nT t fnT t x)()2cos()(ˆδψπ∑∞-∞=-+=n nT t nT )()40cos(δψπ(3))(n x 的数字频率为πω8.0=,252=ωπ周期5=N 。
)28.0cos()(ππ+=n n x ,画出其波形如题1-1图所示。
题1-1图 1-2 设)sin()(t t x a π=,()()sin()a s s x n x nT nT π==,其中s T 为采样周期。
(1))(t x a 信号的模拟频率Ω为多少? (2)Ω和ω的关系是什么?(3)当s T s 5.0=时,)(n x 的数字频率ω为多少? 解:(1))(t x a 的模拟频率s rad /π=Ω。
(2)Ω和ω的关系是:s T ⋅Ω=ω。
(3)当s T s 5.0=时,rad πω5.0=。
1-3 判断下面的序列是否是周期的,若是周期的,确定其周期。
(1))873cos()(ππ-=n A n x ,A 为常数;(2))81()(π-=n j e n x 。
解: (1)πω73=,3142=ωπ,这是有理数,因此是周期序列,周期是14=T ; (2)81=ω,πωπ162=,这是无理数,因此是非周期序列。
1-4 研究一个线性时不变系统,其单位脉冲响应为指数序列)()(n u a n h n =,10<<a 。
对于矩阵输入序列,1,01()0N n N R n ≤≤-⎧=⎨⎩,其他 求出输出序列,并用MA TLAB 计算,比较其结果。
分析:输入)()(n R n x N =,线性时不变系统的输出等于输入序列与单位脉冲响应的卷积,用公式表示为∑∞-∞=-⋅=*=k k n h k x n h n x n y )()()()()(为了计算输出序列的第n 个值,必须计算出乘积)()(k n h k x -⋅,并将所得到的序列值相加。
解:输出序列∑∞-∞=-⋅=*=k k n h k x n h n x n y )()()()()(可以分成三种情况来求解:(1) 当0<n 时,由于)(k n h -和)(k x 的非零取样互不重叠,因此0)(=n y 。
(2) 当10-≤≤N n 时,从0=k 到n k =,)(k n h -和)(k x 的非零取样值有重叠,因此 ∑∑=-∞-∞==-⋅=nk k n k a k n h k x n y 0)()()(aa a a an n n--=--=+---1111111(3) 当1-≥N n 时,)(k n h -和)(k x 重叠的非零取样值从0=k 到1-=N k ,因此∑∑-=--==-⋅=11)()()(N k kn N k a k n h k x n y11)11(11+-----=--=N n n N na aa a a a所以 110,01(),0111(),11n nn N n ay n n N a a aN n a +-+⎧⎪<⎪-⎪=≤≤-⎨-⎪⎪--<⎪-⎩利用MATLAB 求其响应,程序如下: a=1/2;N=20; n=0:N-1; c=[1]; d=[1 -a]; x=ones(1,N); y=filter(c,d,x); stem(n,y); ylabel('y(n)');题1-4图 输出相应序列()y n1-5 设)()(n u a n x n =,)1()()(1--=-n u ab n u b n h n n ,求)()()(n h n x n y *=。
解: az zz X -=)(,a z >bz a z b z a b z z z H --=---=)(,b z > 所以, bz zz H z X z Y -==)()()(,b z >其Z 反变换为)()]([)()()(1n u b z Y n h n x n y n =Z =*=-显然,在a z =处,)(z X 的极点被)(z H 的零点所抵消,如果a b <,则)(z Y 的收敛域比)(z X 与)(z H 收敛域的重叠部分要大。
1-6 求下列序列的Z 变换及其收敛域,并用MA TLAB 画出零极点示意图。
(1)双边指数序列nan x =)(,01a <<;(2)正弦调制序列)()cos()(0n u n Ar n x n φω+=,10<<r 。
解:(1)双边指数序列可写为,0(),0nna n x n an -⎧<=⎨≥⎩ 其Z 变换为11011()1n nn nn n n n n X z a zaza z az ∞-∞----==-∞==+=+-∑∑∑ 211111(1)11111(1)()n nn z a a z az az az az z a ∞--=-=+-=+-=-----∑ na n x =)(,10<<a 是一个双边序列,其收敛域为1a z a <<表示极点,极点为z a =,a 1,零点为0z =。
其极点、零点图如图所示,图中⨯表示极点,○表示零点。
利用MATLAB 画出其零极点,如题1-6图(a)所示: a=3;y=1-a*a; b=[0 y 0]; a=[-a y -a]; zplane(b,a);题1-6图(a ) 零极点图(2))(2)()cos()()()(000n u e e Arn u n Ar n x n j n j nnφωφωφω+-++=+=, 10<<r 我们将其分解为标准的指数序列形式,然后根据Z 变换的求和定义式求得其对应的Z 变换、收敛域并画出零极点图。
其Z 变换为00()()100()cos()2j n j n nnnnn n e e X z Ar n zA r z ωφωφωφ+-+∞---==-∞+=+=∑∑0010111220cos cos()112(1)2(1)12cos j j j j A Arz A A e e re z re z rz r zϕϕωωϕωϕω--------=+=---+ 收敛区域为z r >,极点为0j z reω=,0ωj re-,零点为0z =,φφωcos )cos(0-r 。
其对应的零极点图如题1-6图所示。
利用MATLAB 画出其零极点,如题1-6图(b)所示: A=1;r=1;w0=4*pi; w=2*pi;x=2*r*cos(w0);y=A*r*cos(w0-w); b=[A*cos(w) -y ]; a=[1 -x r*r];zplane(b,a);题1-6图(b ) 零极点图讨论 通常将正弦序列信号展开为两个基本复指数序列和或差的形式,然后按照Z 变换定义式求起对应的Z 变换和收敛域。
对于Z 变换表达式可表示为等比级数和的形式的序列,其Z 变换的收敛域是保证等比小于1,如本例中要保证011j q z re ω-=<,可得收敛域为z r >。
ωj re题1-6图 零极点示意图1-7 已知,0(),1nna n x n bn ⎧≥=⎨-≤-⎩, 求其Z 变换及其收敛域。
并用MATLAB 求解。
解:这是一个双边序列,其Z 变换为n n n n nn n nz b z azn x z X ---∞=∞=-∞-∞=-∑∑∑-==1)()(bz za z z bz az -+-=-+-=--111111))(()2(b z a z b a z z ----=,b z a << MATLAB 求解程序如下: F=ztrans(sym('a^k+b^k'))结果为:F =- z/(a - z) - z/(b - z)1-8 求1125()16z X z z z ---=+-,23z <<的逆Z 变换,并用MATLAB 求解。
解:由部分分式展开可得 1111()1213X z z z--=--+, 因为23z <<。
所以得20()(3)nnn x n n ⎧≥=⎨-<⎩MATLAB 求解: 程序如下:syms k z ; Fz=5*z/(z^2+z-6); fk=iztrans(Fz,k)运行结果: fk =2^k - (-3)^k 1-9 判断系统(1)∑==nm m x n y 0)()(,(2))()(n nx n y =是否为时不变系统,并利用MA TLAB 验证。
解:(1)令输入为)(0n n x -,输出为00()[()]()nm Y n T x n n x m n ==-=-∑而0()y n n -=00()()n n m x m Y n -=≠∑,所以系统是时变的。
MATLAB 验证:令 ()(1)2()(1)x n n n n δδδ=+++-,01n = 程序如下:x=[1 2 1];n0=1;n=-1:1;x0=[2 1];%x0为x 横坐标非负的值 y=cumsum(x0); Y=cumsum(x);subplot(3,2,1);stem(n,x);xlabel('n');ylabel('x(n)');title('输入');axis([-1,3,0,4]); subplot(3,2,2);n=0:1;stem(n,y);xlabel('n');ylabel('y(n)');title('输出');axis([-1,3,0,4]); subplot(3,2,3);n=0:2;stem(n,x);xlabel('n');ylabel('x(n-n0)');title('输入');axis([-1,3,0,4]); subplot(3,2,5);n=0:2;stem(n,Y);xlabel('n');ylabel('Y(n)');title('输出');axis([-1,3,0,4]); subplot(3,2,4);n=1:2;stem(n,y);xlabel('n');ylabel('y(n-n0)');title('输出');axis([-1,3,0,4]);-1123n x (n )输入-1123024n y (n )输出-1123024n x (n -n 0)输入-1123024nY (n )输出-1123024ny (n -n 0)输出题1-9图(a ) 时变性验证(2)令输入)(0n n x -,输出00()[()]()Y n T x n n nx n n =-=- 而000()()()()y n n n n x n n Y n -=--≠,所以系统为时变的。