材料力学扭转第5节 圆轴扭转时的变形
合集下载
材料力学 第五章扭转变形.强度、刚度条件(6,7,8)汇总

Me Tb Ta
( 4)
例题 6-6
5. 实心铜杆横截面上任意点的切应力为 Ta Ga M e 0 ra ρa I pa Ga I pa Gb I pb 空心钢杆横截面上任意 点的切应力为
b
Tb Gb M e I pb Ga I pa Gb I pb
2
1 dV (dxdydz ) 2 dV dW v dV dxdydz 1 v 2
一、密圈螺旋弹簧
——螺旋角
F
O
d
d ——簧丝横截面的直径 D ——弹簧圈的平均直径
O D
密圈螺旋弹簧 ——螺旋角<5°时的圆柱形弹簧
§4.5
密圈螺旋弹簧的计算
O F
例题 6-6
Me Tb Ta
解: 1. 实心铜杆和空心钢杆横截面上的扭矩分别为Ta 和Tb(图b),但只有一个独立平衡方程 Ta+Tb= Me (1) 故为一次超静定问题。
例题 6-6
Me Tb Ta
2. 位移相容条件为实心杆和空心杆的B截面相对 于A截面的扭转角相等。在图b中都用表示(设 A端固定)。 Ba Bb ( 2)
a
b
ra
ra
a rb
切应力沿半径的变化 情况如图c所示。
ra
rb
(c)
§5-8非圆截面等直杆扭转的概念
圆截面杆扭转时的应力和变形公式,均建立在平 面假设 的基础上。对于非圆截面杆,受扭时横截面不 再保持为平面,杆的横截面已由原来的平面变成了曲 面。这一现象称为截面翘曲。因此,圆轴扭转时的应 力、变形公式对非圆截面杆均不适用。
(2)
( 4)
例题 6-6
5. 实心铜杆横截面上任意点的切应力为 Ta Ga M e 0 ra ρa I pa Ga I pa Gb I pb 空心钢杆横截面上任意 点的切应力为
b
Tb Gb M e I pb Ga I pa Gb I pb
2
1 dV (dxdydz ) 2 dV dW v dV dxdydz 1 v 2
一、密圈螺旋弹簧
——螺旋角
F
O
d
d ——簧丝横截面的直径 D ——弹簧圈的平均直径
O D
密圈螺旋弹簧 ——螺旋角<5°时的圆柱形弹簧
§4.5
密圈螺旋弹簧的计算
O F
例题 6-6
Me Tb Ta
解: 1. 实心铜杆和空心钢杆横截面上的扭矩分别为Ta 和Tb(图b),但只有一个独立平衡方程 Ta+Tb= Me (1) 故为一次超静定问题。
例题 6-6
Me Tb Ta
2. 位移相容条件为实心杆和空心杆的B截面相对 于A截面的扭转角相等。在图b中都用表示(设 A端固定)。 Ba Bb ( 2)
a
b
ra
ra
a rb
切应力沿半径的变化 情况如图c所示。
ra
rb
(c)
§5-8非圆截面等直杆扭转的概念
圆截面杆扭转时的应力和变形公式,均建立在平 面假设 的基础上。对于非圆截面杆,受扭时横截面不 再保持为平面,杆的横截面已由原来的平面变成了曲 面。这一现象称为截面翘曲。因此,圆轴扭转时的应 力、变形公式对非圆截面杆均不适用。
(2)
材料力学-扭转

扭转角( 扭转角(ϕ):任意两截面绕轴线相对转动的角度。又称为角 位移。通常用ϕ表示。ϕB − A表示B截面相对A截面转过的角度。 剪应变( 剪应变(γ): 剪应变又叫角应变或切应变,它是两个相互垂直方 向上的微小线段在变形后夹角的改变量(以弧度表示, 角度减小时为正) O ϕ B m
A m
γ
第二节 杆受扭时的内力计算
四、圆截面的极惯性矩 Ip 和抗扭截面系数Wp
实心圆截面: 实心圆截面:
2
I p = ∫ ρ d A = ∫ ρ (2 πρ d ρ )
2
ρ
d O
dρ
A
d 2 0
= 2 π(
ρ
4
d /2
4
)
0
πd = 32
4
d A = 2 πρ d ρ
πd 3 Wp = = d / 2 16 Ip
空心圆截面: 空心圆截面:
T T = ρ max = IP IP T = WP
ρ max
Ip—截面的极惯性矩, 截面的极惯性矩,单位: 单位:m 4 , mm 4 Ip 3 3 WP —抗扭截面模量, WP = 抗扭截面模量,单位:m , mm .
ρ max
整个圆轴上——等直杆: 等直杆: τ max
Tmax = WP
三、公式的使用条件: 公式的使用条件: 1、等直的圆轴, 等直的圆轴, 2、弹性范围内工作。 弹性范围内工作。
Tmax Wp
πD 3 实心, 16 T max W = 2)设计截面尺寸: 设计截面尺寸:WP ≥ 3 P [τ ] πD (1 − α 4 ) 空心. 16 ≤ ⇒ m 3)确定外荷载: 确定外荷载: Tmax WP ⋅ [τ ]
≤
扭转刚度(材料力学)

最大切应力:
max
T Wt
扭转截面系数
单位长度扭转角:
j T
GIt 相当极惯性矩
短边中点的切应力: max
其中 Wt b3 It b4
、、 ——与 m h 相关的因数 b
对于B的扭转角jCB。
M2 Ⅰ
M1
Ⅱ
M3
d
B
lAB
A
lAC
C
解: 1)求扭矩 BA段 AC段
T1 955N m T2 637N m
M2 Ⅰ
M1
Ⅱ
M3
d
B
lAB
A
lAC
C
2)求扭转角
j AB
T1l AB GIp
955103 300 80103 π 704
1.52103 rad
32
jCA
变模量G=80GPa 。轴的横截面上最大扭矩为Tmax=
9.56 kN•m ,轴的许可单位长度扭转角[j' ]=0.3 /m 。
试选择轴的直径。
解:1、按强度条件确定外直径D
max
Tmax Wp
Tmax
πD3 1 4
[ ]
16
D 3
π
16Tmax
1 4 [
]
3
16 9.56 106 π 1 0.54 40
等直非圆杆自由扭转时的应力和变形
Ⅰ、等直非圆形截面杆扭转时的变形特点
横向线变 横截面发生翘曲
成曲线
不再保持为平面
平面假设不再 成立,可能产 生附加正应力
非圆杆两种类型的扭转
1、等直杆两端受外力偶作用,端面可自由翘曲时 ——自由扭转(纯扭转) 此时相邻两横截面的翘曲程度完全相同,无附加 正应力产生
《材料力学》课件3-5等直圆杆扭转时的变形.刚度条

3
在不同扭矩作用下,杆的变形表现出非线性特征, 这表明我们需要考虑非线性效应对杆刚度的影响。
研究不足与展望
01
虽然我们得到了杆在扭矩作用下的变形公式,但该公式是在一定假设条件下得 到的,可能存在一定的误差。未来可以通过更精确的实验和数值模拟方法来验 证和修正该公式。
02
目前的研究主要集中在等直圆杆的扭转问题上,对于其他形状的杆或复杂结构 的研究尚不够充分。未来可以进一步拓展研究范围,探究不同形状和结构的杆 在扭矩作用下的变形和刚度问题。
刚度条件的数学表达
刚度条件的数学表
达式
根据材料力学和弹性力学的基本 理论,等直圆杆扭转时的刚度条 件可以用数学表达式表示。
刚度常数
在数学表达式中,涉及到一些与 杆件材料、截面尺寸等有关的常 数,这些常数称为刚度常数。
刚度常数的意义
刚度常数是衡量杆件刚度的具体 数值,可以通过试验和计算获得, 是杆件设计和选用的重要依据。
ERA
刚度条件的定义与意义
刚度条件定义
在等直圆杆扭转时,杆件抵抗扭转变 形的能力称为刚度条件。
刚度条件的物理意义
刚度条件的意义
在工程实际中,刚度条件是设计、制 造和选用杆件的重要依据,满足刚度 条件的杆件才能保证结构的稳定性和 安全性。
它反映了杆件在承受扭矩作用时,抵 抗扭转变形的能力,是衡量杆件扭转 变形能力的重要参数。
BIG DATA EMPOWERS TO CREATE A NEW ERA
3-5等直圆杆扭转时的变形
与刚度条件
• 等直圆杆扭转时的基本概念 • 等直圆杆扭转时的变形分析 • 等直圆杆扭转时的刚度条件 • 等直圆杆扭转时的工程应用 • 结论与展望
目录
CONTENTS
材料力学:第5章:扭转

d
dx d
在外表面上
d dx
d r dx
2. 物理关系 根据剪切胡克定律, 当剪应力不超过材料 的剪切比例极限时
G
剪应力方向垂直于半径
d G dx
3.静力学关系
dA
dA T
A
o
dA
d G dx dA T A d 2 G dA T dx A
2
I p dA 极惯性矩
d T 则 dx G I p
A
令 I p dA
2 A
d G T T G G Ip Ip dx
d T dx G I p
W = m 2 n
(1) = (2) 得 N×1000× 60 = m 2 n
(2)
N m 9549 n
N ─ kW n ─ rpm m ─ N m N ─ PS n ─ rpm m ─ N m
N m 7024 n
§5-2 扭矩和扭矩图
Ip
极惯性矩:
32 4 4 4 (D d ) D 4 (1 ) 空心圆: I p 32 32 抗扭截面模量: 3 d 实心圆: Wt 16 3 D 4 (1 ) 空心圆: Wt 16
实心圆: I p
d
4
二、圆轴扭转时的变形
d T d x GI p T d dx GI p
d
T dx GI p l
Tl 若T const,则 GIp
Nl l EA
圆轴扭转时的强度条件和刚度条件
强度条件:
刚度条件:
材料力学 扭转(2)

2. 刚度校核
1
M d n1 dx 1 GIp
2
M d n2 dx 2 GI p
M n1 d 因 M n1 M n 2 故 max 1 GI p dx max
max
180 N m 180 0.43 ( ) / m [ ] (80109 Pa)(3.0 105 10-12 m 4 ) π
§4-5 扭转扭转时的变形和刚度条件
一、圆轴扭转时的变形计算 1、扭转变形(相对扭转角)
d M n dx GI P Mn d dx GI P d M n dx GI P
扭转变形与内力计算式
Mn Mn
Mn L dx GI P
rad m ——单位长度的扭转角
扭转角单位:弧度(rad) GIP——抗扭刚度。
2.绘扭矩图
7640 N m
3.直径d1的选取 按强度条件
d1
A M e1
( )
M e2
d 2 M e3
C
max
3
16M n 3 d1
3
B
4580 N m
16M n d1 π[ ]
16 7640 π 70 106
82.2 103 m 82.2mm
n
3)等直圆杆受分布扭矩 t 作用,t 的单位为 N m m。
从中取 dx 段,dx 段两相邻截面的扭转角为:
M n x dx AB 截面相对扭转角为: l d l GI p
M n x dx d GI p
4)变截面圆杆,A、B 两端直径 分别为 d1、d2 。
解: 1.外力
P M e1 9549 1 n
1
M d n1 dx 1 GIp
2
M d n2 dx 2 GI p
M n1 d 因 M n1 M n 2 故 max 1 GI p dx max
max
180 N m 180 0.43 ( ) / m [ ] (80109 Pa)(3.0 105 10-12 m 4 ) π
§4-5 扭转扭转时的变形和刚度条件
一、圆轴扭转时的变形计算 1、扭转变形(相对扭转角)
d M n dx GI P Mn d dx GI P d M n dx GI P
扭转变形与内力计算式
Mn Mn
Mn L dx GI P
rad m ——单位长度的扭转角
扭转角单位:弧度(rad) GIP——抗扭刚度。
2.绘扭矩图
7640 N m
3.直径d1的选取 按强度条件
d1
A M e1
( )
M e2
d 2 M e3
C
max
3
16M n 3 d1
3
B
4580 N m
16M n d1 π[ ]
16 7640 π 70 106
82.2 103 m 82.2mm
n
3)等直圆杆受分布扭矩 t 作用,t 的单位为 N m m。
从中取 dx 段,dx 段两相邻截面的扭转角为:
M n x dx AB 截面相对扭转角为: l d l GI p
M n x dx d GI p
4)变截面圆杆,A、B 两端直径 分别为 d1、d2 。
解: 1.外力
P M e1 9549 1 n
圆轴扭转时的变形和刚度计算

=6.44×10-4m4
轴的最大切应力为 τmax=Tma /Wp=2.86×103N·m/1.43×104m
=20×106Pa=20MPa<[τ]=60MPa 可见强度满足要求。
4) 刚度校核。轴的单位长度最大扭转角为 θmax=Tmax/GIp×180/π
=2.86×103N·m/8.0×1010Pa×6.44×106m4×180/3.14 =0.318°/m<[θ]=1.1°/m 可见刚度也满足要求。材Βιβλιοθήκη 力学圆轴扭转时的变形和刚度计算
1.1圆轴扭转时的变形 圆轴扭转时的变形通常是用两个横截面绕轴线转动的相对扭转角 φ来度量的。在上节中已得到式(3-5),即 dφ/dx=T/GIp
式中:dφ——相距为dx的两横截面间的扭转角。 上式也可写成 dφ=T/GIpdx
因此,相距为l的两横截面间的扭转角为 φ=∫ l dφ=∫(T l /GIp)dx (3-12 若该段轴为同一材料制成的等直圆轴,并且各横截面上扭矩T的 数值相同,则上式中的T、G、Ip均为常量,积分后得
得 D≥(16T/π[τ])1/3
=(16×39.6×103/π×88.2×106)1/3m
=0.131m=131mm
2) 按刚度条件设计轴的直径。由刚度条件式(3-16),即 θmax=Tmax/GIp×180/π
=32×180Tmax/Gπ2D4≤ [θ 得
D=(32×180T/Gπ2[θ])1/4 =(32×180×39.6×103/79×109×π2×0.5)1/4m =0.156m=156mm 故取D=160mm,显然轴能同时满足强度条件和刚度条件。
【例3-6】一钢制传动圆轴。材料的切变模量G=79×103MPa, 许用切应力[τ]=88.2MPa,单位长度许用扭转角[θ] =0.5°/m,承受的扭矩为T=39.6kN·m。试根据强度条件和 刚度条件设计圆轴的直径D。
轴的最大切应力为 τmax=Tma /Wp=2.86×103N·m/1.43×104m
=20×106Pa=20MPa<[τ]=60MPa 可见强度满足要求。
4) 刚度校核。轴的单位长度最大扭转角为 θmax=Tmax/GIp×180/π
=2.86×103N·m/8.0×1010Pa×6.44×106m4×180/3.14 =0.318°/m<[θ]=1.1°/m 可见刚度也满足要求。材Βιβλιοθήκη 力学圆轴扭转时的变形和刚度计算
1.1圆轴扭转时的变形 圆轴扭转时的变形通常是用两个横截面绕轴线转动的相对扭转角 φ来度量的。在上节中已得到式(3-5),即 dφ/dx=T/GIp
式中:dφ——相距为dx的两横截面间的扭转角。 上式也可写成 dφ=T/GIpdx
因此,相距为l的两横截面间的扭转角为 φ=∫ l dφ=∫(T l /GIp)dx (3-12 若该段轴为同一材料制成的等直圆轴,并且各横截面上扭矩T的 数值相同,则上式中的T、G、Ip均为常量,积分后得
得 D≥(16T/π[τ])1/3
=(16×39.6×103/π×88.2×106)1/3m
=0.131m=131mm
2) 按刚度条件设计轴的直径。由刚度条件式(3-16),即 θmax=Tmax/GIp×180/π
=32×180Tmax/Gπ2D4≤ [θ 得
D=(32×180T/Gπ2[θ])1/4 =(32×180×39.6×103/79×109×π2×0.5)1/4m =0.156m=156mm 故取D=160mm,显然轴能同时满足强度条件和刚度条件。
【例3-6】一钢制传动圆轴。材料的切变模量G=79×103MPa, 许用切应力[τ]=88.2MPa,单位长度许用扭转角[θ] =0.5°/m,承受的扭矩为T=39.6kN·m。试根据强度条件和 刚度条件设计圆轴的直径D。
材料力学扭转(共56张PPT)

例题: :空心轴和实心轴材料相同,面积相同, α= 0.5。试比较空心轴和实心轴的强度和刚度情况。
解: 1〕确定两轴尺寸关系
面积相同 (1)校核空心轴及实心轴的强度〔不考虑键槽的影响〕;
扭转角单位:弧度〔rad〕 在B、C轮处分别负载N2=75kW,N3=75kW。
D1 d1
D d 2 2可G、I见P扭—在矩—载计抗荷算扭相1、2刚同符度的号。条规件定下和,扭空矩2心图轴绘的制重量仅为实2心轴的31% 。
1、扭转杆件的内力〔截面法〕
m
m
左段:
mx 0, T m 0
T m
右段:
m x
0,
mT 0
T m
m
Tx
T
m
x
内力偶矩——扭矩 T
2、扭矩的符号规定:按右手螺旋法那么判断。
+
T
T
-
3、内力图〔扭矩图〕
扭矩图作法:同轴力图:
例题: 1、一传动轴作200r/min的匀速转动,轴上装有五个轮子。主动轮 2输入的功率为60kW,从动轮1、3、4、5依次输出的功率为18kW、 12kW、22kW和8kW。试作出该轴的扭矩图。
二、 扭转杆的变形计算
1、扭转变形:〔相对扭转角〕
d T
dx GI P
扭转变形与内力计算式
d T dx
GIP
T dx
L GIP
1) 扭矩不变的等直轴
Tl GI p
扭转角单位:弧度〔rad〕 GIP——抗扭刚度。
2)各段扭矩为不同值的阶梯轴
Tili GI pi
3)变截面轴
T (x) dx l GI p (x)
2)、设计截面尺寸:
T
Ip
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
BA
T1l1 GI P1
180
0.8110
CB
T2l2 GI P 2
180
0.9810
CA CB BA 0.9810 (0.8110 ) 0.17 0
例4-4 如图,已知ABC轴结构尺寸为 lAB 1.6m, lBC 1.4m。材料切变模量 G 80GPa,轴上作用有外 力矩 M A 900 N·m,M B 1500 N·m,M C 600 N·m,试
求截面C的相对截面A的转角。
解: 1)用截面法求
各段扭矩
1
2
AB 段:
一、圆轴扭转时的扭转变形
• 扭转角:圆轴扭转时,两横
A
BO
截面相对转过的角度称为这
两截面的相对扭转角。
M
M
d
T (x) GIP
dx
l d
T (x)
l GIP
dx
若在圆轴的 l 长度内,T、G、
IP 均为常数,则圆轴两端截面的 相对扭转角为:
Tl
GIP
• 抗扭刚度:式中的 GIP 称为圆轴的抗扭刚度,它反 映了圆轴抵抗扭转变形的能力。
T1 MA 900 N m
BC 段:
T
600Nm
T2 M c 600 N m
画出扭矩图如图所示
900Nm
AB 截面 极惯性矩
I P1
d14
32
BC 截面 极惯性矩
2)C 截面相对于 A 截面的转角
IP2
d
4AB 段: BC 段: